Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Navigating the seed market and transforming agricultural productivity

At the heart of the agricultural sector, grain off-takers/processors play a crucial role in ensuring that farmers have access to quality seeds that can increase productivity and improve livelihoods. One such processor, AgriNet in Uganda, led by Paul Nyande is deeply involved in managing the complex dynamics of seed and grain production, market demand and variety turnover making a significant impact on both the farming community and the wider agricultural market. 

AgriNet is known for its role in grain and legume markets. The company buys a range of grains and legumes, including sorghum, finger millet, soybeans, and maize. After buying these commodities from farmers, the company adds value by processing and packaging them for a diverse market. Their customers range from markets that demand raw grain to high-end consumers who buy blended flour for products such as porridge. AgriNet operates its own milling facility, enabling it to efficiently meet the needs of these different markets efficiently.  

Variety turnover is central to the processor’s work. Over time, crop varieties that have been in use for 30 or 40 years become less relevant as new research leads to the development of improved varieties. These newer varieties are better suited to evolving market needs, offering traits that align with current preferences for drought tolerance, disease resistance, and higher yields. 

Paul Nyande leads AgriNet, a company involved in managing seed and grain production (Photo: Marion Aluoch/CIMMYT)

“We have definitely seen situations where the market asked for a particular variety, and we have worked with research institutions such as National Semi-Arid Resources Research Institute (NaSARRI) to fulfill that demand. This collaboration has led to shifts in what seed companies produce to keep pace with changing agricultural conditions and market needs,” explains the processor. 

For example, through stakeholders’ interactions, AgriNet worked with NaSARRI, to communicate the market’s needs for crops such as maize and sorghum. NaSARRI produced foundation seeds based on these requirements, which the processor then marketed and distributed to specific farmers for production of certified seed that was given to grain producers. However, managing seed demand isn’t always straightforward, especially since the market can change rapidly.    

“We’ve had instances where the market suddenly surged with high demand for sorghum seeds, but we couldn’t meet it,” says Paul. “Sometimes these opportunities arrive unexpectedly, and we’re not fully prepared to supply the required volumes.” Paul notes that they still need to promote and improve productivity, as there are gaps in farming practices that hinder maximum yields. One persistent challenge is Striga, a parasitic weed that significantly reduces cereal yields. To tackle this, Paul promotes crop rotation and integration, to help farmers manage such issues. 

Despite these challenges, AgriNet has made strategic efforts to manage the risks associated with seed production. By working closely with partners like NaSARRI and using foundation seed, they have been able to balance supply and demand. The processor typically manages seed for one or two generations before reintroducing new varieties to keep up with changing market conditions. 

Paul with the CIMMYT and NaSARRI team at his office during their visit to learn more about AgriNet (Photo: Marion Aluoch/CIMMYT)
The role of technology and partnerships

A key part of AgriNet’s work is maintaining a robust supply chain. Using digital platforms, they have developed a system to profile farmers, track training sessions, monitor input distribution and communicate with farmers in real time via SMS. “We can send out information about market prices, weather updates, or available seeds. It’s a great tool, but maintaining the platform requires significant resources to maintain the platform,” says the processor. 

AgriNet currently works with around 2,000 farmers groups and have also developed an agent network to engage with these groups more effectively. Each agent works with multiple farmer groups, facilitating sales, input distribution, and grain purchases. This structure not only ensures efficient operations but also creates accountability by holding agents responsible for managing the process. 

However, one of the biggest challenges facing processors is capacity. They need to expand their storage and processing facilities to take in more grain, especially during the rainy season. Without sufficient storage and drying facilities, their ability to process large volumes of grain is limited, which in turn affects their ability to meet market demand. 

Balancing seed and grain markets

Paul emphasizes the difference between seed and grain. “For grain, we don’t face many issues. We can store it for a long time by fumigating it and keeping it safe. But seeds are different—you can’t keep them for long. They need to be used within a specific timeframe.” This dynamic adds complexity to the seed business, especially when the market shows a sudden spike in demand. 

Pricing is another challenge. “We used to think about getting seeds cheaply—from research and then to farmers. But there are costs involved, and you have to consider the seed market carefully and how it compares with others,” he says. It’s important to find the right balance between affordable prices for farmers and maintaining sustainable business operations. 

The way forward: Expanding capacity and supporting farmers

Paul is focused on expanding AgriNet’s storage and processing capabilities to better manage the supply chain and take in more grain during peak seasons. Increasing their capacity would allow them to meet the growing market demand more effectively. 

There’s also a strong need to support smallholder farmers, particularly in terms of access to quality seed. “We need to ensure that farmers have access to quality inputs at affordable prices,” he emphasizes. “Subsidizing seeds or finding sustainable ways to produce them for the most vulnerable farmers could encourage the adoption of improved varieties, which would increase yields and incomes.” 

Paul also acknowledges that improving farming practices is critical to achieving higher productivity. While they have good seed varieties available, the challenge lies in ensuring that farmers follow the correct management practices to fully realize the potential of these seeds. 

AgriNet’s efforts have not gone unnoticed. The company has been recognized as one of Uganda’s top 100 medium enterprises for 2017/2018 and 2018/2019, a testament to its commitment to quality, innovation, and market responsiveness. This recognition highlights AgriNet’s ability to navigate the complex agricultural landscape while continuously striving to improve its operations and support the farming community. 

In its mission to boost agricultural productivity, AgriNet benefits from key partnerships with NaSARRI, which works in collaboration with CIMMYT, through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, to ensure farmers have access to improved seed varieties. By aligning research with market demands and processor capacity, CIMMYT and NaSARRI are helping to bridge the gap between innovation and practical solutions that directly benefit farmers.

Climate Change and Child Malnutrition in Zimbabwe: Evidence to Action

Climate Change and Child Malnutrition in Zimbabwe: Evidence to Action will generate evidence to understand the effects of climate change on child malnutrition in rural Zimbabwe. The overarching hypothesis is that climate change and related weather events indirectly increase child malnutrition by increasing food insecurity and decreasing dietary diversity.

This project will use a multisectoral approach to evidence generation and co-creation of community and policy action that incorporates village, district, provincial and national participation. The project aims to generate evidence linking climate change to malnutrition and co-develop mitigation strategies with communities that directly address the link between climate change and malnutrition.

The project has four activities:

  1. Examine the relationship between climate change in rural Zimbabwe and patterns of malnutrition utilizing environmental data (rainfall, temperature) and national Zimbabwe survey data (livelihoods, climate change mitigation strategies, dietary diversity and child malnutrition).
  2. Explore community understanding of the relationships between climate change and malnutrition with a mixed methods approach in two districts (survey and community-led workshops).
  3. Co-develop and refine climate-smart strategies that address the effects of climate change on malnutrition with agricultural and health cadres.
  4. Develop a communication plan with policymakers to disseminate findings about the relationship between climate change to child malnutrition.

Objectives:

  1. Use environmental data and national-level survey data on climate change and shocks related to climate change and examine associations with nutritional outcomes including food security, dietary diversity and child malnutrition.
  2. Conduct household surveys to understand how agricultural and child feeding practices change under climate variability.
  3. Conduct community workshops using community walks and River of Life Methodology to understand community perspectives on the relationship between climate change and child malnutrition.
  4. Co-develop and refine climate-smart strategies that communities can implement to directly address the relationship between climate change and malnutrition.
  5. Pilot implementation of strategies in two sites utilizing community health and agricultural extension workers.
  6. Share results with policy makers to contextualize malnutrition in the context of climate change policy.

How Atubandike dialogues are redefining gender and youth inclusion in Zambian agriculture

Women and youth are essential drivers of agricultural and economic resilience in Zambia’s rural farming communities. However, they frequently encounter significant barriers such as restrictive social norms and inadequate access to vital resources which hinder their ability to participate fully in the economy.

Female youth sharing her views (Photo: Moono Seleketi).

Recognizing the critical roles of women and youth in shaping the present and future of Zambian agriculture, the ‘Atubandike’ approach, under CIMMYT’s USAID-funded Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub project, has been actively engaging with communities to address systemic barriers faced by these groups. This initiative combines digital tools with face-to-face interactions, creating spaces where community members can share their stories, challenges, and questions to co-create solutions.

Atubandike, which means ‘let’s have a conversation’ in the local Tongo language, was launched in Zambia in 2023 as an advisory service. The model represents a scalable, community-led approach that empowers marginalized groups, including women and youth, as active contributors and leaders in agriculture. With each interaction building upon the previous one, this ongoing work advances the broader mission of fostering inclusivity and resilience across Zambia’s agricultural sector.

To uncover and tackle the structural barriers faced by women and youth, the Atubandike team recently engaged over 1,700 farmers across 14 communities in Southern Zambia, gaining critical insights into the biases that persist in rural areas.

Stereotypes and structural barriers

The community conversations highlighted generational divides and deeply rooted stereotypes that cast youth as disengaged or disinterested in farming. Older community members opined that young people are more drawn to urban lifestyles and reluctant to take on the demanding labor associated with agriculture. One elderly farmer said: “Many youths prefer a comfortable lifestyle and quick money. They don’t have the patience for the hard work farming requires.”

In contrast, younger participants shared that this perception overlooks the genuine obstacles they face such as limited access to land, financing, training, and mentorship opportunities. They emphasized that their lack of involvement often stems from these barriers rather than a lack of motivation.

Young male farmer speaking (Photo: Moono Seleketi).

The consultations also underscored pervasive gender norms that limit women’s roles in agriculture. Despite their significant contributions to household food security, female farmers are often relegated to secondary roles, focusing on ‘women’s crops such as groundnuts, while men cultivate staple crops such as maize and cash crops such as soybean. A participant shared, “The community always perceives men as the real farmers because they are considered the heads of the household.” This perception frequently limits women’s access to critical resources and their decision-making power within the agricultural sphere.

However, through Atubandike’s sessions, communities are beginning to confront these entrenched norms, shedding light on the vital contributions of women and youth in agriculture. This shift is laying the groundwork for a more equitable approach, where both men and women, young and old, are recognized as essential to farming success and household resilience. As these conversations grow, Atubandike is paving the way for solutions that promise meaningful and lasting change for both women and youth in agriculture.

Community-driven solutions

  • Building youth capacity through skills and leadership: Many community members expressed a strong desire to see more youth involved in agricultural activities, emphasizing the importance of hands-on training. “We need to get the youth involved in actual farming [tasks] such as irrigation and crop management. It keeps them busy and teaches them valuable skills,” shared one local leader.

To support this vision, Atubandike is training young community members as digital champions, equipping them with both technical expertise and leadership skills that allow them to mentor their peers and encourage youth participation in agriculture. These digital champions not only extend the reach of Atubandike’s initiatives but also serve as relatable role models, inspiring other young people to engage in agriculture as well as see it as a viable and rewarding path.

  •  Towards a more inclusive future for Zambian agriculture
    The Atubandike initiative – by fostering open community dialogue, empowering digital champions, and promoting household-level collaboration – lays the foundation for a more inclusive future for Zambian agriculture. As each community engagement builds momentum, CIMMYT, through the AID-I project, creates a cycle of empowerment and growth that ensures women and youth are not only heard but also empowered to lead.
Women celebrating at community meeting (Photo: Moono Seleketi).

Amidst the challenges of erratic weather patterns and economic constraints, building resilience through cross-generational and gender-inclusive collaboration is crucial. Atubandike is addressing these geographic and social challenges and paving the way for a future where every farmer, regardless of age or gender, plays a pivotal role in Zambia’s agricultural success.

Enhancing agricultural research with FAO’s AGRIS and AGROVOC programs: A conversation with CIMMYT’s knowledge management team

Farmer examines wheat seed (Photo: CIMMYT).

In a recent series of conversations with CGIAR knowledge management teams, Sara Jani and Valentina De Col interviewed Jesús Herrera de la Cruz, CIMMYT’s Deputy Director of Knowledge Management and Information Technologies. They discussed CGIAR’s collaboration with the Food and Agriculture Organization of the United Nations (FAO) on AGRIS and AGROVOC – two key resources in agricultural research. AGRIS is a comprehensive bibliographic database focusing on agriculture and nutrition, while AGROVOC is a multilingual thesaurus covering a wide range of agricultural terms.

Benefits of being in AGRIS

CIMMYT has shared its knowledge products with AGRIS and plans to do so more. What are the benefits of your center’s participation in AGRIS?

Jesús: When I think about it, there’s one clear benefit: projection. AGRIS allows CIMMYT to be part of one of the most important databases in our field, if not the most important. This link allows us to showcase our work on a global scale. Another critical benefit is trust. AGRIS is a trusted source of accurate and reliable information. In today’s age, where the internet is flooded with information, having a trusted source like AGRIS is invaluable. It ensures that CIMMYT’s contributions are part of a verifiable and respected database, which is crucial to maintaining the integrity and credibility of our work.

Importance for CGIAR of sharing research results through AGRIS

From a broader perspective, do you think it is important for CGIAR to share its research results with a wider community and global users through AGRIS? If so, why?

Jesús: Absolutely, and it’s not just important—it’s our mandate. As part of our commitment to make our public goods as accessible as possible, AGRIS is one of the main channels we use to fulfill this mandate. The more we share our scientific outputs, the better we fulfil our mission. This sharing aligns with our goals and enhances our ability to collaborate and fulfil our mission.

CIMMYT’s knowledge content: content types and topics  

How would you describe the knowledge content produced by your center and made available through your repository? In which specific research areas does your center publish?

Jesús: CIMMYT focuses primarily on maize and wheat improvement, genetic resources and conservation agriculture. Recently, CIMMYT has expanded its research into other crops, although these newer projects are not yet strongly reflected in our repository. We expect this to change in the coming years as new research results becomes available. In addition to our scientific content, our repository includes institutional documents, such as financial reports and other forms of historical memory. These items are often overlooked, but they provide a richer understanding of the history of our work by offering insights into the context in which our research took place.

Importance of AGRIS for agricultural research institutions such as CGIAR

Do you think it is important for agricultural research institutions or networks such as CGIAR, to have access to a comprehensive bibliographic database such as AGRIS? If so, what are the specific benefits of having access to such a database?

Jesús: As I mentioned earlier, having access to AGRIS is more than important— it is essential. AGRIS is a cornerstone for ensuring we remain compliant with our mandate. It’s a trusted source that provides control and guarantees the credibility of the content within it. This reliability is invaluable to researchers and readers alike. AGRIS is a source of truth and its role in maintaining the integrity of our scientific output cannot be overstated.

Improving searchability and interoperability with AGROVOC

CGIAR contributes to and uses AGROVOC as a common vocabulary. How does this collaboration affect the discoverability and interoperability of your data?

Jesús: Absolutely. AGROVOC significantly enhances the discoverability and interoperability of our data. By using controlled vocabularies such as AGROVOC, we can ensure consistent and accurate data exchange across platforms. AGROVOC is the definitive controlled vocabulary in our field, and it plays a crucial role in maintaining the standardization necessary for seamless interoperability. For us, it’s not just a tool, it’s a cornerstone of our data management strategy, and it’s essential that it continues to be the standard.

The discussion focused on the role of AGRIS in increasing the visibility and accessibility of CIMMYT’s research results. By continuing to strengthen links with the AGRIS and AGROVOC programs, the CGIAR is well placed to increase the global impact of its research and ensure that vital agricultural knowledge reaches those who need it most around the world.

For more info on the CGIAR and FAO collaboration:

Report: https://hdl.handle.net/10568/116236

Brief: https://hdl.handle.net/10568/116448

Webinar: https://youtu.be/0klZSY1c0UU?si=mlVvEQSpF1KNFSvG

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

CIMMYT and Novo Nordisk Foundation expand collaboration to drive sustainable agriculture

Building on the success of their initial project, CropSustaiN, CIMMYT and the Novo Nordisk Foundation are proud to announce an expanded partnership aimed at tackling agriculture’s biggest challenges. This enhanced collaboration will broaden efforts to transform farming practices, reduce environmental impacts, and support farmers worldwide.

From specific solutions to a broader vision:
The initial partnership focused on developing innovative wheat varieties through Biological Nitrification Inhibition (BNI), significantly reducing the need for nitrogen fertilizers. Now, this expanded collaboration sets a foundation for exploring a wider range of initiatives, including:

  • Climate-smart crop systems with reduced greenhouse gas emissions.
  • Advanced agricultural technologies for greater resilience and sustainability.
  • Inclusive tools to empower farmers globally.

Bram Govaerts, CIMMYT’s director general, said:
“This partnership exemplifies how collaboration and science can transform agriculture, addressing both food security and environmental sustainability on a global scale.”
This next phase reflects a shared commitment to creating a sustainable future by turning scientific innovation into actionable, real-world impact for millions of farmers worldwide.

Training the next generation of plant breeders with VACS

The foundation for a Vision for Adapted Crops and Soil (VACS) is capacity building: to boost adoption of opportunity crops, for nutritional security, diverse and climate-resilient cropping systems, to build healthy soils, a cohort of researchers and professionals is being supported to improve opportunity crops in Africa. Launched in October 2024 in Nairobi, Kenya, the VACS Capacity Project aims to train scholars and professionals in the latest plant breeding technologies. Professor Julia Sibiya, VACS Capacity Project Lead at CIMMYT, elaborates on how the project aims to contribute to the promotion, development and delivery of improved “crops that nourish” people, and the planet.

As part of the VACS Capacity Project, 30 Master and PhD students will be mentored by prominent experts in plant breeding. What support will they receive?

The students will be exposed to the latest technologies in plant breeding but will also learn from their mentors to deliver the VACS vision on opportunity crops and healthy soils.

The project also includes training of 40 mid-careers professionals. We want them to master the latest technologies and be able to apply them to develop improved opportunity crop varieties that will be used by farmers.

To achieve this goal, the VACS Capacity Project is supported by three hubs to facilitate the training by matching the scholars and professionals with appropriate mentors and institutes where they will be exposed to the latest research and technologies. The selected hubs are the International Institute of Tropical Agriculture (IITA-Nigeria), the West Africa Centre for Crop Improvement (WACCI) in Ghana, and the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) in Kenya. The hubs have “support entities” through Iowa State University and Cornell University.

For maximum and long-term impact, the CIMMYT Academy, with the support of the Sustainable Agrifood Systems program, is developing gender-aware mentoring and curriculum on a wide range of topics, to directly address priorities of the 70 scholars and professionals. Expertise is being sourced at institutions such as Iowa State University, CIMMYT and African universities for robust e-learning modules on the entire plant breeding pipeline and seed systems, with materials updated and designed for the African continent.

What gaps does the VACS Capacity Project aim to address?

Today, in Africa, very few plant breeders and scientists working on plant improvement are focusing on the opportunity crops identified by VACS, such as finger millet, bambara groundnut, and amaranth. Most breeders focus on the main staples. This is why we want to build a critical mass of scientists who work on opportunity crops that are vital for food security and nutrition under climate change.

Besides increasing the critical mass of researchers working on the opportunity crops, we also want to bring up-to-date the skills of professionals in the breeding sector, which is a sector where technologies are evolving very quickly. Most of the approaches to crop improvement used today differ greatly from approaches used ten years ago, hence the request by many professionals to upgrade their skills.

In addition to the long-term training fellowships for Master and PhD students, we will provide targeted skills training to professionals, with short-term placements between one and six months in institutions where they can learn cutting-edge techniques that they will apply to opportunity crops.

The project is also designed to build networks and communities of practice around these crops, so people can collaborate in breeding and scaling efforts that are requested by farmers and consider market intelligence for impact pathways. This is in addition to exchanging knowledge and germplasm.

How does this project differ from other plant breeding capacity building projects?

The difference is that we will place professionals into institutions where they will be provided with hands-on training. We will work with universities, international research institutes, and the private sector, including seed companies. This is like offering internships to mid-career professionals who want to upgrade their skills or learn new ones.

Our approach also includes mentorships for both scholars and professionals. Mentors will be recruited from all over the world to assist the fellows in various aspects of their research journey. Last but not least, we hope to see researchers working with farmers so they can learn from each other.

What are the expected outcomes of reaching a “critical mass of plant breeders”?

The objective is to have sufficient breeders to implement crop breeding programs designed for opportunity crops. We also want to encourage them to apply modern techniques to improve opportunity crops and, this way, to contribute to the development of more nutritious plants that are grown in healthy soils. As I mentioned earlier, besides empowering scientists themselves, we also aim to create the conditions for effective collaboration and partnerships for the successful delivery of improved opportunity crop varieties, and this delivery will be accelerated by reducing the breeding cycle. Overall, it will allow us to scale up efforts towards opportunity crops worldwide.

Rockefeller Foundation Invests in Nature to Support Indigenous Peoples and Rainforest Communities at COP29

At COP29, the Rockefeller Foundation highlighted its support for CIMMYT through a grant focused on advancing regenerative agricultural practices on farms in Mexico. This collaboration underscores CIMMYT’s pivotal role in driving sustainable farming solutions that enhance food security, environmental resilience, and biodiversity conservation. By integrating regenerative techniques into agrifood systems, CIMMYT contributes to global efforts to mitigate climate change while safeguarding the productivity and health of vital ecosystems.

Read the full story.

Improving Ethiopia’s Agricultural Systems Through Collaborative Research

The collaborative long-term experiments (LTEs) established by CIMMYT and Ambo University on the Guder Mano Mezemer campus, specifically at the Abebech Gobena Agricultural Research Center (Photo: CIMMYT)

A collaboration effort between CIMMYT and Ambo University has positioned CIMMYT as the national leader in implementing high-impact technologies to improve the quality and quantity of cereal crop production in Ethiopia. This partnership, established over three decades ago at national and regional levels, has become a vital element in driving innovations and advancements in the agricultural sector.

A recent field visit to the LTEs, which were established three years ago, at the Abebech Gobena Agricultural Research Center in Guder, West Shewa Zone of the Oromia Region, demonstrated the importance of collaboration between research and development partners. The LTEs were established to study three main climate-smart interventions: nutrient management (including organic, inorganic, and residue-based practices), crop rotation, and intercropping, over an extended period of time. The event highlighted CIMMYT’s ongoing efforts to improve Ethiopia’s agricultural production, particularly by testing agronomic practices that increase yields and enhance soil health through the use of different organic fertilizers along with inorganic fertilizer and proper cereal-legume rotation over the past two years at the center and in farmers’ fields.

Focus areas of research

Research will focus on developing the best combination of locally available organic inputs with inorganic fertilizer, together with appropriate cereal-legume rotation on LTE plots, to monitor yield and soil health parameters such as organic matter accumulation over time, improve resource use efficiency, and enhance soil health. The main crops involved are:

  • Maize (Zea Mays): Jibat variety 
  • Wheat (Triticum aestivum): Wane variety 
  • Teff (Eragrostis teff): Quncho variety 
  • Legumes: Faba bean, soybean, haricot bean, and pigeon pea 

The LTE sites have served as demonstration and learning platforms for local communities. The cropping system in the area has traditionally been dominated by continuous monocropping of cereals for decades. In response, this collaborative LTE initiative has introduced four legume crops into rotation and intercropping systems, three of which are new to the area. Some of these new crops have been well received by farmers, who have selected the most promising options to try on their fields as “baby trials,” with the LTE plots referred to as “mother trials.” These efforts have been accompanied by training and resources for farmers and extension workers.

Community engagement and outcomes

The initiative has involved 55 farmers from three villages, with a focus on optimizing crop yields and promoting sustainable agriculture. Dr. Tesfaye Sida, an Agronomist/Sustainable Agrifood Systems at CIMMYT, highlighted the importance of these trials in improving food security and soil health in the intervention areas. He added, “This streamlined client-based collaboration, based on capacity development and knowledge transfer, is helping us to drive the pathways for climate-resilient, sustainable, and inclusive agricultural development for food and nutrition security in Ethiopia.”

A diverse group of stakeholders visiting the collaborative research trial sites (Photo: CIMMYT)

On September 23, 2024, a significant stakeholder gathering, including academic professionals, research and development partners, and farmers, as well as local government decision-makers, visited the trial sites to observe the research activities and progress at the Guder Mano Mezemer campus in Birbirsa village, where CIMMYT and Ambo University are conducting collaborative research. During the event, Dr. Gizachew Kebede, a soil scientist at CIMMYT, highlighted the dual focus of the research: crop rotation and soil nutrient management. “Despite farmers’ familiarity with crop rotation, they often face challenges in identifying the best companion crops and appropriate sequences. We are addressing this by rotating cereals such as maize, wheat, and teff with legumes such as soybean and pigeon pea, some of which are new to the system and likely to improve soil fertility and system resilience. The other fascinating part of the research is the testing of both organic and non-organic fertilizers, an intelligent approach to determining best practices for soil health and productivity, with a particular focus on understanding long-term effects, with plans extending for at least a decade. This kind of knowledge transfer is crucial to improving agricultural productivity and sustainability in the community, and we have seen great results from the trials so far.”

Dr. Tesfaye Shiferaw, an agronomist/Sustainable Agrifood Systems emphasizes the model. “Initially these were long-term experiments (LTEs), which mainly established the long-term impacts of interventions (nutrient management, crop rotation, intercropping, etc.) on climate change effects, productivity, and soil health. However, during the demonstrations of these LTEs, local farmers expressed interest in trying the agricultural technology/intervention/practice of their choice. We then added potential other technologies that could be options and allowed them to conduct their own mini-trials (called baby trials) to increase the number of alternatives. In this context, the LTEs can now be referred to as “mother trials.”

Research collaborators also echoed this sentiment. Dr. Nigusie Bekele, Director of Guder Mezemer Campus, highlighted Ambo University’s pride in hosting trials and major events related to their research collaboration with CIMMYT. He emphasized the university’s commitment to multidisciplinary research and service to the community, noting that their partnership with CIMMYT is instrumental in this regard, particularly in promoting productive, inclusive, and resilient food systems in Ethiopia. Dr. Nigusie described their joint action research and innovation efforts as transformative, benefiting not only the local community but also the wider Ethiopian population dependent on smallholder agriculture.

New launch of common beans and farmer insights
Farmer Shelema Hirpasa proudly displays a thriving crop of haricot beans grown after receiving seeds from CIMMYT. This image highlights the positive impact of research and support in increasing agricultural productivity and empowering local farmers (Photo: CIMMYT)

The photo features young farmer Shelema Hirpasa proudly displaying a thriving crop of haricot beans grown after receiving seeds from CIMMYT. This image highlights the positive impact of research and support in increasing agricultural productivity and empowering local farmers.

The introduction of soybean and pigeon pea in the intervention villages has generated considerable interest among farmers, leading to increased participation and positive results. Farmer Shelema Hirpasa from Tuke Kutaye District was enthusiastic about the exceptional performance of these new crops, noting a stark contrast with the traditional varieties he had previously grown. Highlighting the advantages of crop diversification, he said: “I have been involved in farming since my childhood but have never seen such performance in my crops.” This reflects the transformative impact of these new agricultural practices on local farming communities.

CIMMYT researcher gives visitors a detailed briefing on the ongoing activities at the demonstration sites (Photo: CIMMYT)

This interaction highlights the importance of knowledge sharing and engagement in agricultural research, as stakeholders learn about innovative practices and advances being implemented in the field. The gathering also reflects the commitment of the various partners in the initiative, showcasing their shared interest in advancing agricultural research and promoting food security through collaboration between CIMMYT and Ambo University.

Media coverage and future directions

The collaboration and field visits have drawn media attention, with coverage from outlets such as the Oromia Broadcasting Network (OBN). This initiative, implemented by CIMMYT and Ambo University with support from One CGIAR’s Excellence in Agronomy (EIA) and Ukama Ustawi initiatives, is paving the way for sustainable and resilient agricultural practices in Ethiopia.

Through continued partnership and innovation, CIMMYT and Ambo University are not only transforming agricultural practices in the region but also contributing to the broader goal of food and nutrition security throughout Ethiopia.

CIMMYT at Borlaug Dialogue 2024: Building Tomorrow’s Resilient Food Systems Today

Borlaug Dialogue (Photo: WFPF/Jon Lemons 2024)

Each year, the Borlaug Dialogue in Des Moines, Iowa, becomes a dynamic platform where global leaders in agriculture, policy, research, and youth come together to address the critical issues surrounding global food security. The event is marked by the World Food Prize ceremony, which celebrates groundbreaking achievements that improve the accessibility, quality, and availability of food around the world. This year, CIMMYT’s role was significant, reflecting its unwavering commitment to reimagine the future of food and agriculture. CIMMYT’s presence was impactful and deeply resonant, representing its dedication to sustainable agricultural solutions for vulnerable communities. The following highlights capture these pivotal moments and showcase our role in promoting science and innovation for a food- and nutrition-secure world.

DialogueNEXT Mexico: Fostering Global Collaboration and Resilience

This year’s DialogueNEXT Mexico, themed “Nurturing Farmer Resilience,” celebrated the power of uniting leaders from across continents to address the urgent need for sustainable, resilient food systems. The event focused on innovative strategies to empower farmers and ensure food security in the face of climate challenges and resource constraints. Key initiatives presented included CIMMYT’s Vision for Adapted Crops and Soils (VACS), which provides farmers with improved crop varieties and conservation techniques. Expanded to Africa through the Accelerated Innovation Delivery Initiative (AID-I), these programs exemplify CIMMYT’s commitment to building resilience and reducing poverty through sustainable agriculture.

DialogueNext Mexico Session at Borlaug Dialogue (Photo: WFPF/Scott Morgan 2024
CIMMYT Experts Honored on the 2024 TAP List

A standout moment came with the recognition of Sylvanus Odjo and Marianne Banziger among the 2024 Top Agri-food Pioneers (TAP), honoring their invaluable contributions to sustainable agriculture. Their work embodies CIMMYT’s mission to empower communities and advance resilient food systems. This honor celebrates their contributions to building resilient, equitable food systems worldwide.

TAP List (Photo: WFPF/Scott Morgan 2024
Empowering Future Innovators and Expanding Global Alliances

CIMMYT showcased its commitment to sustainable agriculture through key initiatives and partnerships. The Global Maize Program Director, B.M. Prasanna, led an engaging session on the CIMMYT Academy’s role in shaping the next generation of plant breeders by equipping young scientists to tackle food security challenges with innovation, ensuring that CIMMYT’s mission will continue to advance with adaptability. Prasanna’s session underscored the vital role of mentorship and capacity-building in securing food systems for future generations.

One of the Dialogue’s highlights was the “Realizing Borlaug 2.0” event, where CIMMYT, USAID, and USDA launched the Feed the Future Global Wheat Health Alliance. This initiative aims to protect wheat from climate-related threats such as fusarium, wheat blast, and rust. Announced with a call for additional partners, this foundational investment marks a global commitment to protect wheat and strengthen food security. By linking research and breeding programs, the Alliance will accelerate the discovery and deployment of disease-resistant wheat varieties, ensuring a resilient future for one of the world’s staple crops.

In the footsteps of Dr. Borlaug Session (Photo:WFPF/Scott Morgan 2024)
Strengthening Global Alliances for Climate-Smart Agriculture

At the Borlaug Dialogue 2024, CIMMYT highlighted its commitment to sustainable agriculture and climate resilience through several impactful partnerships and collaborations. In a key session with the VACS partnership, CIMMYT addressed the urgent need for adaptable crops and resilient soils in the face of climate change, emphasizing the importance of global cooperation to secure food systems against environmental stresses. CIMMYT furthered its mission by establishing a groundbreaking partnership with the Secretariat of Agriculture and Livestock (SAG) of Honduras to strengthen food security and promote sustainable agricultural growth in Latin America.

Strategic discussions with FAO and the African Development Bank Group reinforced CIMMYT’s commitment to scaling climate-smart initiatives across regions, creating a powerful network of allies in building resilient food systems. The Dialogue also honored award winners Cary Fowler and Geoffrey Hawtin, whose work on crop biodiversity aligns with CIMMYT’s core mission of conserving agricultural diversity and improving food security worldwide.

Geoffrey Hawtin and Cary Fowler (Photo: WFPF/Scott Morgan 2024)

Through its contributions to the Dialogue, CIMMYT underscored its role as a global leader in transforming agri-food systems. Guided by a vision of a food-secure future, CIMMYT continues to empower farmers and build resilient communities around the world.

Svalbard Global Seed Vault Historic Deposit Bolsters Food Security Amid Crises

CIMMYT contributed over 5,400 maize and wheat samples to the Svalbard Global Seed Vault’s recent historic deposit, reinforcing its commitment to safeguarding crop diversity essential for global food security. These deposits protect genetic resources vital for adapting to climate change and improving resilience, especially in vulnerable regions. This backup effort ensures CIMMYT’s research on these staple crops remains available to support sustainable food systems and address crises worldwide.

Read the full story.

A blueprint for soil health initiatives

Ethiopia’s agricultural and food production systems face significant challenges due to soil acidity. Approximately 41% of the country’s cultivated land is affected, with 28% of this area being highly acidic. Heavy rainfall and inherent soil properties are significant drivers of this, and practices like continuous residue removal greatly accelerate these conditions.  

Stakeholders attending the national workshop on acid soil management in Addis Ababa, Ethiopia (Photo: CIMMYT)

The resulting acidic soil conditions can severely limit the uptake of critical nutrients, leading to lower yields and poorer crop responses to inputs. As a result, Ethiopia’s soil acidity conditions constrain the production and productivity of the country’s main staple crops and compromise efforts to achieve national food security. To help address these problems, policymakers, technical experts, and development partners in Ethiopia have come together to advocate for innovative data-driven solutions to remediate acid soils to raise crop yields and promote sustainable economic growth.  

“At a national workshop convened by CIMMYT and the One CGIAR initiative on Excellence in Agronomy on 29 July 2024 in Addis Ababa, experts from CGIAR, the Ministry of Agriculture (MoA), the Ethiopian Institute of Agricultural Research (EIAR), universities, regional research institutes, the national soil health task force, NGOs, and other key stakeholders gathered to discuss acid soil management in Ethiopia. Participants emphasized that proper management of soil acidity could increase fertilizer use efficiency from 20% to as much as 90%, depending on the initial acidity levels and specific nutrients involved.

Tackling soil acidity 

“Acidic soils are complex and widespread, affecting millions of hectares of arable land in Ethiopia,” said Tesfaye Shiferaw, an agronomist with CIMMYT’s Sustainable Agrifood Systems program and regional lead for the One CGIAR initiative on Excellence in Agronomy. “We understand the situation well and have developed innovative solutions under the GAIA project to address the issue. The spatial targeting framework created within the project represents a significant breakthrough, which the MoA has incorporated into Ethiopia’s nationwide acid soil reclamation initiative.”

Feto Esimo, Director General of EIAR, highlighted, “Addressing soil acidity is critical for enhancing food security and economic development in Ethiopia. A few years ago, we appealed to partners to intensify their efforts in creating sustainable strategies with lasting impacts for future generations. We are now seeing the GAIA project’s ongoing efforts effectively addressing these issues and offering potential solutions.”

The GAIA project approach 
Project research team monitoring and evaluating the field activities in Jimma Zone-Ethiopia (Photo: CIMMYT)

Researchers on the GAIA project have been evaluating alternative approaches to managing soil acidity, with a particular focus on lime application. This method aims to reduce aluminum toxicity and improve the availability of essential nutrients such as phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) in the soil. Additionally, liming decreases the solubility and leaching of heavy metals and offers benefits for legumes, such as increased microbial activity and enhanced biological nitrogen fixation. The GAIA team’s detailed evaluation includes core activities like spatial targeting to identify priority areas for liming, determining optimal lime application rates, and assessing profitability for specific crop types.

The primary goal in Ethiopia is to guide targeted investments for effective soil health reclamation and increased agricultural productivity through liming and enhanced nutrient management. The project aims to establish a strategic spatial targeting framework, serving as both a policy tool and a blueprint for soil health management. This framework is designed to optimize lime application, ensuring it is prioritized in areas where it can deliver the highest return on investment for farmers and the government. Project outcomes also include expanding this framework for broader application.

Major project outcomes in Ethiopia 

The GAIA research team conducted an in-depth investigation into the interactions between lime and fertilizer, developed a workflow and an essential policy tool integrated into the Ethiopian National Soil Information System (NSIS), and presented evidence-based recommendations on acid soil remediation to national and regional policy forums. The following significant system-level accomplishments have resulted from CIMMYT and partners’ research-driven recommendations.

Firstly, the Ethiopian Ministry of Agriculture (MoA) recognizes the GAIA project’s model as a successful blueprint for implementing and scaling up acid soil remediation nationwide. The government has launched a plan to reclaim 300,000 hectares of acidic cropland in 2024–2025, targeting around 10% of affected areas identified through the spatial targeting framework. To support this initiative, 1.4 billion ETB (approximately 12 million USD) has been allocated to manage acidic agricultural land. Additionally, at the National Stakeholder Consultation Forum on Acid Soils held in Bonga town, South-Western Region, in April 2023, the Ethiopian government prioritized soil acidity as a key focus. Since then, the government has reinforced its commitment to soil health programs, incorporating lime as an essential input alongside improved seeds and fertilizer.

These storylines were highlighted in July 2024 during a national working group meeting aimed at streamlining acid soil management strategies across Ethiopia. The meeting, led by GAIA and EiA in collaboration with the MoA and supported by the One CGIAR initiative EiA, underscored the strategic progress made by the GAIA project in addressing soil acidity. According to Feto Esimo, Director General of the EIAR, these advancements signify a substantial improvement, promising a lasting impact beyond the current agricultural season. He expressed appreciation for the project’s achievements and advocated for its expansion to serve as a model for similar soil health programs across the country.

Lime is the most widely used remedy, and its effectiveness in increasing yields when combined with fertilizer is well-documented,” noted Temesgen Desalegn, Director of Natural Resources Management Research at EIAR. “In this context,” he continued, “the GAIA project is timely, offering a multifaceted approach to soil health management, not limited to acid soils. The project’s model has been widely welcomed and could provide a comprehensive strategy for other soil health initiatives in Ethiopia.”

National working group on acid soil management workshop participants in Addis Ababa (Photo: CIMMYT)

The national working group meeting reached a consensus on recognizing project outcomes that drive system-level impacts. This effort to build a strong consensus extends beyond Ethiopia; it reflects a broader continental trend, highlighted by the Africa Fertilizer and Soil Health Action Plan: 2024–2034. This plan emerged from the Africa Fertilizer and Soil Health Summit held in May 2024 in Nairobi, Kenya, under the theme ‘Listen to the Land,’ organized by the African Union.

The GAIA project, funded by the Bill & Melinda Gates Foundation (BMGF), supports large-scale rehabilitation of acid soils in East Africa through data-driven insights and evidence-based recommendations for decision-makers. Led by CIMMYT in collaboration with various partners across Ethiopia, Kenya, Rwanda, and Tanzania, the project works in partnership with the Excellence in Agronomy (EiA) initiative of the One CGIAR. In Ethiopia, GAIA is implemented in cooperation with the Ethiopian Institute of Agricultural Research (EIAR).

International recognition for CIMMYT: Honorary Doctorate Awarded to Bram Govaerts in India

Ceremony for the awarding of an honorary doctorate to Dr. Bram Govaerts of CIMMYT. (Photo: Richa Puri / BISA)

During a formal ceremony at Chandra Shekhar Azad University of Agriculture and Technology (CSA) in Kanpur, India, Bram Govaerts, CIMMYT Director General, was awarded the honorary degree of Doctor Honoris Causa. This prestigious honor not only recognizes Govaerts’ outstanding career but also highlights CIMMYT’s innovative and collaborative work on behalf of global food security, a joint effort that impacts millions of farmers and communities around the world.

Upon receiving the recognition, Govaerts dedicated it to the entire CIMMYT team, emphasizing, “This honor is a testament to the tireless work of my colleagues and collaborators at CIMMYT, who, through science and innovation, are contributing to food and nutrition security in key regions such as India and South Asia.” He further noted that this Honorary Doctorate symbolizes the global commitment of CIMMYT and Mexico in addressing the agricultural and climate challenges that threaten food production.

This recognition also underscores the strong agricultural partnership between Mexico and India, a collaboration that has saved millions of lives. This alliance dates back to the Green Revolution, led by Norman Borlaug, who introduced wheat varieties developed in Mexico that allowed India to double its agricultural output and avert a catastrophic famine in the 1960s.

Ceremony for the awarding of an honorary doctorate to Dr. Bram Govaerts of CIMMYT. (Photo: Richa Puri / BISA)

Today, CIMMYT continues to be a vital partner for India, developing maize and wheat varieties that are resilient to extreme climate conditions and promoting sustainable agricultural practices. The Borlaug Institute for South Asia (BISA), established in 2011 as a collaboration between CIMMYT and the Indian Council of Agricultural Research (ICAR), is a testament to the progress made through international collaboration. BISA has played a critical role in strengthening India’s agri-food systems, improving the livelihoods of millions of farmers, and contributing to environmental restoration in the region.

Beyond commercial ties, scientific collaboration between Mexico and India has been a cornerstone of agricultural improvements in both countries. India, the world’s second-most populous country, faces significant food production challenges, many of which mirror Mexico’s struggles, such as soil degradation and the effects of climate change. Thanks to CIMMYT’s collaboration with Indian institutions, critical advances have been made to address these challenges, paving the way for more resilient and sustainable agriculture.

The honorary doctorate awarded to Bram Govaerts not only recognizes his leadership but also the transformative impact of CIMMYT and its partners in improving the lives of millions of people around the world. Govaerts said, “This award reflects the strength of international scientific collaboration and the power of science to change the world.”

Can We Transform World Food Day Into A Celebration?

With food insecurity affecting 733 million people worldwide, the need for solutions is urgent as World Food Day draws near. CIMMYT’s leadership in promoting sustainable agricultural systems is exemplified by Sieglinde Snapp, Director of the Sustainable Agrifood Systems Program, who emphasizes the role of biodiversity in building resilient food systems. By encouraging the use of resilient crops like millet and sorghum, CIMMYT is working to improve soil health and enhance farmers’ livelihoods, especially in regions like sub-Saharan Africa. Empowering women and ensuring smallholder farmers have access to resources are key elements in transforming global food systems, a cause CIMMYT is deeply invested in.

Read the full story.

Context-dependent agricultural intensification pathways to increase rice production in India

Rice is a critical staple for food security and a key export crop for India. The study published in Nature Communications explores context-specific pathways for increasing rice production in India, focusing on sustainable intensification — boosting yields without harming the environment or farm profitability.

The research analyzed over 15,000 field records across seven major rice-producing states in India using advanced machine learning techniques. The study identified nitrogen application and irrigation as key factors limiting yields, particularly in Eastern India (Bihar and Uttar Pradesh). By targeting farms with nitrogen and irrigation deficiencies, the study projects that yield gains could more than triple compared to general recommendations. Specifically, farms suffering from co-limitation by both nitrogen and irrigation could see the most significant gains in productivity and profitability.

Four scenarios for sustainable intensification were evaluated, ranging from blanket application of current nitrogen recommendations to highly targeted interventions. The analysis showed that targeted strategies, focusing on farms with the greatest yield constraints, could significantly improve nitrogen use efficiency and result in greater yields and profitability without excessive resource use.

The study highlights the potential of data-driven, context-specific solutions for rice intensification in India, emphasizing that targeted interventions could offer both higher returns for farmers and better environmental sustainability. It suggests a move away from “one-size-fits-all” approaches towards more precise, farm-specific recommendations based on local conditions and data. This approach could help close yield gaps while aligning with sustainable development goals.

Read the full study.