As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the worldâs food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.
Achieving widespread food and nutritional security for the worldâs poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.
A new policy brief produced by the Indian Council of Agricultural Research (ICAR) lays out a clear case for the benefits and importance of conservation agriculture, and a road map for accelerating its adoption in Eastern India.
A collaborative effort by research and policy partners including ICAR, the National Academy of Agricultural Sciences (NAAS), The International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), and national academic and policy institutions, the brief represents the outputs of years of both rigorous scientific research and stakeholder consultations.
Eastern India â an area comprising seven states â is one of the worldâs most densely populated areas, and a crucial agricultural zone, feeding more than a third of Indiaâs population. The vast majority â more than 80% â of its farmers are smallholders, earning on average, just over half the national per capita income.
Conservation agriculture (CA) consists of farming practices that aim to maintain and boost yields and increase profits while reversing land degradation, protecting the environment and responding to climate change. These practices include minimal mechanical soil disturbance, permanent soil cover with living or dead plant material, and crop diversification through rotation or intercropping. A number of studies have shown the success of conservation agriculture in combatting declining factor productivity, deteriorating soil health, water scarcity, labor shortages, and climate change in India.
The road map lists recommended steps for regional and national policy makers, including
establishing a database repository on conservation agriculture for eastern India,
setting up common learning platform and sites for science-based evidence on CA,
developing an effective and productive supply chain system for CA machinery,
offering subsidies for CA machinery as incentives to farmers,
adopting pricing strategies to encourage market demand for sustained adoption of CA,
developing synergies for effective coordination between NARS and CGIAR institutions, and
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
Partners include the Indian Council of Agricultural Research (ICAR), the National Academy of Agricultural Sciences (NAAS), the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), the Trust for Advancement of Agricultural Sciences (TAAS), the Borlaug Institute for South Asia (BISA), Dr. Rajendra Prasad Central Agricultural University, Bihar Agricultural University, and the Department of Agriculture of the state of Bihar.
The agricultural market has been suffering since the government of Nepal imposed a lockdown from March 23, 2020 to limit the spread of COVID-19 in the country. A month after the lockdown, the International Maize and Wheat Improvement Center (CIMMYT) conducted a rapid assessment survey to gauge the extent of disruptions of the lockdown on households from farming communities and agribusinesses.
As part of the Nepal Seed and Fertilizer (NSAF) project, CIMMYT researchers surveyed over 200 key stakeholders by phone from 26 project districts. These included 103 agrovet owners and 105 cooperative managers who regularly interact with farming communities and provide agricultural inputs to farmers. The respondents served more than 300,000 households.
The researchers targeted maize growing communities for the survey since the survey period coincided with the primary maize season.
Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)
Key insights from the survey
The survey showed that access to maize seed was a major problem that farmers experienced since the majority of agrovets were not open for business and those that were partially open â around 23% â did not have much customer flow due to mobility restrictions during the lockdown.
The stock of hybrid seed was found to be less than open pollinated varieties (OPVs) in most of the domains. Due to restrictions on movement during the entire maize-planting season, many farmers must have planted OPVs or saved seeds.
Access to fertilizers such as urea, DAP and MOP was another major problem for farmers since more than half of the cooperatives and agrovets reported absence of fertilizer stock in their area. The stock of recommended pesticides to control pests such as fall armyworm was reported to be limited or out of stock at the cooperatives and agrovets.
Labor availability and use of agricultural machineries was not seen as a huge problem during the lockdown in the surveyed districts.
It was evident that food has been a priority for all household expenses. More than half of the total households mentioned that they would face food shortages if the lockdown continues beyond a month.
During the survey, around 36% of households specified cash shortages to purchase agricultural inputs, given that a month had already passed since the lockdown began in the country. The majority of the respondents reported that the farm households were managing their cash requirements by borrowing from friends and relatives, local cooperatives or selling household assets such as livestock and agricultural produces.
Most of the households said that they received food rations from local units called Palikas, while a small number of Palikas also provided subsidized seeds and facilitated transport of agricultural produce to market during the lockdown. Meanwhile, the type of support preferred by farming communities to help cope with the COVID-19 disruptions â ranging from food rations, free or subsidized seed, transportation of fertilizers and agricultural produce, and provision of credit â varied across the different domains.
The survey also assessed the effect of lockdown on agribusinesses like agrovets who are major suppliers of seed, and in a few circumstances sell fertilizer to farmers in Nepal. As the lockdown enforced restrictions on movement, farmers could not purchase inputs from agrovets even when the agrovets had some stock available in their area. About 86% of agrovets spoke of the difficulty to obtain supplies from their suppliers due to the blockage of transportation and product unavailability, thereby causing a 50-90% dip in their agribusinesses.
Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)
Immediate actions to consider
Major takeaways from this survey are as follows:
Currently, food access is a priority and households are spending more money on food. However, as and when the lockdown eases, the need for cash to buy agricultural inputs and services is likely to emerge and may require attention.
Accessing maize seed and fertilizer was a problem in many communities during the maize season. Similarly, a shortage of rice seed, particularly hybrids, can be an issue for farmers unless efforts are made right away.
To help cope with the COVID-19 disruptions, a one-size-fits-all relief package would not be effective for farming communities living in different domains. Major support should be on facilitating transport and distribution of seed and fertilizers, access to food supplies through the local governmentâs schemes, and provision of soft loans.
Agrovets have an important contribution as the last mile service providers and they were hit hard by the lockdown. Therefore, facilitating agrovet businesses to operate and transport seeds, fertilizers, and pesticides from suppliers to agrovet business points will be essential to restore businesses and deliver agri-inputs to farmers.
The survey findings were presented and shared with the government, private sector, development partner organizations and project staff over a virtual meeting. This report will serve as a resource for the project and various stakeholders to design their COVID-19 response and recovery strategy development and planning.
Kiyasi Gwalale walking through her baby trial in Chebvute, Masvingo. Photo: C. Thierfelder/CIMMYT
It was an early morning on March 12, 2020, when we entered Kiyasi Gwalaleâs field in the Chebvute area of Masvingo, southern Zimbabwe. Gwalale participates in the Zambuko Livelihoods Initiative, funded by the United States Agency for International Development (USAID).
The Zambuko initiative aims to increase rural resilience against the negative effects of climate change. More than 70% of smallholders in Zimbabwe farm on sandy soils that are low in soil fertility and are increasingly affected by the vagaries of climate. The Gwalale family is an example of one of the millions affected.
In Chebvute, the International Maize and Wheat Improvement Center (CIMMYT) has established trials to test the effectiveness and productivity of conservation agriculture and climate resilient crop species since 2018. This has been in the form of âmother and babyâ trials.
A traditional tool of breeders, âmother trialsâ show different technologies to farmers to allow them to select the best option. In Chebvute, these trials were amplified to demonstrate farmersâ crop management practices such as conservation agriculture, crop rotation with legumes and different drought-resilient crop varieties.
A baby trial with DT maize, cowpea and white sorghum in Chebvute. Photo: C. Thierfelder/CIMMYT
Baby trial farmers taking after their âmothersâ
Since 2019, the best options have been taken on by follower farmers in so called âbaby trialsâ, where they use a subset from the mother trials to gain first-hand experience with the technology. Learning by doing is a central concept of this approach.
Gwalale as a âbaby trial farmerâ learned from the mother trials that drought-tolerant maize varieties out-yield traditional varieties under conservation agriculture, but need to be rotated with legumes to also improve the soil and the nutrition of the farm household. In addition, she realized that planting white sorghum is a drought-resilient strategy in this area as small grains are less affected by in-season dry-spells.
Gwalale and her family have been resident in Chebvute for 15 years but farm only on 0.4 ha of land. With her husband and three children, she grows maize, sorghum, groundnuts and Bambara nuts. What she gets from these fields is barely enough to survive.
In the 2019/20 cropping season, a devastating drought lasting from mid-December to mid-January destroyed all her hopes that this year would be a better season. Instead, she went on an educational journey to find out how improved farming practices can make a difference in her own life.
âWe planted this baby trial for the first time in December 2019, as we had seen from the nearby mother trials that these varieties planted under no-tillage seem to grow better than our own. We planted the baby at the same times as our own crops, but instead of tilling the soil and clearing the land, which we are used to, we just planted in riplines without tillage and covered the soil with mulch,â explains Gwalale.
âWhen the drought came, all my other crops in the tilled fields started to wilt and die â some did not even germinate. We could not believe what was happening in this baby trialâ.
CIMMYT scientist Christian Thierfielder pleased with the results in another baby trial plot in Chebvute. Photo: C. Thierfelder/CIMMYT
Resounding results in the baby trial
All crops in the baby trial survived the dry-spell and when the rains started to fall again in January, they continued to grow very well. Gwalale replanted the crops in the affected fields but they never caught up with the baby trial. Even after using the ripper to make more riplines, it was too late to experience the same wonder seen in the baby trial. âFor now, we are yet to see how much we will get from this small field, but we learned a big lesson and want to expand our land area with this way of planting next year,â she says.
More than 200 baby trial farmers in Chebvute, the majority of which are women, have experienced the same in their own baby trials and realized that it does not take much effort to achieve food security.
Timely planting, conserving the soil and the moisture with conservation agriculture, effective weeding and application of adequate plant nutrients are the key ingredients of success. This can be learned effectively in a small plot such as a baby trial. Farmers have realized that it is possible to make a difference when they apply the principles of sustainable agriculture in their farming systems. The interventions introduced will help them to become more climate-resilient and ultimately more food secure.
Developed by CABI in partnership with leading researchers and institutions, the portal is a free-to-access platform that enables the sharing of research data, insights and outputs, and includes a range of key features such as posting research updates, identifying collaborators, and posting questions to the community.
The Research Collaboration Portal is the official platform for the Fall Armyworm R4D International Consortium. B. M. Prasanna, Director of CIMMYTâs Global Maize Program and the CGIAR Research Program on Maize (MAIZE) and co-chair of the portal steering committee commented, âThe fall armyworm research collaboration portal will serve as an effective platform for communicating on research actions of the Fall Armyworm R4D International Consortium, led by CIMMYT and IITA. We encourage all the members of the Fall Armyworm R4D International Consortium to actively contribute to the portal.â
Fall armyworm (Spodoptera frugiperda) is an invasive insect pest that feeds on more than 80 plant species, causing major damage to maize, rice, sorghum, sugarcane but also other vegetable crops and cotton.
The pest is native to tropical and subtropical regions of the Americas. However, in 2016 it was reported for the first time in Africa, where it is causing significant damage to maize crops and has great potential for further spread and economic damage.
Fall armyworm has since spread to the Near East and Asia and, according to the Food and Agriculture Organization of the United Nations (FAO), it will likely soon be present in southern Europe. The FAO says that once fall armyworm is a resident pest in a country, it is there to stay and farmers need significant support to manage it sustainably in their cropping systems through integrated pest management activities.
The Fall Armyworm Research Collaboration Portal, funded by the UK Department for International Development (DFID) and the Directorate-General for International Cooperation (DGIS) of the Netherlands under the Action on Invasives program, will also encourage researchers to post preprints of research articles to the new agriRxiv, which offers researchers and students access to preprints across agriculture and allied sciences.
The portal will help reduce the duplication of research into fall armyworm prevention and management, provide a route for the rapid sharing of results and highlight opportunities for collaboration â encouraging rapid, iterative experimentation and global teamwork to address the spread and impact of fall armyworm.
In 2019, CIMMYT continued to perform groundbreaking crop research and forge powerful partnerships to combat hunger and climate change, preserve maize and wheat biodiversity, and respond to emerging pests and diseases. Â
Bill Gates spoke about the âessential role of CGIAR research centers in feeding our futureâ and together with other stakeholders urged us to âdo even better.â In his Gates Notes blog, he highlighted the great example of CIMMYTâs drought-tolerant maize, which helps resource-poor farmers withstand increasing climate risks.Â
Over the course of the year, we supported our national partners to release 82 maize and 50 wheat varieties. More than 14,000 farmers, scientists, and technical workers across the world took part in over 900 training and capacity development activities. CIMMYT researchers published 386 peer-reviewed journal articles.Â
In 2019, CIMMYT also marked the end of a decade of achievements in seed security. CIMMYT celebrated being the largest depositor at the Svalbard Global Seed Vault with 173,779 accessions from 131 countries. The most recent deposit included 15,231 samples of wheat and 332 samples of maize.Â
Innovative solutions like DNA fingerprinting â a method used to identify individual plants by looking at unique patterns in their genome â brought state of the art research into farmerâs fields, providing valuable insights into the diversity of wheat varieties grown in Afghanistan and Ethiopia.  Â
CIMMYT also continued to play a key role in the battle against fall armyworm, coordinating a global research-for–development consortium to build an evidence-based response against the pest in both Africa and Asia.Â
Through the Cereal Systems Initiative for South Asia (CSISA), CIMMYT helped women find business opportunities and empowered female entrepreneurship with the help of mechanization solutions.Â
The year 2019 showed us that while CIMMYTâs work may begin with seeds, our innovations support farmers at all stages of the value chain. The year ahead will be a challenging one as we continue to adjust to the ânew normalâ of life under COVID-19. We hope you enjoy this Annual Report as we look back on the exciting year that was 2019.  Â
A unique consortium of global and Pakistan scientists has helped to drive the countryâs recent growth in annual maize output to 6.3 million tons â nearly double the 2010 output â and energized the domestic production of affordable, quality seed of more nutritious and climate-resilient maize varieties.
With funding from the U.S. Agency for International Development (USAID), support from the Pakistan Agricultural Research Council (PARC) and other national experts, and coordination by the International Maize and Wheat Improvement Center (CIMMYT), the seven-year Agricultural Innovation Program (AIP) for Pakistan has contributed to the dramatic growth in national maize productivity that began in the early 2000âs, when more farmers adopted hybrid seed and better management practices.
âA key AIP focus has been to reach smallholder and marginal farmers with affordable maize seed from domestic suppliers, thus reducing maize seed imports that cost Pakistan nearly $80 million in 2018-19,â said AbduRahman Beshir, CIMMYT maize seed system specialist for South Asia. âAs part of this, the program has provided dozens of private companies with market-ready maize products and parental seed, as well as training in product marketing and business management and supporting the production and distribution of 175 tons of maize seed for on-farm demonstrations and promotion.â
âThe testing of diversified maize products and release of new varieties represent encouraging progress,â said AbduRahman Beshir (foreground), CIMMYT maize seed system specialist, speaking during a traveling seminar, âbut only advances in quality seed production and a competitive seed business at scale, with a strong case for investment by the private sector, will allow farmers to benefit.â (Photo: Waheed Anwar/CIMMYT)
Products from AIP have included more nutritious, diversified maize lines and varieties with tolerance to drought, infertile soils and insect pests, reducing the risk of smallholder farm families for whom losing a crop is catastrophic, according to Syed Khadem Jan, a farmer from Bajaur District of the tribal areas of Pakistan.
âOur area is very fragmented and maize yields have averaged less than 2 tons per hectare, due to the lack of improved varieties and management practices,â Jan said. âThe new maize seed with drought-tolerance is what farmers are looking for and will help to secure our food and livelihoods.â
Pakistan farmers sow maize on 1.3 million hectares in diverse ecologies ranging from 30 meters above sea level on the arid plains of Sindh Province to nearly 3,000 meters in the Karakoram mountain range of Gilgit Baltistan Province and as part of complex, irrigated cropping rotations in Punjab Province and small-scale, rain-watered farms in Khyber Pakhtunkhwa Province. Yellow maize is used widely in poultry feed and white maize for various foods including unleavened roti. Despite rising domestic demand for maize, production in Pakistan faces challenges that include a lack of maize varieties for various uses and ecologies, a weak seed delivery system, high seed prices, and unpredictable weather.
Since 2014, AIP has supported the testing by public and private partners in Pakistan of more than 3,000 maize products from breeding programs of CIMMYT and partners such as the International Institute of Tropical Agriculture (IITA). The extensive testing resulted in the identification of 60 new maize hybrids and varieties which CIMMYT handed over, together with their parental lines and breeder seed, to 16 public and private partners, according to Beshir.
âThe maize seed distributed through AIP is enough to sow some 9,000 hectares, potentially benefitting nearly 110,000 families,â he said. âSimilarly, CIMMYT has shared over 150 elite maize lines that have various preferred traits to foster variety registration, on-farm demonstrations, high-volume seed production, and intensive marketing. These contributions have broadened the genetic diversity and resilience of Pakistanâs maize and, through fast-track testing, saved partners at least eight years and considerable money, over having to develop them on their own from scratch and to pass them through conventional adaptation trials.â
Syed Khadam Jan, maize farmer from Bajaur District, Pakistan, holds a box of seed of a new climate-resilient maize variety from CIMMYT and the Pakistan Maize and Millet Research Institute. (Photo: Khashif Syed/CIMMYT)
Biofortified varieties provide better nutrition
Through AIP and national partners such as the University of Agriculture Faisalabad, farmers are testing pro-vitamin-A-enriched maize hybrids that are also remarkably high-yielding, helping to address one of the countryâs chronic nutritional deficiencies. With the same aim, in 2017 the national variety evaluation committee approved the release of two âquality protein maizeâ hybrids, whose grain has enhanced levels of the amino-acid building blocks for protein in humans and other monogastric animals.
Thanking USAID and the government of Pakistan, as well as 22 public and private partners across the maize value chain, Muhammed Imtiaz, CIMMYT country representative for Pakistan and AIP project leader, underscored the importance of specialty maize products for vulnerable communities.
âStrengthening âAgriculture-to-Nutrition Pathwaysâ is a centerpiece of AIP and part of CIMMYT efforts to provide nutritious food for the needy,â Imtiaz said. âThe introduction and evaluation of quality protein, Provitamin A and zinc enriched maize products represent a significant contribution both for the maize seed sector and Pakistanâs agricultural transformation.â
Addressing a 2020 AIP meeting, Muhammad Azeem Khan, PARC Chairman, urged stakeholders to use the new maize varieties. âI want to reiterate the importance of collaboration among public and private stakeholders to produce seed at scale, so that the diverse maize varieties can make it to the farmers’ fields as quickly as possible,â he said.
Maize seed producers acknowledge the value of AIP training and support in new business models. âWe are grateful to CIMMYT for reviving and helping the crawling maize seed industry to walk,â said Aslam Yousuf, Managing Director of HiSell Seeds Private Ltd. Company. âNow we need to learn to run.â
Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices. Norman Borlaug, Nobel Peace laureate and first director of CIMMYT wheat research, kept a close relationship with the nationâs researchers and policymakers.
Cover photo: Participants at a February 2020 maize working group meeting of the Pakistan Agricultural Innovation Program (AIP) with seed of maize parental lines shared by CIMMYT. (Photo: Awais Yaqub)
The benefits of perennials are not so clear, says CIMMYT Director General Martin Kropff. CIMMYT tested wheat perennials, but the grain turned out not to last for years, says program leader Hans-Joachim Braun.
Wheat, in its own right, is one of the most important foods in the world. It is a staple food for more than 2.5 billion people, it provides 20% of the protein consumed worldwide and, according to the FAO, supplies more calories than any other grain. Its long-term productivity, however, is threatened by rising temperatures, among other factors. Stress from heat, an increasing trend due to climate change, affects its performance, a fact that requires urgent solutions bearing in mind that, according to some estimates, the world’s population will reach 9 billion by the year 2050.
Nearly 65,000 farmers in Nepal, 40% of which were women, have benefited from the Agronomy and Seed Systems Scaling project, according to a comprehensive new report. This project is part of the Cereals Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT) and supported by USAID.
One of the project’s most recent successes has been in accelerating the adoption of the nutritious and stress-tolerant mung bean in rice-wheat farming systems.
Farmer Chhalu Bhattarai harvests her mung bean crop in Manikapur, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)
Rice-wheat is the dominant cropping system in the lowland region of Nepal. Farmers typically harvest wheat in March and transplant rice in July, leaving land fallow for up to 100 days. A growing body of evidence shows, however, that planting mung bean during this fallow period can assist in improving farmers’ farming systems and livelihoods.
âThe mung bean has multiple benefits for farmers,â says Narayan Khanal, a researcher at CIMMYT. âThe first benefit is nutrition: mung beans are very rich in iron, protein and are easily digestible. The second benefit is income: farmers can sell mung beans on the market for a higher price than most other legumes. The third benefit is improved soil health: mung beans fix the nitrogen from the atmosphere into the soil as well as improve soil organic content.â
Commonly used in dishes like dahl, soups and sprout, mung beans are a common ingredient in Asian cuisine. However, prior to the project, most farmers in Nepal had never seen the crop before and had no idea how to eat it. Encouraging them to grow the crop was not going to be an easy task.
Thanks to dedicated efforts by CIMMYT researchers, more than 8,000 farmers in Nepal are now cultivating mung bean on land that would otherwise be left fallow, producing over $1.75 million of mung bean per year.
The newfound enthusiasm for growing mung bean could not have been achieved without the help of local womenâs farming groups, said Timothy J. Krupnik, CIMMYT senior scientist and CSISA project leader.
Employees select and clean mung beans at Poshan Foods in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
An employee selects mung beans at Poshan Foods, in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
After mung bean is toasted, employees at Poshan Foods select the beans. (Photo: Merit Maharajan/Amuse Communication)
Poshan Foods uses mung bean for a wide range of products but has been particularly successful with baby food, which includes important nutrition advice for parents. (Photo: Merit Maharajan/Amuse Communication)
Bringing research and innovations to farmersâ fields
Introducing the mung bean crop to farmersâ fields was just one of the successes of Agronomy and Seed Systems Scaling, which was an added investment by USAID in the wider CSISA project, which began in 2014. The project aims to move agronomic and crop varietal research into real-world impact. It has helped farmers get better access to improved seeds and machinery and strengthened partnerships with the private sector, according to Khanal.
CSISA support in business mentoring and capacity building of seed companies to popularize newly released, biofortified and stress-tolerant wheat varieties has led to seed sales volumes tripling between 2014 to 2019. The project also led to a 68% increase in the number of new improved wheat varieties since the inception of the project.
Nepalâs National Wheat Research Program was able to fast track the release of the early maturing variety BL 4341, by combining data generated by the project through seed companies and the Nepal Agricultural Research Council (NARC) research station. Other varieties, including Borlaug 100 and NL 1327, are now in the pipeline.
Empowering women and facilitating womenâs groups have been critical components of the project. Nepal has seen a mass exodus of young men farmers leaving the countryside for the city, leaving women to work the farms. CIMMYT worked with women farmer groups to expand and commercialize simple to use and affordable technologies, like precision seed and fertilizer spreaders.
Over 13,000 farmers have gained affordable access to and benefited from precision agriculture machinery such as two-wheel âhand tractorsâ and âmini tillers.â This is a major change for small and medium-scale farmers in South Asia who typically rely on low horsepower four-wheel tractors. The project also introduced an attachment for tractors for harvesting rice and wheat called the âreaper.â This equipment helps to reduce the costs and drudgery of manual harvesting. In 2019, Nepalâs Terai region had almost 3,500 reapers, versus 22 in 2014.
To ensure the long-term success of the project, CSISA researchers have trained over 2,000 individuals from the private and public sector, and over 1,000 private organizations including machinery manufacturers and agricultural input dealers.
Researchers have trained project collaborators in both the public and private sector in seed systems, resilient varieties, better farming practices and appropriate agricultural mechanization business models. These partners have in turn passed this knowledge on to farmers, with considerable impact.
âThe projectâs outcomes demonstrates the importance of multi-year and integrated agricultural development efforts that are science-based, but which are designed in such a way to move research into impact and benefit farmers, by leveraging the skills and interests of Nepalâs public and private sector in unison,â said Krupnik.
âThe outcomes from this project will continue to sustain, as the seed and market systems developed and nurtured by the project are anticipated to have long-lasting impact in Nepal,â he said.
The Cereal Systems Initiative for South Asia (CSISA) is led by the International Maize and Wheat Center (CIMMYT), implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). CSISA is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation.
Cover photo: A member of a women farmers group serves a platter of mung bean dishes in Suklaphanta, Nepal. (Photo: Merit Maharajan/Amuse Communication)
Bram Govaerts, Director of CIMMYT’s Integrated Development Program, says Mexico already has projects like MasAgro whose potential can be activated and integrated as an investment.
Developing climate-resistant crops is attracting increasing attention as climate change-related events worsen.
The International Maize and Wheat Improvement Center (CIMMYT) is a non-profit research organization that develops improved varieties of wheat and corn able to withstand drought, heat and pests in order to increase food security. It says that over 90% of its work relates to climate change.
The FAO official pointed out that a number of factors help to shield Bangladesh, including the direction of the wind, the monsoon, and Indiaâs robust locust monitoring system.
MasAgro develops capacities in Mexican producers through the socialization of scientific knowledge and the use of rural knowledge to increase their yields and conserve natural resources.
On June 5, 2020, the world celebrates World Environment Day as COVID-19 continues to cause challenges and restrictions. Existing threats of climate change with the new challenges of a global pandemic adversely affect the agricultural sector, a mainstay of most sub-Saharan African economies. This situation calls for increased attention to how agriculture is practiced and natural resources â such as soil and water â are cared for.
Smallholder farmers in Zimbabwe are custodians of these natural resources, yet climate variability of shifting rainfall seasons, El Niño and droughts threaten successful rain-fed farming. Coupled with conventional farming practices such as tillage and deforestation, the soil structure and chemical quality are gradually degrading. Each passing year has resulted in declining yields, food insecurity and increased household vulnerabilities, particularly in drought-prone, low rainfall areas of southern Zimbabwe.
With support from the Swiss Agency for Development and Cooperation (SDC), the R4 Rural Resilience Initiative, led by the World Food Programme (WFP), aims to enable vulnerable, smallholder farmers to increase their food security, income and resilience by managing climate-related risks. Â Building on R4, WFP has just launched the Zambuko Livelihoods Initiative, focusing on social cohesion of communities, improved crop and livestock production and improved access to finance, with support from the United States Agency for International Development (USAID). The International Maize and Wheat Improvement Center (CIMMYT) is a partner to implement the project component on appropriate seeds and agricultural practices.
We discuss the R4 Rural Resilience Initiative with Christian Thierfelder, the Principal Cropping Systems Agronomist and a Strategic Leader for Africa at CIMMYT, and Munaye Makonnen, the Project Lead from WFP in Zimbabwe.
Promising high yields of white sorghum on a field in the mother trials in Mwenezi, Zimbabwe.
How is the R4 Rural Resilience Initiative responding to climate change challenges in the sites of intervention â Chebvute and Mwenezi?
Thierfelder: The R4 and Zambuko initiatives pursue an integrated approach to increase resilience of smallholder farming communities. Different partner organizations have come together in these projects to pursue different interventions such as building dams and vegetable gardens as community assets, financial education, promotion of improved climate-smart technologies such as drought-tolerant seed in combination with conservation agriculture, insurance, and linking farmers to markets. The combined actions address all needs and shortfalls in the target communities. We see a transformational change from mere subsistence farming to a more commercially oriented farming by targeted smallholders.
Makonnen: Recognizing the need to address livelihoods holistically, R4 offers farmers a set of integrated tools so that communities can better manage climate risks. Farmers participate in activities that enhance the natural resource base at watershed level, helping them adapt to climate change. They also benefit from a weather index insurance cover that protects them against drought and incentivizes them to engage in high-risk high-return investments. In the case of minor shocks, farmers have their savings groups to draw up on and can access small credit for income generating activities. With the aim of increasing productivity and income, conservation agriculture practices are promoted. For their surplus production, participants are also supported in accessing markets. The project also plans to include a component on climate services that will allow communities to mitigate the impacts of disaster risk, increase production and enhance adaptation to climate change.
Since inception, how have the farming communities responded to the technologies and practices introduced in their respective sites?
Thierfelder: Farming communities were very skeptical initially about this new approach. However, the varieties and cropping systems displayed in our 10 mother trials showed dramatically higher yields than farmers observed in their own fields, so it was not difficult to get 200 baby trial farmers to experiment with the technology. During the 2019/2020 cropping season, farmers got even more excited to see maize and legume yields thrive in their baby trials while crops planted under conventional agriculture failed. In the next cropping season, we hope to reach the tipping point of farmers trying and experimenting with these climate-smart agriculture technologies to achieve a transformational change towards more resilience.
Makonnen: Looking at the performance of the trials, farmers can see for themselves that the agricultural practices promoted by the project result in higher yields. They also get practical experience by trying these out on their own fields. Such an approach has worked well in terms of getting farmers to become interested in and eventually adopt conservation agriculture principles because it is not just based on theory â farmers can actually see and experience the change for themselves.
Even in times of COVID-19, the work must continue, observing social distancing and using facemasks. Christian Thierfelder outlines trials with farmers in Mwenezi, Zimbabwe.
In the wake of the COVID-19 pandemic and disturbance to agri-food systems, how is the R4 Rural Resilience Initiative addressing the emerging challenges?Â
Thierfelder: We have created the base of more resilient farming systems that should positively respond to all external shocks â droughts, floods and maybe a virus as well. In our technology package we do promote self-pollinating legumes such as cowpea and groundnuts which can be grown even when farmers are cut off from supply chains for seed and fertilizer. We therefore hope that this can be a contribution to reducing the negative impact of the COVID-19 crisis.
Makonnen: As COVID-19 is compromising food security, it is now more important than ever to ensure that agricultural production continues to function smoothly. R4 continues to provide all the services in its integrated risk management package despite the pandemic. As farmers face challenges in production, including limited access to labor, we hope that high yielding and less labor-intensive conservation agriculture practices promoted by R4 really come into their own. Ensuring the safety of our beneficiaries, staff and partners is a priority for WFP so we have developed guidelines for R4 implementation in the context of COVID-19. For instance, trainings are taking place in smaller groups, social distancing is observed in all activities, messages on COVID-19 prevention are shared with beneficiaries and we are also looking into digital solutions to continue implementation during these unprecedented times.
Looking ahead, how will the adoption of appropriate agricultural practices and seed varieties strengthen the resilience of the farming communities?
Thierfelder: Our approach has been multi-faceted addressing different areas of concern to the farmers: income generation, credit, improved productivity, insurance and marketing. We believe that with this mix of interventions farming can more effectively withstand external stresses. However, we also realize that adoption does not happen overnight and requires a significant experimentation and learning process with farmers. WFP has seen the need for longer term investments, and this is now beginning to pay off.
Makonnen: Adoption of appropriate agricultural practices and seeds is just one of the components of R4. We know resilience requires a holistic approach which is why we have a set of interventions within R4 involving multiple partners. R4 will continue to work across the entire value chain bringing together natural resource management, access to financial services, access to inputs and markets and promotion of appropriate agricultural practices so that the farmers we work with are well equipped to manage risks and become resilient to the changing climate and risks to their food security.
Sign Phiri from CIMMYT inspects maize crops.
Cover photo: Kiyasi Gwalale stands on her baby trial plot.
Boddupalli Prasanna, director of the global maize program at the International Maize and Wheat Improvement Center (CIMMYT), a global research body, called on scientists to help countries in finding faster solutions to the effects of COVID-19 on food security.
âI am particularly worried about farmers, especially smallholder farmers, who are quite vulnerable to the ongoing challenge,â Prasanna said in a statement.