Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Massive-scale genomic study reveals wheat diversity for crop improvement

Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).

Read more here: https://phys.org/news/2020-09-massive-scale-genomic-reveals-wheat-diversity.html

Collaborating to accelerate genetic gains in maize and wheat

Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.

The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the world’s most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

Tackling current and emerging threats

Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR),  acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. “We are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,” he said.

AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.

Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYT’s global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, “from the development of product profiles to breeding, field trials and line advancement.”

Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. “The technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,” he said.

Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)

Symbiotic partnerships with great impact

“From the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,” said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. “We see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.”

Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYT’s maize and wheat programs and national programs in countries where CIMMYT works. “A wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that – not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,” he said.

Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. “I believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.”

He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, “because farmers are very risk averse and to change their habits requires a great deal of effort.”

On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.

“We expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,” he said.

Challenges and opportunities in a time of crisis

Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries – and the global demand for food generally – but also to address foreseen threats.

“We are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,” he said.

Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, “which will be crucial to our envisioned strategy to achieve socioeconomic change.”

Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.

In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.

Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)

Matching nutrients to agroforestry systems for greater maize and wheat yields

Globally, the COVID-19 pandemic and associated lockdowns have created bottlenecks across the agricultural value chain, including disrupting the supply of fertilizer. This could negatively impact the already low yields in smallholders’ fields in the Global South. Livelihoods of these resource-poor farmers and food security of those they feed call for innovations or smarter application of existing knowledge to avoid increasing food insecurity.

In a recent study, a team of scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Plant Production Systems, Wageningen University, found that there are clever ways to mix and match maize and wheat varieties with mineral fertilizers in tree-crop systems for greater nutrient use efficiency. The study explored the impact of different combinations of nitrogen (N) and phosphorus (P) fertilizers on crop yield in tree crop systems. It also identified mineral fertilizer-tree combinations that maximize agronomic nutrient use efficiencies under different contexts.

Tree-crop-fertilizer interactions for wheat growing under Faidherbia albida and maize growing under Acacia tortilis and Grevillea robusta through omission trials of N and P were explored in open fields and fields under tree canopy, using a split plot design. The experiments were conducted under different agroecologies in Ethiopia (Meki and Mojo) and Rwanda, where retaining scattered trees in fields has been practiced for centuries. The trials were replicated four times and over two seasons. Trees with approximately similar ages, crown structures and pruning history were used for a researcher-led and farmer-managed on-farm experiment.

The results demonstrated that different on-farm tree species interact uniquely with crops, resulting in different responses to N and P fertilization. Except for F. albida, perhaps the most ‘ideal’ agroforestry species, the other two tree species under the current study raised the question of tree-crop compatibility for optimum productivity. F. albida significantly improved N and P use efficiencies, leading to significantly higher grain yields in wheat. The P use efficiency of wheat under F.albida was double that of wheat grown in an open field. By contrast, G. robusta and A. tortilis trees lowered nutrient use efficiencies in maize, leading to significantly less maize grain yields compared with open fields receiving the same fertilization. The case study also identified probabilities of critically low crop yields and crop failure to be significantly greater for maize growing under the canopy of these species.

A tree-crop system in Ethiopia. (Photo: Tesfaye Shiferaw /CIMMYT)
A tree-crop system in Ethiopia. (Photo: Tesfaye Shiferaw /CIMMYT)

In conclusion, the study demonstrated that tree-crop interactions are mediated by the application of N and P fertilizers in tree-crop systems. In F. albida-wheat agroforestry systems, N fertilizers could be saved, with localized application of P fertilizers close to tree crowns. Such adaptable application may help smallholder farmers cope with COVID-19-imposed fertilizer limitations. In G.robusta-maize and A.tortilis-maize agroforestry systems, maize did not respond to N and P fertilizers applied at recommended rates, although the application of these nutrients compensated for competition. This implies mineral fertilizers can offset the effect of competition, while they fail to provide the yield advantages like mono-cropping situations.

The researchers underlined the fact that fertilizer recommendations need to be adapted to agroforestry systems. However, in order to quantify the exact magnitude and nature of fertilizer-tree interaction in agroforestry systems accurately, factorial application of higher and lower rates of mineral fertilizer is needed. They also called for further research to identify fertilization rates that minimize tree-crop competition for G. robusta-maize and A. tortilis-maize systems, while additional studies are needed to identify the rates and timing of application that optimize F. albida-wheat facilitation.

This work was carried out by the International Maize and Wheat Improvement Center (CIMMYT) and Plant Production Systems, Wageningen University

Download your copy of the publication: Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda

Massive-scale genomic study reveals wheat diversity for crop improvement

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)
A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Keith Ewing)

Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study published today in Nature Communications are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally — bread and pasta wheat — and of 27 known wild species.

Wheat is the most widely grown crop globally, with an annual production exceeding 600 million tons. Approximately 95% of the grain produced corresponds to bread wheat and the remaining 5% to durum or pasta wheat.

The main objective of the study was to characterize the genetic diversity of CIMMYT and ICARDA’s internationally available collections, which are considered the largest in the world. The researchers aimed to understand this diversity by mapping genetic variants to identify useful genes for wheat breeding.

From germplasm bank to breadbasket

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.

“The analysis of the bread wheat accessions reveals that relatively little of the diversity available in the landraces has been used in modern breeding, and this offers an opportunity to find untapped valuable variation for the development of new varieties from these landraces”, said Carolina Sansaloni, high-throughput genotyping and sequencing specialist at CIMMYT, who led the research team.

The study also found that the genetic diversity of pasta wheat is better represented in the modern varieties, with the exception of a subgroup of samples from Ethiopia.

The researchers mapped the genomic data obtained from the genotyping of the wheat samples to pinpoint the physical and genetic positions of molecular markers associated with characteristics that are present in both types of wheat and in the crop’s wild relatives.

According to Sansaloni, on average, 72% of the markers obtained are uniquely placed on three molecular reference maps and around half of these are in interesting regions with genes that control specific characteristics of value to breeders, farmers and consumers, such as heat and drought tolerance, yield potential and protein content.

Open access

The data, analysis and visualization tools of the study are freely available to the scientific community for advancing wheat research and breeding worldwide.

“These resources should be useful in gene discovery, cloning, marker development, genomic prediction or selection, marker-assisted selection, genome wide association studies and other applications,” Sansaloni said.


Read the study:

Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints.

Interview opportunities:

Carolina Sansaloni, High-throughput genotyping and sequencing specialist, CIMMYT.

Kevin Pixley, Genetic Resources Program Director, CIMMYT.

For more information, or to arrange interviews, contact the media team:

Ricardo Curiel, Communications Officer, CIMMYT. r.curiel@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

The study was part of the SeeD and MasAgro projects and the CGIAR Research Program on Wheat (WHEAT), with the support of Mexico’s Secretariat of Agriculture and Rural Development (SADER), the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors. Research and analysis was conducted in collaboration with the National Institute of Agricultural Botany (NIAB) and the James Hutton Institute (JHI).

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

Development Partners Explore Scaling Up Food Systems Transformation in Africa Post-COVID-19

The COVID-19 crisis is highlighting many fragilities in contemporary food systems. But the pandemic has also created opportunities for local organizations and technologies to quickly mitigate these fragilities while showcasing the resilience, innovation and adaptation of African food and agricultural systems.

African Green Revolution Forum (AGRF) panel discussed solutions to food security challenges.

Read more here: https://allafrica.com/stories/202009100823.html

3 climate-resilient food solutions for smallholder farmers

While COVID-19 is exacerbating an existing hunger crisis, authors highlight three of the most impactful research and development successes from the past few years that help smallholder farmers cope with climate change and bolster food security.

The first is CIMMYT’s program to develop drought-tolerant maize varieties with support from the Bill & Melinda Gates Foundation, successfully developing hundreds of new varieties that boost farmers’ yields and incomes, directly improving millions of lives.

Read more here: https://www.greenbiz.com/article/3-climate-resilient-food-solutions-smallholder-farmers

Unmanned aerial vehicles help wheat breeders

Authors of a recent Crop Science article leveraged unmanned aerial vehicles (UAVs) to record the normalized difference vegetation index (NDVI), a measure of plant health, at the seed increase stage of the International Maize and Wheat Improvement Center’s (CIMMYT) wheat breeding program.

Read more here: https://www.sciencecodex.com/unmanned-aerial-vehicles-help-wheat-breeders-655650

Wheat researchers to gather for October virtual event

A global wheat conference originally scheduled to be held in June in Norwich, United Kingdom, now will take place virtually on Oct. 7-9.

The Borlaug Global Rust Initiative’s (BGRI) virtual technical workshop was postponed earlier this year due to the coronavirus (COVID-19) pandemic.

Read more here: https://www.world-grain.com/articles/14150-wheat-researchers-to-gather-for-october-virtual-event

Unique partnership to transform maize breeding and production in Africa

Scientists part of the Seed Production Technology for Africa (SPTA) and the Maize Lethal Necrosis Gene Editing projects are leveraging innovative technologies to transform seed production systems and speed up the delivery of disease resistance in elite new hybrids. This research is helping smallholder farmers in sub-Saharan Africa to access high-quality seed of new hybrids that were bred to perform under stressful low-input, drought-prone conditions, including farming regions impacted by maize lethal necrosis (MLN).

Fast delivery of MLN-tolerant varieties

The fight against maize lethal necrosis (MLN) has persisted for almost ten years now.

Collaborative efforts in diagnostics, management and systematic surveillance have limited its spread and confined the disease to the eastern Africa region. However, ongoing work is required to efficiently develop MLN-tolerant varieties for smallholders in endemic areas and prepare for the potential further movement of the disease.

“Maize lethal necrosis still exists. It has not been eradicated. Even though it has reduced in its prevalence and impact, it is still present and is a latent threat in Ethiopia, Kenya, Rwanda, Tanzania and Uganda, with potential to spread further,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

“That is why the work of the gene editing project is critical to rapidly change the genetic component of those susceptible parent lines of popular hybrids into MLN-tolerant versions,” said Prasanna. Scientists will edit the four parent lines of two popular hybrids, currently grown by farmers in Kenya and Uganda, which are susceptible to MLN. The edited MLN-tolerant lines will be used to make MLN-tolerant versions of these drought-tolerant hybrids.

Through gene editing technology, the time it takes to develop hybrids using traditional breeding methods will be cut in half. By 2025, the edited MLN-tolerant hybrids will be available for planting on approximately 40,000 hectares by about 20,000 Kenyan farmers.

A non-pollen-producing maize plant (on the left) on farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)
A non-pollen-producing maize plant (on the left) on farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)

Business as unusual

The unique seed production technology developed by Corteva Agriscience seeks to transform the seed production process in sub-Saharan Africa. This technology utilizes a dominant non-pollen producing maize gene to create female plants that are unable to produce pollen.

Seed companies that use seed production technology eliminate the need to detassel the female parent: a manual process through which tassels are removed from plants to prevent self-pollination and ensure that the intended male parent is the only source of pollen in the hybrid seed production field. Targeted small and medium-size seed companies could make significant savings to the cost of production if they were to eliminate manual detasseling. The method also helps to ensure the purity of the hybrid seed by removing the risk of unintentional self-pollination.

Hybrids produced using the seed production technology, characterized as 50 percent non-pollen producing (FNP), are unique since only half of the plants will produce pollen in the field. FNP hybrids re-allocate energy from the tassel and pollen production to grain formation, thus delivering an additional 200 kilograms per hectare yield advantage to the farmer. This represents a 10 percent productivity boost for farmers who will harvest approximately 2 tons per hectare, the average maize yield across sub-Saharan Africa. Farmers engaged in participatory research have demonstrated preference for FNP hybrids and associate the trait with higher yield and larger ear size.

As the first phase of Seed Production Technology for Africa (SPTA) wraps up, the collaborators are preparing for the next phase that will focus on commercializing, scaling up and increasing smallholders’ access to FNP. “This is among the unique partnerships funded by the foundation and I am hopeful that this incredible work will continue through the next phase,” said Gary Atlin, program officer at the Bill & Melinda Gates Foundation.

Resistant hybrid (on the right) grows beside a susceptible commercial check at the Kenya Plant Health Inspectorate Services' (KEPHIS) National Performance Trial. (Photo: CIMMYT)
Resistant hybrid (on the right) grows beside a susceptible commercial check at the Kenya Plant Health Inspectorate Services’ (KEPHIS) National Performance Trial. (Photo: CIMMYT)

A win-win collaboration

Research and development work under the SPTA and the MLN Gene Editing projects has immensely benefited from the support of public and private partners. Seed companies and national institutions have contributed to improving access to and knowledge of these technologies as well as creating a crucial link with farmers. Ongoing engagement with regulatory agencies through the different stages of the projects ensures transparency and fosters understanding.

In order to assess the progress of these two initiatives, representatives from regulatory agencies, seed trade associations, seed companies, national agricultural institutions and funders came together for a virtual meeting that was hosted on July 29, 2020.

“KALRO embraces partnerships such as those that are delivering these two projects. That synergy helps us to resolve challenges faced by farmers and other actors in various agricultural value chains,” observed Felister Makini, deputy director general of Crops at KALRO.

As the primary technology provider, Corteva Agriscience provides the seed production technology system on a royalty-free basis and grants access to key gene editing technologies, which are the foundation for the two projects. Corteva Agriscience is also actively involved in project execution through collaborative scientific support.

“We have appreciated the opportunity to work with CIMMYT, KARLO, Agricultural Research Council (ARC) of South Africa and the Bill & Melinda Gates Foundation to bring some of the technologies and tools from Corteva to address significant challenges facing smallholder farmers in Africa. We could not have done this alone, it requires the partnerships that exist here to bring forth these solutions,” said Kevin Diehl, director of the Global Seed Regulatory Platform at Corteva Agriscience.

Breaking Ground: Erick Ortiz HernĂĄndez innovates regional solutions for greater impact

The International Maize and Wheat Improvement Center (CIMMYT) operates 11 hubs — nodes of innovation — in Mexico, supported by a portfolio of projects including MasAgro. These hubs are perfectly defined by the agro-ecological conditions of the territory in which they are located, and their main aim is innovation management focused on sustainable and resilient agri-food systems.

The BajĂ­o Hub — which includes the central states of Guanajuato, MichoacĂĄn and QuerĂ©taro — is directed by Erick Ortiz HernĂĄndez, who through integrated management, seeks to improve farmers’ livelihoods working hand in hand with a large network of stakeholders, promoting and validating sustainable and scalable technologies.

Ortiz HernĂĄndez joined CIMMYT in 2010 as a collaborator in the state of MichoacĂĄn, where he trained and certified technicians, and managed the first modules and platforms of the MasAgro project. That experience allowed him to become the manager of the Yucatan Peninsula Hub, in southeastern Mexico, in 2015. After three years of serving in the state of Guanajuato, he has recently taken a management position at the BajĂ­o Hub.

Growing up in a rural community of less than a thousand people in the state of Puebla, Ortiz Hernández was familiar with agriculture from a young age. However, he considers that his decision to pursue a career in agronomy was unplanned. It was when he got into the agronomy-engineering program at the Chapingo Autonomous University — one of the most prestigious institutions in agricultural studies in Mexico — that he realized how drawn he was to plant production, choosing it as his specialty.

“As a Chapingo student, you know that CIMMYT is one of the most relevant research institutions not only in Mexico, but internationally,” says Ortiz HernĂĄndez. “To be honest, when I graduated, I would never have imagined that I could be part of this great team.”

Tailored sustainability

Currently, he coordinates and manages the operation of different projects at the BajĂ­o Hub, working with both the public and private sectors. All of them operate under the same objectives: to monitor and address activities in the value chain to improve production systems, produce more with less through conservation agriculture and precision farming practices, and achieve a successful association with the market.

One of these projects is Cultivando un MĂ©xico Mejor [Cultivating a Better Mexico], in partnership with Heineken Mexico. Through CIMMYT’s research and the implementation of improved management practices, experts explore the requirements for the sustainable management of water used in the daily cultivation process.

These actions are of utmost importance, since every year the region’s water tables are affected by the excessive use of water. Around 80% of the consumption of this natural resource is used for farming activities.

Ortiz HernĂĄndez explains that the production of 2.2 pounds of wheat in the region can require 1,500 liters of water on average. However, he and his team have shown that water consumption can be reduced by 30-50% by implementing practices that save water without decreasing yields and, ideally, with low production costs.

Ortiz HernĂĄndez in a wheat field in Guanajuato where sustainable and climate-smart practices are implemented. (Photo: Francisco AlarcĂłn/CIMMYT)
Ortiz HernĂĄndez in a barley field in Guanajuato where sustainable and climate-smart practices are implemented. (Photo: Francisco AlarcĂłn/CIMMYT)

Linking for success

The BajĂ­o Hub also manages MasAgro Guanajuato, a collaboration project between the government of state of Guanajuato and CIMMYT. Its aim is to support the technological improvement of conventional agri-food production, in order to implement actions of diagnosis, design, validation, demonstration and induction to the use of sustainable technological innovations.

One of the current situations faced by this program is that farmers in the area either broadcast or leave the fertilizer on the surface, resulting in an inefficient use. The technical team identified this problem and the possibility of mitigating it, by creating collaborative links with leading companies in the manufacture of agricultural machinery in the state, to design and produce a tool that meets this purpose.

“By working on a territorial innovation management approach, we get stakeholders to provide what is needed for farmers to access and adopt appropriate technology,” explains Ortiz HernĂĄndez. “What we expect from this type of project is not only to benefit the 500 or 1,000 farmers with whom we work directly, but to scale up and multiply those numbers generating an impact in the region through partnerships and alliances.”

Ortiz HernĂĄndez sees his management role as a strategic one, in which he has the flexibility to innovate by working with his team to generate efficient models, processes and tools. He can also propose and manage activities with different stakeholders in the region, so they can join in or align common objectives.

“There is no better moment than when farmers are harvesting and you see a smile on their faces due to the good results. When you know you contributed, even a little, you feel good and you come home happy,” says Ortiz Hernández.

One of his personal goals, and something he tries to incorporate into any project, is to create awareness of farmers’ major role in global food security. “We have to see farmers for what they really are: the people who ensure that food reaches our tables and who guarantee its quantity and quality. It is vital to recognize their daily efforts.”

The missing link between maize seeds and trust

The world population is expected to rise to almost 10 billion by 2050. To feed this number of people, we need to increase food production while using fewer resources. Biofortification, the process of fortifying staple crops with micronutrients, could help to solve this problem.

However, it is not that easy to identify biofortified seeds.

Often, the process of biofortification does not change a seed in a visible way, opening the possibilities for counterfeit products. Farmers cannot verify that the seeds they buy are as advertised. Unsurprisingly, fake seeds are a major obstacle to the adoption of biofortified crops. Similarly, in the process from farm to fork, traceability of biofortified food is equally difficult to achieve.

Picture Aisha, a smallholder farmer in Nigeria. She’s in the market for biofortified maize seeds for her farm. How does she know which seeds to pick, and how can she be sure that they are actually biofortified?

One solution is blockchain technology.

Quality protein maize looks and tastes just like any other maize, but has increased available protein that can stem or reverse protein malnutrition, particularly in children with poor diets. (Photo: Xochiquetzal Fonseca/CIMMYT)
Quality protein maize looks and tastes just like any other maize, but has increased available protein that can stem or reverse protein malnutrition, particularly in children with poor diets. (Photo: Xochiquetzal Fonseca/CIMMYT)
Researchers consult smallholders to test demand for vitamin A-enriched maize in Kenya. (Photo: CIMMYT)
Researchers consult smallholders to test demand for vitamin A-enriched maize in Kenya. (Photo: CIMMYT)
Natalia Palacios, CIMMYT maize nutrition quality specialist, works on breeding maize rich in beta-carotene, a provitamin that is converted to vitamin A within the human body. (Photo: CIMMYT)
Natalia Palacios, CIMMYT maize nutrition quality specialist, works on breeding maize rich in beta-carotene, a provitamin that is converted to vitamin A within the human body. (Photo: CIMMYT)

What is blockchain?

Blockchain is a shared digital ledger for record keeping, where data is decentralized and allocated to users. Digital information, or blocks, is stored in a public database, or chain.

This technology platform helps in situations of lack of trust. It provides an unhackable, unchangeable and transparent record of events where users place trust in computer code and math, instead of a third party. This code writes the rules of the system and the software is peer-reviewed, so rules and data are resilient against corruption. When new data is added to the database, actors in then network verify and timestamp the data before adding it to the blockchain. After input, no one can change the information. No single entity owns or controls the database, allowing actors to trust in the system without having to trust any other actors.

While often associated with bitcoin and cryptocurrencies, blockchain technology has many other uses in traditional industries, including the potential to transform agri-food systems. The Community of Practice on Socio-economic Data, led by the International Maize and Wheat Improvement Center (CIMMYT), produced a report detailing the role blockchain can play in agri-food systems and biofortified seeds.

Blockchain for agri-food systems

Agri-food systems consist of complex networks that often mistrust each other. Blockchain technology can enhance transparency, traceability and trust. It could have a significant role to play in closing the yield gap and reducing hunger.

Many transactions done in the agri-food sector have paper records. Even when records are digital, disconnected IT systems create data silos. Blockchain enables stakeholders to control, manage and share their own data, breaking down silos.

For example, blockchain technology can help solve issues of land governance, unclear ownership and tenure by providing an accurate land registration database. It can help with compliance to standards from governments or private organizations. This technology could make financial transactions more efficient, limit corruption, and provide provenance, traceability and recall of products.

Verifying biofortified maize seeds

HarvestPlus conducted a study to understand the barriers to widespread adoption of biofortified seeds. The team interviewed 100 businesses and 250 individuals from farmers to global brands about their experiences with biofortification. Unsurprisingly, they found that a big barrier to adoption is the inability to distinguish biofortified crops from standard ones.

Therefore, it is crucial to have a system to verify biofortified seeds. HarvestPlus collaborated with The Fork to investigate solutions.

One solution is a public blockchain. The result could look like this: Aisha, our smallholder farmer in Nigeria wants to buy biofortified maize seeds for her farm. At the store, she takes a phone out of her pocket and scans a QR code on a bag to see a trustworthy account of the seeds’ journey to that bag. Satisfied with the account, she brings verified biofortified maize seeds home, improving nutrition of her family and community.

Contingent on farmers having access to smartphones, this situation could be possible. However, blockchain technology will not solve everything, and it is important we test and study these solutions while considering other challenges, such as access to technology and human behavior.

The Community of Practice on Socio-economic Data report, Blockchain for Food, gives principles of digital development of blockchain. It is crucial to understand the existing ecosystem, design for scale, build for sustainability and design the technology with the user. These are crucial points to consider when developing blockchain solutions for agri-food systems.

As the global food system is beginning to transition towards more transparency, circularity and customization, blockchain technology could play a major role in how this shift evolves. A new testing and learning platform for digital trust and transparency technologies in agri-food systems, including blockchain technology, was launched in February 2020. The platform will build capacity of the potential of this technology and ensure that it is usable and inclusive.

Read the report:
Blockchain for Food: Making Sense of Technology and the Impact on Biofortified Seeds.

Cover photo: Close up of a quality protein maize cob. (Photo: Alfonso Cortés/CIMMYT)

Agency unveils seed resistant to disease

For more than a decade, Maize Lethal Necrosis Disease (MLND) has ravaged crops causing farmers to incur huge losses and threatening food security.

Kenya Seed Company (KSC) researchers through partnerships have developed a superior maize variety that can withstand the disease.

Read more here:

https://www.standardmedia.co.ke/farmkenya/article/2001382769/agency-unveils-seed-resistant-to-disease

Heat and drought watch out. One-of-a-kind network launched in Berlin

Wheat crop losses due to heat and drought affect food availability and increase the costs for billions of consumers around the world. The Alliance for Wheat Adaptation to Heat and Drought (AHEAD) is an international network that hosts initiatives and projects dedicated to addressing scientific gaps and builds synergies to support the development of new wheat varieties that are resilient to heat and drought.

Read more here.

Plan to improve wheat output under works

CIMMYT Country Representative in Pakistan Dr Muhammad Imtiaz briefed National Food Security Minister Fakhr Imam on the potential strategy to increase use of high-yielding, climate resilient and rust-resistant seed varieties; closing the yield gap by timely sowing and optimal use thereby formulating and applying the right policy; and ensuring good support price in place.

Read more here: https://www.dawn.com/news/1572865

 

 

Cultivation of outdated wheat varieties causing 50pc yield gap, minister told

CIMMYT country representative Muhammad Imtiaz briefed National Food Security and Research Minister Syed Fakhar Imam on the Wheat Productivity Enhancement Programme (WPEP) and Agricultural Innovation Programme for Pakistan (AIP) and how these interventions had a positive impact on the country’s productivity.

Read more here: https://profit.pakistantoday.com.pk/2020/08/05/cultivation-of-outdated-wheat-varieties-causing-50pc-yield-gap-minister-told/