As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the worldâs food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.
Achieving widespread food and nutritional security for the worldâs poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.
As the conflict continues in Sudan, harshly disrupting agricultural extension communication and research linkages, Suliman Gadalla, a 55-year-old farmer from Shagarab West Village in Khasum Algrba Locality, Kassala State, eastern Sudan, feels proud that farmers in his village are eagerly asking him about the new sorghum variety he is growing on his farm. Gadalla is very satisfied with his experience using a chisel plough, growing certified seeds, and applying chemicals to control herbicides.
âEvery day, no fewer than 10 farmers visit my field to gain firsthand experience in using proper agricultural technologies and to learn more about the new sorghum varieties I am growing,â said Gadalla.
“When I learned about the new sorghum varieties grown on Sulimanâs farm and saw their good growth, I told myself I must follow what he is doing to understand the benefits of the new planting methods and wait until harvest to see the yield of the new varieties. If the trial is successful, I plan to get some seeds from my friend Suliman, either by purchasing or borrowing, and cultivate the new varieties next season on my farm,â said Hassan Rahamtalla, a 57-year-old farmer in West Shagarab Village in Khashum.
Under the aegis of the SASAS program, the USAID-funded SFSI was launched in May 2024 in response to Sudan’s food security challenges. SASAS partners strive to increase crop yields through the adoption of certified seeds and Quality Declared (QD) seeds of improved crop varieties.
Through farmers’ demonstration fields, SASAS partners CIMMYT and Harvest Investment Company LTD work extensively to accelerate the adoption of two newly released sorghum varieties, Butana and Dahab, and make their seeds available to communities through demonstration farms established in over ten villages across four localities in Kassala State.
Farmers in Khashum engage with CIMMYT demonstration activities. (Photo credit: Suliman Fadlalla/CIMMYT)
âIn addition to inclusive agricultural advisory services, one expected outcome of the demonstration fields is to provide high-quality seeds of the new sorghum varieties, which will increase variety options for farmers and enhance seed system security through improved seed availability,â said Omar Ali, SASAS Seeds Systems Officer.
SASAS partners fully supported the cultivation of 60 feddans in Kassala State as demonstration farms to provide agricultural advisory services that deliver critical information on improved crops, soil, and water management to rural communities through extension, demonstration campaigns, and market linkages.
âThe knowledge and skills I gained from the on-farm training are amazing. We were given real experience in ploughing our lands using a chisel and disk harrow and learned how to treat our seeds against fungal diseases and insect pests,â said Hawa Adam, a 45-year-old female farmer from New Halfa, adding that learning how to use herbicides to control weeds was very useful.
âSupport from SASAS came at a critical time as the armed conflict spread into new areas across the country, reducing the areas allocated for improved seed production. Through the SFSI farmersâ demonstration fields, we are exposing farmers to new varieties and enabling them to produce high-quality seeds of these varieties so that we ensure seed availability for the next farming season,â said SASAS Program Chief of Party Abdelrahman Kheir.
Agricultural research in Sudan has shown that certified seeds sourced from foundation seeds increase the yield of sorghum by at least 40% compared to seeds obtained from farmers’ bags. Seed multiplication of sorghum under the proposed area (450 feddans) will produce a quantity of certified seeds with the potential to plant a significant area of sorghum for food and feed in the 2025 growing season.
Taring farmers on using pre-emergence herbicides in the demonstration field in Refi Kassala. (Photo credit: Suliman Fadlalla/CIMMYT)Training farmers on using planters in the demonstration field in New Halfa. (Photo credit: Suliman Fadlalla/CIMMYT)
Partners at the AID-I exhibition booth (Photo: CIMMYT)
In Tanzania, the first week of August is all about agriculture. From August 1 to 8, agricultural fairs, also known as Nane Nanefairs, are held all over the country to recognize the contribution of farmers to the national economy. âNane Naneâ in the local language means âeight eight,â referring to August 8, which is celebrated as Farmers Day in the country.
Organized by the Agricultural Society of Tanzania, these fairs serve as a landmark event for agricultural stakeholders across the region. This year, the 31st edition of the fair was organized at the Nzuguni grounds in Dodoma. It saw 500 exhibitors, including smallholder farmers, agricultural enterprises, public and private sector entities, and government officials.
Themed âEmbrace Visionary Leadership for Agricultural Transformation,â the event emphasized the need for leadership commitment to sustainable agriculture, while highlighting the critical role of agriculture in Tanzaniaâs economic growth and food security.
TheSouthern Africa Accelerated Innovation Delivery Initiative (AID-I), funded by United States Agency for International Development (USAID) and implemented by CIMMYT, along with several partners, played a prominent role at this yearâs fair. In addition to raising awareness of the innovative work being done, the fair provided a platform for AID-I and its partners to showcase a range of innovative agricultural technologies designed to address the specific needs of Tanzanian farmers. The event also enabled AID-I and its partners to interact directly with farmers and entrepreneurs, resulting in valuable feedback.Â
Celebrating the Success of AID-I Beneficiaries at Nane Nane
The Nane Nane fair was more than just a display of agricultural technologies. It was also a celebration of the successes of local entrepreneurs who had benefited from AID-I’s support.
Among them was Sarah Mashauri, an entrepreneur from the Tabora region, who ventured into the business world by producing and selling maize flour, both wholesale and retail. Starting with only one sack of maize and a loan of 100,000 Tanzanian shillings (approximately US$36), Sarah faced numerous obstacles, including regulatory challenges that resulted in the Tanzania Food and Drugs Authority confiscating her items. The AID-I project recognized her potential and resilience. She was equipped with a milling and dehulling machine, which significantly improved her business. âBefore the AID-I project came into my life, I was struggling on my own,â she said. âThe support, coupled with the extensive training they provided, enabled me to scale up my operations. I went from employing seven people to 35, and my business expanded significantly. I am now able to source raw materials easily from small-scale farmers, thanks to the networks and training provided by AID-I.â
Agatha Laiza, managing director of Seasoning Palate, a food products company operating under the brand name Tobi Product in Dar es Salaam, is another entrepreneur who benefited from AID-I’s support. Agatha specializes in peanut butter, crunchy nuts, and peanut oil. Her journey began in 1996 with a focus on food product processing. She later realized the potential in peanut production and shifted to adding value to peanuts, while also addressing the critical issue of aflatoxin contamination. With support from AID-I, Agatha was able to build solar dryers for farmers and provide them with high-quality seeds, significantly reducing the risk of aflatoxin in their crops. âThe support from USAID, CIMMYT, and AID-I has been invaluable,â Agatha said. âThey have helped us build confidence among our farmers, reducing ground nut loss and ensuring safe, quality produce. Our factory, which can process up to three tons of peanuts daily, now operates more efficiently and our products are safer and more reliable.â
Aithan Chaula, executive director of the Dodoma Agriculture Seed Production Association (DASPA), also benefited from the AID-I projectâs support. Since beginning pigeon pea production in 2022, DASPA saw substantial growth in demand for pigeon pea seeds, partnering with ALSSEM, a local seed production company.
DASPA expanded its operations to produce quality declared seeds (QDS) and certified seeds, catering to a growing market. Aithan attributed their success to the strategic support from AID-I and partnerships with organizations such as CIMMYT and ALSSEM. âThe collaboration allowed us to expand our production capabilities and reach more farmers across various regions,â he said. DASPA is currently working with approximately 20,000 farmers and plans to increase this number by distributing small seed packs and conducting field demonstrations.
âThis year at Nane Nane, we were able to distribute small packs of pigeon pea seeds to approximately 1,200 farmers to plant and farm,â said Aithan. âThis effort, supported by AID-I, ensures that pigeon pea cultivation becomes well-known and widely adopted by farmers, contributing to both food security and income generation.â
The U.SA Ambassador to Tanzania interacting with exhibitors at the AID-I exhibition booth (Photo: CIMMYT)
Dr. Michael A. Battle Sr., the United States Ambassador to Tanzania, paid a visit to the AID-I exhibition booth. He engaged with AID-I representatives and the exhibitors, praising their innovative efforts to advance climate-smart agriculture and enhance food security. âIt’s a joy to be participating in Nane Nane, particularly because USAID is interested in assisting Tanzania not only to become food secure but also to help with East Africaâs food security and ultimately the continentâs food security,â said Ambassador Battle Sr. He added that it was fulfilling to see the entire value chain of agriculture and agribusiness involving young people and old people engaged in the process of making Tanzania wealthier and more food secure.
For AID-I and its partners, the fair was a crucial opportunity to highlight ongoing initiatives and foster new partnerships. Peter Setimela, the Legume Seed Systems lead for AID-I, emphasized the importance of such events. âOur work in accelerating innovative technologies and ensuring they reach the farmers is reliant on strong partnerships. We bring these technologies to farmers by strengthening local seed systems, connecting farmers to financial services and products, and providing advisory services,â he said.
CIMMYT Director General Bram Govaertsâ visit to The University of Queensland (UQ) on September 27, 2024, reinforced a long-standing partnership aimed at tackling global food security and sustainability challenges. For over 50 years, CIMMYTâs collaboration with Australian researchers has advanced wheat breeding, contributing significantly to Australia’s agricultural resilience. The visit emphasized expanding research on key crops like sorghum, millets, and legumes, while promoting sustainable practices and climate resilience in agriculture. This collaboration continues to drive innovations that benefit not only Australia but also regions across the Indo-Pacific and Africa.
At the UN General Assembly, the U.S. Department of State announced $5 million in food security assistance to advance the Vision for Adapted Crops and Soils initiative in Guatemala. Co-led by CIMMYT and FAO, it aims to enhance sustainable agriculture through innovative practices that improve soil health and crop diversity. This initiative, part of the U.S. Feed the Future program, will strengthen resilience to climate change and support Guatemala’s agricultural sector, directly benefiting the 1.6 million people dependent on farming. CIMMYTâs leadership ensures scientific expertise in crop and soil management is central to addressing food insecurity and malnutrition in the region.
Rebecca Benson, a 30-year-old mother of three from Igurusi village in Mbeya, Tanzania, is living proof of how small efforts against food loss can significantly impact peopleâs lives. Her journey unfolded during a recent USAID field mission in Tanzania for CIMMYTâs Southern Africa Accelerated Innovation Delivery Initiative (AID-I) project when we visited a grain storage facility operated by the Igurusi Agricultural Marketing Cooperative Society (AMCOS). This local cooperative provides storage facilities and connects rice farmers to buyers, ensuring their produce is preserved and marketed efficiently. The warehouse stores over 1,000 tons of paddy, which is dried, stored, and ready for market.
As we toured the warehouse, we noticed that between the collection and storage of produce, small amounts of paddy had spilled onto the ground. Although this might seem like a minor oversight, it quickly became clear that what could have been discarded as waste was, for some, a valuable resource.
Turning Food Loss into Livelihood
A few meters away, we noticed Rebecca winnowing paddy. Intrigued by the picturesque scene of wind blowing away chaff, we approached her and soon discovered her remarkable story. Initially shy, Rebecca gradually opened up to us and shared her story of resilience and great inspiration. Four years ago, Rebecca left a comfortable life for one filled with struggle. She had been in an abusive marriage but decided to rebuild her life after an altercation with her husband almost turned fatal.
âHe would drink and become very violent. I had endured a lot but realized that he might one day kill me. I was very scared,â Rebecca narrated.
Starting life on her own and without access to her familyâs land, she struggled to continue her rice farming, facing the overwhelming costs of leasing land and maintaining a farm. As her situation worsened, she found it increasingly difficult to provide for her children.
A happy Rebecca Benson winnowing paddy she collected from the ground at the Igurusi AMCOS (Photo: Maria Monayo, CIMMYT)
In her quest for survival, Rebecca began collecting waste paddy from spillage at the AMCOS warehouse. Initially, after threshing, it was just enough for her family to feed on, but she soon realized she could sell some of the rice to generate income. With the cooperativeâs permission, she started collecting, cleaning, and selling the grains at Tsh 700 per kilogram. On average, Rebecca gathers over 20 kg of rice daily, which helps her pay rent, school fees, and feed her family. Although a tedious task to sift through the soil and rocks, Rebecca does it enthusiastically.
While she hopes to one day acquire land and return to farming, Rebecca remains grateful for the opportunity she has now. “It is hard work, and I want to improve my life and that of my children. I have not been able to save enough to lease land for farming, but that is my goal,â she said. The work also keeps her busy and has granted her independence from her abusive partner, allowing her to support her family on her own.
The Reality of Post-Harvest Grain Loss
In Sub-Saharan Africa, post-harvest grain loss amounts to millions of dollars in lost revenue and a reduction in food security due to inadequate storage facilities and improper handling during drying and transport. While AMCOS works hard to preserve crops and prevent large-scale food loss, the small quantities of spilled rice are an unavoidable consequence of handling large volumes. For Rebecca, however, these spilled grains represent a lifeline. Through her resourcefulness, she has turned what could have been wasted into an opportunity, providing her family with food and financial stability.
Perth, Australia â September 24, 2024 â Esteemed Professor Matthew Reynolds, Head of Wheat Physiology at CIMMYT, will deliver a pivotal plenary at the International Wheat Congress, centering on enhancing abiotic stress tolerance in wheat through the integration of complex traits by combining cutting-edge artificial intelligence with genetic diversity. This significant session promises to contribute valuable insights towards addressing the pressing global challenge of food security.
Pioneering Research to Future-Proof Wheat
Crop yield depends on a myriad of traits that interact across various dimensions such as growth stage, plant architecture, and growing environment. Until now, the complexity of these interactions has impeded precision breeding for traits like abiotic stress tolerance, input use efficiency, and yield potential. However, recent advancements in AI, remote sensing, and gene sequencing are making more deterministic breeding feasible.
In his presentation, Professor Reynolds will introduce a series of wiring diagrams representing trait interactions over time for wheat. These diagrams, based on empirical data and crop models, will serve as a framework for AI-assisted simulations to explore different breeding strategies. This innovative approach enables the genetic control of complex traits, allowing for more resilient wheat varieties that can withstand environmental stresses.
Collaborative Efforts Driving Innovation
This initiative is a collaboration between CIMMYT, the University of Florida, University of Queensland, and Wageningen University. The goal is to leverage advanced technologies to combine complex genetic traits in wheat, improving its tolerance to drought, heat, and poor soil conditions. This research holds significant promise for farmers worldwide, ensuring stable yields even under challenging growing conditions.
Impact and Benefits
Global Food Security: By developing high-yielding, climate-resilient wheat varieties, this research contributes to global food security, particularly benefiting farmers in South Asia and Africa.
Environmental Sustainability: Innovative research in Biological Nitrification Inhibition (BNI) addresses nitrogen pollution and enhances nitrogen use efficiency in wheat, contributing to environmental sustainability.
Disease Resistance: Advanced breeding techniques are being employed to develop wheat varieties resistant to devastating diseases like wheat rust, protecting yields and ensuring food security.
“By combining cutting-edge AI and genetic diversity, we are future-proofing wheat to thrive in challenging environments,” said Professor Matthew Reynolds.
The session will take place during Plenary Session 4 on Tuesday, September 24, 2024, from 8:30 am to 8:50 am at the Perth Convention and Exhibition Centre.
About CIMMYT
CIMMYT is a cutting-edge, non-profit, international organization dedicated to solving tomorrowâs problems today. By fostering improved production systems for maize, wheat, and other cereals through applied agricultural science, CIMMYT enhances the livelihoods and resilience of millions of resource-poor farmers while working towards a productive, inclusive, and resilient agrifood system within planetary boundaries.
As the summer cultivation season began in May 2024, Fatima Hassan, a 52-year-old farmer from New Halfa, Kassala State, in eastern Sudan, faced an uncertain future. Like thousands of other farmers in her region, Fatima lacked the financial means to purchase seeds, fertilizers, herbicides, or even hire a tractor. The ongoing armed conflict in Sudan had severely disrupted agricultural activities, leaving farmers without the necessary resources to cultivate their land.
‘When I learned about the Sudan Food Security Initiative (SFSI), I was extremely happy. The support from the initiative has given me and my family renewed hope,’ Fatima said while tending to her groundnut farm.”
Fatima Hassan weeds her groundnut field cultivated with support from the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)
Under the aegis of the SASAS program, the USAID-funded SFSIÂ was launched in May 2024 in response to Sudan’s food security challenges. Targeting over 50,000 farmers in the New Halfa scheme, the initiative aims to strengthen resilient food production systems by providing significantly subsidized agricultural inputs and technologies, ensuring that farmers can sustain and enhance their farming practices despite the ongoing conflict in the region.
Hamid Rahama expresses his gratitude to the tractor driver ploughing his land in New Halfa as part of the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)
Sowing seeds of optimism
‘Support from SASAS came at a critical time as the armed conflict spread into new areas across the country, de-risking the crucial summer planting season. Through the SFSI, we are enabling farmers to adopt improved technologies and inputs at more affordable rates, thereby enhancing Sudan’s domestic food production,’ said SASAS Program Chief of Party Abdelrahman Kheir.
The SFSI provides each farmer with a 70% subsidy on a comprehensive package that includes land preparation for 0.42 hectares (ha), improved seeds for groundnut and sorghum, crop protection supplies, fertilizers, and agricultural advisory services. This initiative has already resulted in the planting of 14,568 ha of sorghum and 5,882 ha of groundnut. The crops are showing promising signs, with germination progressing well across all cultivated areas.
‘We had lost all hope of benefiting during this cultivation season. The subsidized land preparation, seed purchase, and other inputs have given us a lifeline. In the past, I was not able to buy fertilizers and herbicides, so my sorghum production was poor. This time things have changed dramatically, and we are well-equipped for a good cultivation season,’ said Hamid Rahama, a farmer from northern Halfa. Hamid echoes the optimism shared by many farmers in the region.”
Focus on a sustainable and food secure ecosystem
One of the most significant aspects of the initiative is its focus on building a sustainable seed production system. In partnership with 120 farmers and a private seed company, 252 ha (189 ha of sorghum and 63 ha of groundnut) were established for seed production in New Halfa. The initiative is projected to yield 360 metric tons (t) of sorghum and 270 t of groundnut seeds, thereby enhancing the resilience of the local agricultural ecosystem.
The anticipated yields from these efforts instill a much-needed optimism in an otherwise challenging situation. For groundnuts, the expected yield is 4.5 t/ha, resulting in an output of 26,000 t, enough to meet the nutritional needs of over 1.2 million people. Likewise, the sorghum harvest is projected to reach 54,000 t, providing sustenance for approximately 720,000 people.
An agricultural expert from SASAS inspects the growth of groundnuts cultivated under the SFSI in New Halfa. (Photo credit: Suliman Fadlalla/CIMMYT)A farmer inspects the growth of his sorghum field in New Halfa cultivated with support from the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)
The bold sections indicate the changes made for grammatical correctness, including unit consistency and phrasing adjustments.
In addition to providing inputs, the SASAS program also addresses broader food security challenges by ensuring that farmers receive the necessary technical support throughout various agricultural operations. This includes the introduction of drought-tolerant sorghum varieties, which are showcased to farmers through field days and demonstration plots.
Despite the numerous challenges posed by the ongoing conflict in Sudan, CIMMYT and its partners involved in implementing the SASAS initiative remain undeterred. Although the ongoing armed conflict has compelled many local agriculture advisory companies to scale back their operations due to security and logistical difficulties, the teams remain committed to supporting Sudanese farmers and improving agricultural productivity, thereby contributing to Sudanâs overall food security.
‘We lost a significant number of improved seed production fields due to the conflict. Nevertheless, we ensured the provision of all necessary certified seeds for the SFSI, along with top-quality herbicides,’ said the CEO of Harvest Agricultural Company Isam Ali. He added that despite considerable challenges in transporting agricultural machinery due to security issues, the company completed all land preparations in a timely manner for farmers.
The early impact of SFSI is evident in the renewed hope and optimism among farmers in New Halfa, who are now better equipped to face the challenges of the summer cropping season and contribute to the nationâs food security. With the harvest dates approachingâNovember for groundnuts and December for sorghumâthe initiative is on track to significantly enhance food production in the region, providing a lifeline to thousands of farmers such as Fatima and Hamid.
Packing improved sorghum seeds for delivery to farmers as part of the SFSI in New Halfa. (Photo credit: Suliman Fadlalla/CIMMYT)
Dr Sieg Snapp is Program Director, Sustainable Agrifood Systems, International Maize and Wheat Improvement Center (CIMMYT)
Climate change is upending weather patterns across Africa, presenting dire challenges for farming communities. In Zambia, the impact is particularly harsh. Agriculture is the lifeblood of the economy, with two-thirds of the countryâs workforce employed in agriculture, and 78% of these workers are women.
The country faced a severe El Niño during the 2023/2024 season, causing a severe drought that devastated over 1 million hectares of cropland. The president declared it a national disaster. El Niño events typically result in catastrophic drops in crop yields, often reducing maize harvests by 30-40%. These events not only impact food security but also hinder economic growth, with the agricultural sector’s contribution to Zambia’s GDP dropping from 9.4% to 3.39%.
The devastating El Niño-induced drought in Zambia is starkly illustrated by the story of Melody Limweta, a 31-year-old farmer. She and her husband, Collins Manenekela, have seen their already fragile livelihood pushed to the brink by severe water shortages. Typically, they rely on dry season gardening and small-scale farming, including raising chickens, during the rainy season. However, the drought has dried up local water sources, making gardening impossible and sharply reducing their income. The couple’s practice of planting maize in the same field each year with recycled seeds and traditional methods has worsened their situation, as the El Niño-induced rainfall deficits have led to poor yields. Their primary source of food and income has withered in the field due to insufficient rainfall.
A consortium of partners led by the International Maize and Wheat Improvement Center (CIMMYT) have joined together as a rapid delivery hub for these challenging times, providing vital support to rural communities and families such as Melody and Collins. Farmers have a strong voice in this unique delivery mode. With support from the people of the U.S. government, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) is promoting access to drought-tolerant crops, climate-busting and nutritious legume seeds, agricultural advice and early warning systems to combat climate change. AID-I provides critical support to ensure that millions of smallholder farmers in the Haut-Katanga region of DR Congo, Malawi, Tanzania, and Zambia have access to information and innovations needed for gains in food production that help buffer drought, flood and rising food, fuel, and fertilizer prices.
Speed and Scale: planting drought-tolerant maize
The idea of the ADI-I as a rapid delivery hub is to make available innovations and agronomic information at both speed and scale. Traditional farming methods and crops struggle with climate extremes like El Niño, which bring prolonged dry spells and heatwaves. Drought-tolerant maize varieties offer a promising solution by enhancing agricultural resilience. These adapted maize varieties yield 30-50% more than traditional ones under drought conditions, as demonstrated in recent trials during El Niño periods. However, these improved varieties are only useful when in farmersâ hands.
Working with local partners, AID-I is scaling drought-tolerant maize varieties to help Zambian farmers manage unpredictable weather patterns. In the 2023/2024 season, approximately 27% of Zambia’s smallholder farmers saw a significant boost in their maize harvests, benefiting over 900 thousand people in drought-affected regions, owing to drought-tolerant maize varieties. Over six hundred thousand households planted drought-tolerant maize varieties and produced 235 thousand metric tons of maize, accounting for 19% of Zambiaâs maize production in the 2023/2024 season. This is huge return, as only 10% of the maize-growing area being planted with these resilient varieties.
Crop diversification for family nutrition
In addition to drought-tolerant maize, studies indicate that diversifying with legume crops is crucial for managing weather extremes, especially droughts and for improving soil health. Planting legumes helps spread the risk with varied planting and harvest times, cushioning the impact of erratic rainfall on crop yields. Women can feed their families due to crops like peanuts that mature early and need less rainfall. The benefits are sustained over time, as combining legumes with cereals improves overall nutrition and soil health, even amid unpredictable weather.
To support this effort, AID-I linked over 2,000 farmers to high-quality seeds for groundnuts (peanuts) and soybeans. On average, each household harvested about 80 kg of groundnuts and 175 kg of soybeans, earning roughly $75 and $58, respectively. Collectively, this initiative produced about 205 metric tons of these crops, accounting for around 14.3% of Zambia’s total production in the drought-stricken season. Farmers had a voice in choosing which crop varieties to grow through a feedback system called âlet’s chatâ where with an ordinary flip phone farmers could call in and learn from their neighbour’s recorded commentary and testimonials. For the first time ever, farmers could provide comments on which crops they preferred, providing a lifeline of communication with agritraders, government and agricultural advisors.
A recent assessment found that Zambian women made up 60% of those benefiting from cowpeas, 65% from groundnuts, 62% from soybeans, and 36% from drought-tolerant maize.
Forewarned is forearmed – early-warning systems
Weather information services, especially early warnings about upcoming droughts, are vital for helping farmers adapt to climate change. Accurate and timely weather forecasts enable farmers to make informed decisions about planting, resource use, and crop management. This reduces losses and boosts productivity. Research shows that access to climate information can significantly increase crop yields and incomes, with some farmers experiencing up to a 66% boost in yields and a 24% rise in income.
The forecast of an El Niño for the 2023/2024 season prompted an early warning campaign to raise awareness about the hazards associated with El Niño and provide response mechanisms for smallholder farmers. AID-I used an Interactive Voice Response platform hosted by Viamo, a global social enterprise that uses mobile technology to connect people to valuable information and services. This rapid El Niño advisory campaign reached over 500 thousand farmers, with 60% male and 40% female listeners, and 93% of them under 35 years old. The campaign provided crucial advice on planting schedules, drought-resistant crops, and water-saving techniques.
Additionally, AID-I established demonstration sites that showcased effective winter crop production methods and introduced over 2,000 farmers to innovative agricultural practices. These interventions significantly improved farmers’ ability to respond to the drought.
Looking ahead
Scaling the adoption of drought-tolerant maize, improved legumes, and timely advisories is vital to protecting Zambia’s agriculture from climate extremes. The introduction of an AID-I-supported digital advisory campaign in September 2023 was a turning point for farmers like Melody and Collins. By engaging with the content, they learned about improved seeds, crop rotation, and better agronomic practices, which helped them cope with ongoing challenges and protect their resources. Initiatives like this can help families on the margins survive and rebuild agricultural production faster.
AID-I’s impact on families like Melody and Collins shows that investing in rapid delivery hubs is crucial for building resilience in farming communities. Expanding such initiatives will ensure more smallholder farmers have access to the innovations needed to maintain or increase food production amid climatic challenges.
Additionally, studies by organizations like Springer and the American Geophysical Union highlight the importance of integrating rapid delivery hubs into mainstream agricultural programs to enhance climate resilience and food security. Therefore, this necessitates an open call for international development alliesâincluding donors, governments, NGOs, and businessesâto incorporate initiatives like AID-I into broader agricultural agendas, essential for fostering resilience and ensuring the future stability of farming communities in Zambia and beyond.
*Dr. Sieg Snapp is a leading agricultural scientist, renowned for creating the “mother and baby” trial design, a global method that enhances farmer-researcher collaboration, improving genetics and soil management in 30 countries. As Program Director at CIMMYT in Mexico, she oversees sustainable agrifood systems research, leading a large team focused on supporting smallholder farmers in Latin America, Africa, and Asia. Her work emphasizes gender-aware, inclusive development and has fostered partnerships for sustainable agricultural practices. A Professor at Michigan State University with over 180 publications, Dr. Snapp has also significantly influenced agricultural policy and technology adoption in Africa. Her contributions have earned her numerous prestigious awards, and she holds a Ph.D. from the University of California Davis.
Melinda Smale’s groundbreaking work in agricultural economics, particularly her collaboration with CIMMYT, has played a pivotal role in advancing the understanding of crop diversity conservation. At CIMMYT, Smale worked with plant breeders and agronomists to analyze maize landraces and wheat genetic diversity, contributing to the development of strategies that support sustainable agriculture and food security. Her research has informed CIMMYTâs efforts to preserve biodiversity and enhance the resilience of farming systems, directly aligning with the organization’s mission to improve global food security through science and innovation.
Written by mcallejas on . Posted in Uncategorized.
The Intercropping project aims to identify options for smallholder farmers to sustainably intensify wide-row crop production through the addition of short-duration, high-value intercrop species and to help farmers increase their productivity, profitability and nutrition security while mitigating against climate change.
The focus is on intensification of wide-row planted crops: dry (rabi) season maize in Bangladesh, eastern India (Bihar and West Bengal states) and Bhutan, and sugarcane in central north India (Uttar Pradesh state). The primary focus is to sustainably improve cropping system productivity, however, the effects of wide-row, additive intercropping at the smallholder farm level will be considered, including potential food and nutrition benefits for the household.
There are many potential benefits of wide-row, additive intercropping, beyond increased cropping system productivity and profitability: water-, labor- and energy-use efficiencies; improved nutrition and food security for rural households; empowerment for women; and (over the longer term) increased soil health.
Little research has been conducted to date into wide-row, additive intercropping (as distinct from traditional replacement intercropping) in South Asian agroecologies. To successfully and sustainably integrate wide-row, additive intercropping into farmers’ cropping systems a range of challenges must be resolved, including optimal agronomic management and crop geometry, household- and farm-scale implications, and potential off-farm bottlenecks.
This project aims to identify practical methods to overcome these challenges for farming households in Bangladesh, Bhutan and India. Focusing on existing wide-row field crop production systems, the project aims to enable farmers to increase their cropping system productivity sustainably and in a manner that requires relatively few additional inputs.
Project activities and expected outcomes:
Evaluating farming households’ initial perspectives on wide-row, additive intercropping.
Conducting on station replicated field trials into wide-row, additive intercropping, focusing on those aspects of agronomic research difficult or unethical to undertake on farms.
Conducting on farm replicated field trials into wide-row, additive intercropping.
Determining how wide-row, additive intercropping could empower women. Quantify the long-term benefits, risks and trade-offs of wide-row, additive intercropping.
Describing key value/supply chains for wide-row, additive intercropping. Determine pathways to scale research to maximize impact.
Quantifying changes in household dry season nutrition for households representative of key typologies in each agroecological zone.
CIMMYT, Mexico, August 27, 2024 â Crop wild relatives that have survived changing climates for millions of years may provide the solution to adapting wheat, humanity’s most widely grown crop, to climate change. Two new studies led by the International Maize and Wheat Improvement Center (CIMMYT) reveal how tapping into this ancient genetic diversity can revolutionize wheat breeding and safeguard global food security.
As the weather becomes more erratic and extreme, wheat â providing 20% of all calories and protein globally and serving as the primary staple food for 1.5 billion people in the Global South â faces unprecedented threats. These include heat waves, delayed rains, flooding, and new pests and diseases.
“We’re at a critical juncture,” says Dr. Matthew Reynolds, co-author of both studies. “Our current breeding strategies have served us well, but they must now address more complex challenges posed by climate change.”
The research points to a vast, largely untapped reservoir of nearly 800,000 wheat seed samples stored in 155 genebanks worldwide. These include wild relatives and ancient, farmer-developed varieties that have withstood diverse environmental stresses over millennia. Although only a fraction of this genetic diversity has been utilized in modern crop breeding, it has already delivered significant benefits.
Photo CIMMYT: Wheat diversity spikes
Proven impacts of wild wheat genes
One of the studies, a review published today in Global Change Biology (GCB)*, documents the immense impact of wild relativesâ traits, including on environmental sustainability. It finds that the cultivation of disease-resistant wheat varieties has avoided the use of an estimated 1 billion liters of fungicide just since 2000.
âWithout transferring disease-resistant genes from wild relatives to wheat, fungicide use would have easily doubled, harming both human and environmental health,â says Dr. Susanne Dreisigacker, Molecular Breeder at CIMMYT and co-author of the review.
Sharing of new wheat breeding lines through the CIMMYT-led International Wheat Improvement Network, comprising hundreds of partners and testing sites around the world, increases productivity worth USD 11 billion of extra grain every year. The extra productivity has saved millions of hectares of forests and other natural ecosystems from cultivation.
The review highlights other key breakthroughs using wheat wild relatives, including:
Some experimental wheat lines incorporating wild traits show up to 20% more growth under heat and drought conditions compared to current varieties.
Genes from a wheat wild relative have generated the first crop ever bred to interact with soil microbes, reducing the production of nitrous oxide, a potent greenhouse gas, and enabling the plants to use nitrogen more efficiently.
New, high-yielding cultivars in Afghanistan, Egypt and Pakistan were developed using wild genes and have been released as they are more robust to the warming climate.
âBreeding the first beneficial interaction with the soil microbiome â in this case biological nitrification inhibition, or BNI-wheat â is a landmark achievement by CIMMYT and JIRCAS, opening up a whole new spectrum of opportunities to boost cropping systemsâ resilience and reduce environmental footprints,â says Victor Kommerell, co-author of the GCB review, and Director of CropSustaiN, a new research initiative to determine the global climate mitigation and food security potential of BNI wheat.
The second study in Nature Climate Change* showcases the urgent need to scale-up exploration and use of genetic diversity for improved climate resilience. Among the traits needed are deeper, more extensive root systems for better water and nutrient access; photosynthesis that performs well across a wider temperature range; better heat tolerance in reproductive processes; and improved survival during delayed rains or temporary flooding.
âTapping into the complex climate-resilient traits so urgently needed today requires both access to greater genetic diversity and a paradigm shift in breeding approaches,â explains co-author of the GCB review, Dr. Julie King of Nottingham University.
Modern crop breeding has focused on a relatively narrow pool of âstar athletesâ: elite crop varieties that are already high performers and that have known, predictable genetics. In contrast, the genetic diversity of wild wheat relatives offers complex climate-resilient traits â but their use has been more time-consuming, costly and riskier than traditional breeding approaches with elite varieties. Now, new technologies have changed that equation.
Making the impossible possible
“We have the tools to quickly explore genetic diversity that was previously inaccessible to breeders,” explains Dr. Benjamin Kilian, co-author of the review and coordinator of the Crop Trustâs Biodiversity for Opportunities, Livelihoods and Development (BOLD) project that supports conservation and use of crop diversity globally.
Among these tools are next-generation gene sequencing, big-data analytics, and remote sensing technologies, including satellite imagery. The latter allows researchers to routinely monitor traits like plant growth rate or disease resistance at unlimited numbers of sites globally.
However, realizing the full potential of these genetic resources will require global cooperation. “The most significant impacts will come through widespread sharing of genetic resources and technologies,” says Dr. Kilian.
New technologies allow crop researchers to precisely identify and transfer beneficial traits from wild relatives, making what has been seen as a risky, time-consuming process into a targeted, efficient strategy for climate-proofing crops. âSatellite technology turns the planet into a laboratory,â says Dr. Reynolds, âCombined with artificial intelligence to super-charge crop-breeding simulations, we can identify whole new solutions for climate resilience.â
This research, which also applies to any crop with surviving wild relatives, promises to enhance global food security and make cropping systems more environmentally sustainable. Developing more resilient and efficient wheat varieties will help feed a global population while reducing agriculture’s environmental footprint.
Photo CIMMYT: Wheat diversity spikes
Study information and links
*Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. King J, Dreisigacker S, Reynolds M et al., 2024. Global Change Biology (Study available under embargo upon request)
*New wheat breeding paradigms for a warming climate. Xiong, W., Reynolds, M.P., Montes, C. et al. Nat. Clim. Chang. (2024). Â https://doi.org/10.1038/s41558-024-02069-0
Note to editors
About CIMMYT
Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat cropping systems in the developing world. Learn more at staging.cimmyt.org
About the Crop Trust
The Crop Trust is an international organization working to conserve crop diversity and protect global food and nutrition security. At the core of the Crop Trust is an endowment fund dedicated to providing guaranteed long-term financial support to key genebanks worldwide. The Crop Trust supports the Svalbard Global Seed Vault and coordinates large-scale projects worldwide to secure crop diversity and make it available for use, globally forever and for the benefit of everyone. The Crop Trust is recognized as an essential element of the funding strategy of the International Treaty on Plant Genetic Resources for Food and Agriculture. Learn more at www.croptrust.org
About the Biodiversity for Opportunities, Livelihoods and Development (BOLD) Project
BOLD is a 10-year project to strengthen food and nutrition security worldwide by supporting the conservation and use of crop diversity. The project works with national genebanks, pre-breeding and seed system partners globally. Funded by the Government of Norway, BOLD is led by the Crop Trust in partnership with the Norwegian University of Life Sciences and the International Plant Treaty.
Umm Zeina, a 40-year-old farmer living in El Nahal, in Sudanâs Gadarif State, was not happy with her yield, blaming the poor seeds and traditional techniques she was using. This was until she participated in the extensive seeds production training program organized by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
âWe learned a lot on how to produce seeds and how to control the parasite Striga mixed with crops. The training draws our attention to the fact that the availability of quality seed is the foundation for food production and productivity. As traditional farmers, we had very poor information about the availability, characteristics, and prices of seed of improved varieties,â Umm Zeina stressed.
ICRISATâs extensive training attracted more than 350 (68 female) seed producer farmers from El Fashaga and El Nahal localities aimed at helping seed producers provide seeds of appropriate varieties for use by different categories of farmers. Farmers were also trained in better selection, treatment, and storage of seed from their own farms. The training also focused on the production of disease-free seeds to support agricultural productivity and success. The training helped to enhance farmersâ demand for improved seeds and eventually aimed to deliver improved seeds to more than 6000 farmers in El Fashaga, El Nahal and other neighboring localities.
This training was held as part of CIMMYTâs Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which empowers farmers and herders to reduce the need for humanitarian assistance even in conflict-affected Sudan. In the context of the atrocious food crisis in Sudan, SASAS and partners work to ensure that farmers produce the quality seeds they need to enhance food production amid escalating conflict.
In El Fashaga and El Nahal localities, the seeds production training focused on sorghum, as this crop is widely adapted and drought tolerant as well as it is a staple crop to strengthen food security and contributes to agricultural diversity and economic growth in the regions where it is cultivated.
âDuring the training, we learnt a lot on how to choose the best seeds to produce improved seeds and how to choose the land, isolation area, and cleanliness to harvest. I was extremely interested to learn more about how to keep the seed to its purest form for replanting purposes and human or animal consumption,â said Tarig Hassan, a farmer living in El Nahal locality.
The seeds production training also aimed at maintaining seeds quality control through training and regulatory systems, and how to multiply and distribute seeds in a timely manner and at a price affordable for farmers. Farmers also learnt to use a revolving seed mechanism to make available seeds for many new seed producer farmers for the next season through farmer-to-farmer seeds distribution.
âThe seed production training is not only on how to produce quality seeds and protect loss of seeds, but also about the use of diversified seeds of sorghum, millet and ground nut that serve for both food and nutrition securityâ, said Gizaw Desta, Senior Scientist in ICRISAT.
SASASâs objective is to improve food security and access to income-generating opportunities through the adoption of sustainable agriculture practices and the promotion of agri-processing and post-harvest management. It focuses on supporting smallholder crop and livestock farmers to adapt their farming activities to climate change and abiotic pressures by diversifying their crops to further cushion themselves from climatic vagaries, reduce post-harvest loss, and improve market participation, and functionality. Women and youth are supported through training and agricultural and veterinary inputs to increase income generation activities and access to economic resources.
âAt SASAS, we strive to train farmers in basic farm seed production. This helps preserve and expand the diversity of the seed on which our food systems in Sudan rely. Considering the dire food security situation in the country, we fully encourage farmers to be engaged in seeds production to provide different and improved seed varieties,â said Abdelrahman Kheir, SASAS Chief of Party in Sudan.
SASAS works with ICRISAT to uplift smallholder farmers and ensure food security in semi-arid tropics. SASAS partners are committed to elevating crop productivity, resilience, and sustainability vital to dryland communities’ prosperity. This steadfast commitment profoundly affects millions in the world’s most challenging agricultural regions.
Science without policy is just academia; policy without science is just guesswork. Through a blend of robust field research and policy advocacy, CIMMYT aims to bridge the gap between policy and practice in promoting sustainable agricultural practices through crop diversification in South Asia.
Taking Bangladesh as an example, CIMMYTâs work in the country highlights the critical need to link research with policy to achieve sustainable agricultural practices, enhance food security, and improve farmer livelihoods.
The power of research-informed policy
Bangladesh’s agriculture is highly rice-centric; although rational, this is risky and arguably unsustainable. This means there needs to be a focus on crop diversification, which is one of the approaches toward sustainable agriculture that can address socioeconomic and environmental challenges.
Recognizing these challenges, CIMMYT has been at the forefront of developing solutions by conducting extensive multi-location on-site and on-farm trials that consider the socioeconomic and pedoclimatic dimensions of farm households.
Additionally, CIMMYT analyzes historical policies and initiatives that have been implemented by the Bangladeshi government and international partners to promote crop diversification. Several opportunities for improvement were identified in past policies and project implementation; addressing these challenges requires bridging the gap between policies and research to scale up crop diversification efforts.
Through the RUPANTAR and CGIAR Transforming Agrifood Systems in South Asia (TAFSSA) projects, CIMMYT-Bangladesh has developed an analytical tool to understand the political economy of crop diversification policies and practices. When applied to agriculture policy research, this tool can be tailored to any country and policy context in South Asia.
For example, while the government recognizes crop diversification in its agriculture policies starting with the Fifth Five-Year Plan, substantial funding for crop diversification efforts was only recently allocated. Integration of crop diversification into the government’s annual funding systems is essential to mainstream crop diversification in agriculture.
Many crop diversification policies and projects primarily focus on production, neglecting market systems development for new crops. Similarly, research suggests insufficient attention is paid to cold storage and other infrastructure needed to support diversification.
Most initiatives appear to have been project-driven, resulting in short-lived action without long-lasting impact. Insufficient coordination and support from government agencies appears to have affected projects led by both governments and development partners.
Stakeholder engagement spreads awareness
Without translating research into policy, we leave innovation on the shelf. CIMMYT-Bangladesh disseminates research findings to policymakers through the country Priority Investment Plan for the crop sector at the Bangladesh Agricultural Research Council (BARC), and South Asian Association for Regional Cooperation (SAARC) member countries through regional consultation workshops on accelerating the transformation process for sustainable and nutrition-sensitive food systems.
Looking ahead, CIMMYTâs efforts in South Asia remain dedicated to bridging the gap between research and policy. Ongoing projects aim to generate robust evidence, advocate for informed policy decisions, and foster partnerships across sectors. By continuing to lead in this space, CIMMYT strives to contribute to a more resilient agrifood system for South Asia.
In conflict-ridden Sudan, Gadarif State in Eastern Sudan is the most important region for sorghum production, with about 5-6 million feddan (5.18-6.22 acres) cultivated on an annual basis on large scale farms equipped with agricultural machinery. However, like the country, the state is covered with vertisols, clay-rich soils that shrink and swell with changes in moisture content, that become waterlogged and cannot be properly cultivated during rainy season.
To address the issue, technical experts from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) are mapping areas affected by waterlogging in two localities, namely El Fashaga and El Nahal, to identify the most suitable lands to establish large drainage implementing sites integrated with improved crop varieties of sorghum. This work is part of CIMMYTâs Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which works with farmers and herders to reduce their need for humanitarian assistance in conflict-affected Sudan.
âTo address the issue of vertisols affected by water logging in Al Gadarif, the prominent agricultural region in Sudan, we used the map developed by ICRISAT in 2023 and consulted with local farmers to identify 100 hectares El Fashaga and El Nahal localities to improve drainage and avoid waterlogging,â said Gizaw Desta, senior scientist at ICRISAT.
Waterlogging is common on poorly drained soil or when heavy soil is compacted, preventing water from being drained away. This leaves no air spaces in the saturated soil, and plant roots literally drown. Waterlogging can be a major constraint to plant growth and production and, under certain conditions, will cause plant death. In Gadarif state, 2.3 million hectares and 1.8 million hectares of vertisols are under high and moderate waterlogging conditions that impair crop production during the rainy season, leading to food insecurity if not reversed with appropriate agricultural practices.
Experts evaluate the compacted soil. (Photo: CIMMYT)
âFor years, my farm has been flooded by water during the rainy season, and I cannot cultivate sorghum as plants die of water suffocationâ, said Ali Ahmed, a farmer from Al-Saeeda area of ââAl-Nahal locality who is affected by waterlogging. âAlternatively, we as farmers affected by waterlogging were forced to cultivate watermelon instead of our main staple food sorghum. This shift in the crops we cultivate is hardly affecting our income. Â I am glad that ICRISAT is working to establish drainage systems and address waterlogging within our lands.â
âAt SASAS, we strive to ensure that farmers have access to fertile lands and other agricultural inputs. We work with our partners to address all problems facing farmers including waterlogging to help farmers continue producing their staple food and cash crops,â said Abdelrahman Kheir, SASAS chief of party in Sudan.
In Colombia, maize is the most important cereal, integral to culture, tradition, and diet. In 2019, Colombia consumed 7.2 million tons of maize, a quarter of which was white-grain maize used for human food (the remainder was yellow-grain maize for animal feed, with a small portion for industrial uses). National production is concentrated in the departments of Meta, Tolima, CĂłrdoba, Huila, and Valle del Cauca. Native and creole maize varietiesâthe latter comprising farmer varieties of mixed native and other ancestriesâare grown for use in traditional dishes or for sale at local markets.
Due to climate change, socioeconomic pressures, and the out-migration of smallholder farmers seeking better livelihoods, native maize varieties and the unique genetic qualities those varieties embody are endangered. We aim to design strategies that benefit smallholders who wish to continue in agriculture and perhaps continue growing native varieties valued in their communities, fostering the conservation and production of native maize. CIMMYT in Mexico has already facilitated commercial linkages between chefs in Mexico City and tourist areas (for example, in the states of Oaxaca, YucatĂĄn, and the State of Mexico), sourcing blue maize landrace grain from farmers in mutually beneficial arrangements.
CIMMYT and local partners have launched an ambitious initiative to map and strengthen the value chain of native maize in the departments of Nariño, Cundinamarca, BoyacĂĄ, Valle del Cauca, and Putumayo to promote beneficial farmer-market linkages and better understand Colombiaâs maize value chain. Carried out under the Nature Positive Initiative of OneCGIAR, the project is documenting maize conservation, marketing, and consumption to design a critical path that strengthens the value chain of Colombian native maize and benefits agriculture and the economy of rural Colombian communities.
Most native maize varieties in Colombia are grown on small plots for home consumption, exchange, and the sale of surplus grain. âThe production is planned so that the percentage of sales is lower than consumption,â explains a farmer from Nariño. âMaize grain is sold in traditional markets, typically on Saturdays or Sundays, most often as fresh white and yellow corn.â
In such markets, farmers may also sell their grain to intermediaries, but only in the markets of Nariño is the sale of creole and native maize varieties acknowledged. Varieties include yellow Capia, white Capia, yellow Morocho, and Granizo, with Chulpe being less common. The grain purchased is used to prepare a variety of traditional dishes and beverages.
The most commonly grown varieties are intended for the market and probably the regional and urban cultural groups that consume them, such as in Guaitarilla, Nariño, where large crops of white maize are marketed through intermediaries and traders to satisfy demand.
âA variety that is not widely grown may become more prominent due to market changesâsuch as the rise of niche markets,â the research team notes. Good examples are the departments of Pasto, Nariño, and Cundinamarca, where maize is increasingly grown to meet demand from buyers of purple or colored maize.
We have already identified several possible niche markets for smallholder maize varieties:
Fair trade enterprises. They promote the commercialization of national products at fair prices for farmers, offering maize in various forms from regions such as BoyacĂĄ and Cundinamarca.
Restaurants. They use maize in traditional dishes, reinterpretations of Colombian cuisine, and culinary experiments.
Small-scale local intermediaries. Without a fixed physical space, they distribute products to end users and other businesses.
Callanas and ricota, Pasto, Nariño. (Foto: Andrea Gómez)
Significant challenges may hamper these and other possible market opportunities in the maize value chain. Farmers, for example, face high production costs, climate change losses, competition from neighboring countries, dependence on intermediaries for sales, and a lack of land. For their part, buyers struggle with obtaining consistent production volumes from farmers, lack storage infrastructure, and face postharvest pest and disease management challenges.
While they are compelled by the need to feed their families and, if possible, grow enough grain to sell for a profit, smallholder maize farmers have also expressed interest in preserving maize diversity and their cultural practices.
âWe are not interested in growing monocultures for marketing; we grow maize out of love to continue preserving it,â comments a farmer from Nariño. Another farmer adds: âI would grow or sell more if the production were aimed at protecting agrobiodiversity, food security, sovereignty, and preserving cultural practices.â
Focus group with farmers in Córdoba, Nariño on the importance of maize landrace conservation (Picture Janeth Bolaños)
To understand how niche markets could influence the conservation and rescue of native and creole maize in Colombia and, at the same time, design a critical path that strengthens the value chain and promotes fair and efficient niche markets, CIMMYT and its partners are conducting focus group interviews and buyer-meets-seller events. The aim is to mitigate challenges highlighted by the actors and create beneficial conditions for farmers and consumers, promoting a better future for Colombian smallholder farmers.
We deeply thank CIMMYT partners in Colombia for their contributions to this work: Andrea Gomez, Andrea PinzĂłn, and Jeisson RodrĂguez.