Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Opinion: Feeding people on this warming Earth requires future-proofing our agri-food systems. Here’s how.

The existing model of funding for agricultural research and development (R&D) is not equipped for the challenges it needs to meet, according to an opinion piece for MarketWatch, penned by Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT) and Elizabeth Cousens, President and Chief Executive Officer of the United Nations Foundation.

To tackle climate change, address hunger and malnutrition, and revive rural livelihoods, Cousens and Govaerts call for increased and more balanced investment in R&D for agri-food systems, using a participatory model to take advantage of knowledge sharing.

Co-designed projects, such as MasAgro, which involve local communities and value chain actors, can be vital in bridging the R&D gap.

Read the article: Opinion: Feeding people on this warming Earth requires future-proofing our agri-food systems. Here’s how.

The world cannot ignore the global food crisis and its consequences

Climate change is an undoubted contributor to the global food crisis. Natural disasters and poor weather is leading to 193 million people facing acute food insecurity.

While food aid is vital, improving food systems and reducing reliance on food imports is the route to a long-term solution. In an article for the Des Moines Register, Cary Fowler, US government food security envoy, details the importance of developing reliable local production and well-functioning markets to support farmers.

The United States government’s Feed the Future initiative is addressing some of these challenges, such as by supporting the International Maize and Wheat Improvement Center (CIMMYT) to develop drought-tolerant maize, which is now planted on 17 million acres in Africa. This variety is making a significant difference to food security.

Read the article: Opinion: The world cannot ignore the global food crisis and its consequences

Regenerative agriculture in Mexico: the case of Bimbo

Grupo Bimbo has two pilots with the International Maize and Wheat Improvement Center (CIMMYT) in the Mexican states of Sonora, Sinaloa and Jalisco to embed sustainable practices.

Through regenerative agriculture, an approach which aims to improve soil health and protect water resources and biodiversity, Grupo Bimbo has set the goal of ensuring that 200,000 hectares of wheat are cultivated with regenerative agriculture practices by 2030, ensuring that by 2050 100% of its key ingredients will be produced with this type of practices.

Read more: Regenerative agriculture in Mexico: the case of Bimbo

Integrated initiative launches in Nepal, India and Bangladesh

TAFSSA inception workshops in Nepal, India and Bangladesh. (Credit: CIMMYT/CGIAR)

CGIAR, in collaboration with government agencies and other relevant stakeholders, held country launches of the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative in three of its four working locations: Nepal, India and Bangladesh.

TAFSSA, which also operates in Pakistan, aims to deliver a coordinated program of research and engagement, transforming evidence into impact through collaboration with public and private partners across the production-to-consumption continuum. The end result will be productive and environmentally sound South Asian agrifood systems that support equitable access to sustainable healthy diets, as well as contributing to improved farmer livelihoods and resilience, while conserving land, air and groundwater resources.

A vision for South Asian agrifood systems

The three country-level launch events provided a platform for CGIAR’S partners to discuss TAFSSA’s five key areas:

  1. Facilitating agrifood system transformation through inclusive learning platforms, public data systems, and collaborations.
  2. Changing agroecosystems and rural economies to increase revenue and sustain diverse food production within environmental constraints.
  3. Improving access to and affordability of sustainably produced healthful foods through evidence and actions across the post-harvest value chain.
  4. Addressing the behavioral and structural factors of sustainable healthy diets
  5. Building resilience and limiting environmental impact.

The three inception events in Nepal, India and Bangladesh also provided a space for open debate on creating partnerships to achieve common goals, through multidisciplinary conversation on each focal area. Breakout sessions were also held according to emphasis area, explaining the initiative and its components clearly and providing opportunities to brainstorm with participants on how to build more stakeholder-responsive activities.

More than 70 participants attended each inception session, both in-person and online, representing government agencies, CGIAR and its research centers working on TAFSSA, international organizations working in the region, academic institutions, and other key stakeholder groups.

Project endorsements

At the launch event in Nepal on June 9, Temina Lalani Shariff, regional director for South Asia at CGIAR, described TAFSSA as a gateway to the rest of CGIAR’s global research efforts. She explained, “More than 100 partners from around the world will exchange their knowledge, skills and expertise through CGIAR’s new platform to work together for agriculture development.”

Purnima Menon, TAFSSA co-lead and senior research fellow with the International Food Policy Research Institute (IFPRI), presented the project in India on June 15. “The research portfolio and engagement plan we’re proposing is really intending to cut across the food system,” said Menon. “We want to engage people in production systems, people in the middle of the value chain, and consumers, to build the research portfolio. The idea is to do so in a way that is interlinked with the five new CGIAR impact areas and that amplifies CGIAR’s research on the ground.”

Introducing TAFSSA in Bangladesh on July 18, Timothy J. Krupnik, Initiative lead and senior agronomist with the International Maize and Wheat Improvement Center (CIMMYT), stated, “The approach we’ve taken while developing this Initiative was to first look at agrifood crisis issues in South Asia. We evaluated key challenges in this region which has world’s highest concentrations of hunger and poverty.” He highlighted climate change, resource constraints and social structural inequalities, all of which will be addressed by TAFSSA through several focus areas.

Shaikh Mohammad Bokhtiar, Chairman of the Bangladesh Agriculture Research Council (BARC) welcomed these ideas at the TAFSSA Bangladesh launch. “If we want to create an intelligent society or nation, if we want sustainability, we must provide nutrition for all,” said Bokhtiar. “In this region, I believe that combining science, technology and innovation in the TAFSSA initiative will deliver good results.”

Shariff also attended the launch in Bangladesh, where she remarked, “We are here to share a common path to work together to confront the challenges. For that, cooperation is the essential component which is common across Nepal, India and Bangladesh.”

At each of the launch events, TAFSSA was announced as a flagship initiative in South Asia by Martin Kropff, managing director of Resilient Agrifood Systems (RAFS) at CGIAR. He expressed confidence that it would be the first regional program to deliver significant development results and acknowledged that the planned collaboration and partnership with national research institutes would ensure TAFSSA’s success.

The future of wheat

CIMMYT’s experimental station in Obregón, a small city in Mexico’s state of Sonora, is considered a mecca for wheat research and breeding. In 1945, Norman Borlaug arrived as a geneticist for a special project between the Mexican government and the Rockefeller Foundation, to help local farmers with wheat production. After a few years, his strong bond with the community, students and interns was key to making a remarkable difference on wheat research that save millions from famine and won him the Nobel Peace Prize. A legacy that has lasted for many decades.

At Obregón, scientists have access to state-of-the-art field facilities and an ideal location, in the northern Yaqui Valley. The station’s dry climate and favorable temperature in winter is suitable to assess yield potential, while its hot summers are ideal to study wheat’s tolerance to different stressors.

Here, scientists and field workers work hard all year round to ensure the future of wheat. Varieties grown in all continents have CIMMYT and Sonoran DNA.

SPECIAL THANKS TO: Jeanie Borlaug Laube. JesĂșs Larraguibel Artola, President of PIEAES (Patronato para la InvestigaciĂłn y ExperimentaciĂłn AgrĂ­cola del Estado de Sonora A.C.). AsociaciĂłn de Organismos de Agricultores del Sur de Sonora A.C. (AOASS) Global Wheat Program, CIMMYT: Alison Bentley (Program Director), Karim Ammar, Rodrigo RascĂłn, Carolina Rivera, Alberto Mendoza, Leonardo Crespo and Nele Verhulst.

CREDITS: Production: Alfonso Cortés, Marta Millere and Silvia Rico, CIMMYT. Additional drone shots: Courtesy of INIFAP and PIEAES. Post-production: Silvia Rico, CIMMYT

MUSIC: The Way Up created by Evert Z. Licensed from Artlist.io (License owner: CIMMYT. Creator Pro License Number – 159864). Eclipse created by EFGR. Licensed from Artlist.io (License owner: CIMMYT. Creator Pro License Number – 159864).

Why co-creation is vital for sustainable agriculture

Agricultural mechanization engineer Subash Adhikari adjusts a maize shelling machine on a farmerÂŽs verandah in Rambasti, Kanchanpur, Nepal. (Credit: P. Lowe/CIMMYT)

The adoption of climate-smart agricultural production processes and technologies is a vital strategy in attempts to mitigate the global impacts of climate change without compromising on food security. However, supporting farmers to permanently implement new technologies and approaches requires a deep understanding of their needs, robust training, and effective transfer of knowledge.

At the International Maize and Wheat Improvement Center (CIMMYT), projects across the Global South aim to embed agrifood systems that are sustainable for all.

To share how CIMMYT empowers farmers and develops new technologies, Director General Bram Govaerts attended a panel event hosted by the Business Council for International Understanding (BICU) on September 19. For an audience of foreign government officials, multilaterals, and private sector executives, panelists introduced new perspectives to support global food security efforts and inspire greater collaboration.

Partnership approach

Panelists were asked to explain the technologies that can be unlocked by agricultural financial mechanisms, referencing how research and development is keeping pace with the quick adaptations needed by farmers to address climate change.

Examples from CIMMYT’s participation in the AgriLAC Resiliente CGIAR Initiative, a project for sustainable agricultural development in Latin America and the Caribbean, highlighted the innovative partnerships that are pushing forward research and development in the sector, enabling food systems and actors to act quickly to meet food security needs, mitigate climate hazards, stabilize communities and reduce forced migration.

Scientists are conscious of ensuring that solutions to one challenge are not the cause of new problems elsewhere; co-development is essential to this, ensuring the views of all actors are represented. Using the Integrated Agri-food System Initiative (IASI) methodology, created by CIMMYT in partnership with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), projects can develop strategies and actions with a significant likelihood of supportive public and private investment that will transform food systems.

Expertise from farmers

Even the best agricultural technology in the world is only effective if it is used. When discussing barriers to the implementation of technology, Govaerts emphasized CIMMYT’s mechanization prototyping, co-creation, and experimentation work that bridges the gap between farmers and scientists and encourages adoption of new methods and tools.

Having farming influencers onboard has proved priceless, as these people co-create prototypes and experiments that demonstrate results and offer assured testimony to reluctant stakeholders.

Innovations can transform livelihoods, giving farmers a way to increase income and provide stability and better opportunities for their families – which is the most appealing reason for adoption.

Training programs are also fundamental, ensuring skills and knowledge around new technologies are freely available to farmers, technicians, and researchers. CIMMYT projects such as MasAgro in Mexico, has trained more than 3,000 producers and 400 technicians in sustainable agriculture, with more than 70,000 producers participating in educational events during the pandemic.

Hunger and climate change – a dual problem?

Conversation also centered on whether the development of new technologies is aiming to confront world hunger and climate change as separate issues, or whether solutions can be suitable for both challenges.

Essential actions to mitigate the food crisis require a global perspective, acknowledging that unexpected crises will always arise. For example, Russia and Ukraine account for 28% of the world’s wheat exports, so high prices are linked to supply chain disruption. More than 2.5 billion people worldwide consume wheat-based products, so the effects of these disruptions could mean significant hunger and potential civil unrest. Nations already in crisis, such as Yemen, Sudan and Ethiopia, may be worse hit, but other countries with high dependency on imports like Egypt are also affected.

Govaerts highlighted the inextricable links between the causes of food insecurity and climate change. He underscored CIMMYT’s holistic approach to overcoming widespread impacts on the global food system, such as the concurrent challenges of COVID-19, climate change and the Ukraine crisis, by co-developing lasting solutions incorporating these three elements:

  • Extensive research on climate change adaptation and mitigation in maize and wheat-based production systems across Africa, Asia, and Latin America.
  • Climate focused research aims to help smallholder farmers adapt to climate shocks and to raise and maintain yields profitably and sustainably by reducing greenhouse gas emissions.
  • Capacity building for stakeholders in the development and application of new technologies.

Many other deep disruptions are on their way. It is time to invest in science, research, innovation, technologies, and start practicing teamwork to allow those investments to translate into a better future for the planet, and for us.

About BICU:

BICU is a leading business-supported non-profit education initiative, established by President Eisenhower of the United States in 1955 for the purpose of facilitating public-private partnerships and high-level business to government dialogue.

Can agriculture bring South Asian countries together?

Agriculture is central to South Asian economies, lives and livelihoods. However, the challenges of an increasing population and brisk economic growth are straining the agriculture sector as it struggles to meet the present and future demand for food, nutritional security, and economic development. Not only this, the three Cs – COVID, climate change and conflict – are fueling the growing fragility in food systems across the world.

To address these issues and find potential solutions, the Borlaug Institute for South Asia (BISA) organized a high-level meeting with top agriculture ministry officials from its neighboring countries – Sri Lanka, Nepal, Bangladesh, Bhutan, India and Pakistan – to collaborate and learn from each other.

BISA’s outreach to India’s neighbors in South Asia has already produced results. Data from the BISA farm in Ludhiana, India, on resistance to yellow rust that affects wheat crop has been used in Nepal, Afghanistan, and Pakistan. Genomic prediction evaluation for grain yield and other traits worked on at BISA through the help of the Global Wheat Program of the International Maize and Wheat Improvement Center (CIMMYT) has been extended to Pakistan, Bangladesh, and Nepal since 2020. Regular training is organized for students, scientists and farmers in India on breeding and climate resistant technologies, and BISA scientists organize courses in Nepal on climate-smart technologies.

Read more in Amar Ujala (published in Hindi): Can agriculture bring South Asian countries together?

Cover photo: Tara Miah (50) is a farmer from Rajguru in Rahamanbari union, Barisal, Bangladesh. He used seeder fertilizer drills to plant wheat on his fields. Previously, this was done manually. SFD has resulted in a better harvest for Miah. (Credit: Ranak Martin)

Galvanizing food systems transformation in South Asia

Solar Powered Irrigation System in Bihar, India. (Credit: Ayush Manik)

In the race to make food production and consumption more sustainable, South Asia is key.

Home to one quarter of humanity — one-fifth of whom are youth — the region has the world’s largest concentration of poverty and malnutrition. While South Asia produces one quarter of the world’s consumed food, its agrifood systems today face formidable poverty reduction, climate change adaptation and mitigation, environmental health, and biodiversity challenges. Significant hurdles remain to secure an adequate and affordable supply of diverse foods necessary for sustainable and healthy diets.

South Asia’s predominantly rice-based farming systems are crucial to food security and political and economic stability, but parts of this region are threatened by unsustainable groundwater withdrawal — the region extracts one-quarter of global groundwater — due to food and energy policy distortions. South Asia’s farmers are both contributors to and victims of climate change and extreme weather that disproportionately affect resource-poor and women farmers.

The region needs food systems that generate profits and incentivize farmers to produce nutritious foods, while also reducing prices for consumers purchasing healthy products by shortening and reducing inefficiencies within value chains. A new CGIAR Research Initiative, Transforming Agrifood Systems in South Asia (TAFSSA), aims to address challenges.

Read the full article: Galvanizing Food Systems Transformation in South Asia

A Chinese Wheat Breeder’s International Vision

China is the largest global producer and consumer of wheat. The country’s breeders are developing high quality, high yield varieties, with resistance to the droughts and crop blights that have increased in frequency and spread due to climate change.

He Zhonghu, a research fellow with the Institute of Crop Sciences under the Chinese Academy of Agricultural Sciences (CAAS), is passionate about the power of international exchanges and cooperation for fueling agricultural development.

He is also director of the China office for the International Maize and Wheat Improvement Center (CIMMYT), introducing 20,000 samples of wheat seed sources to more than 25 institutions and contributing to the breeding of more than 80 new varieties.

Read more: A Chinese Wheat Breeder’s International Vision

Singh recognized for wheat crop improvement

Ravi Singh delivers a lecture during the 61st All India Wheat and Barley Research Workers’ Meet celebrating the fruitful partnership of CIMMYT and ICAR. (Credit: SAWBAR)

Ravi Singh, head of wheat improvement and rust research at the International Maize and Wheat Improvement Center (CIMMYT), received the Sh. VS Mathur Memorial Award 2022 for outstanding contribution in the field of wheat crop improvement from the Society for Advancement of Wheat and Barley Research (SAWBAR).

Singh received the award from T. R. Sharma, Deputy Director General of the Indian Council of Agricultural Research (ICAR) and G. P. Singh, Director of the Indian Institute for Wheat and Barley Research (IIWBR) at ICAR.

As recipient of the award, Singh delivered a lecture during the 61st All India Wheat and Barley Research Workers’ Meet in Gwalior, India, on August 29. He highlighted and praised the partnership between India and CIMMYT as essential for accelerating gains in wheat yield despite the stresses of climate change thanks to improved resilience in new varieties and earlier sowing.

“The ICAR-CIMMYT wheat improvement partnership remains crucial for delivering new varieties with higher rates of genetic gain in farmers’ fields to enhance productivity, climate resilience, disease resistance and nutrition while meeting market needs,” he said.

Successes of the partnership include integrated breeding with a common agenda, commercialized varieties that are adapted to flexible sowing dates including early sowing, diverse and durable resistance to rust diseases, adoption of wheat blast resistant varieties in large areas, biofortified and high-quality varieties, and the move towards mainstreaming of zinc (Zn) biofortification.

Singh also paid homage to the award’s namesake, as VS Mathur’s “wheat varieties once occupied fields of many millions of farmers and provided food and nutrition to many more millions throughout India and beyond”.

Singh, a CIMMYT scientist, receives the Sh. VS Mathur Memorial Award for his outstanding contribution in the field of wheat crop improvement. (Credit: SAWBAR)

About SAWBAR:

SAWBAR was founded in 2007 and is housed at ICAR-Indian Institute of Wheat and Barley Research Karnal (Haryana) India. The Society presently has 300 life members and more than 320 annual and student members. SAWBAR is playing a significant role in bringing wheat and barley researchers on one platform for the exchange of innovative research and dissemination of knowledge related to the latest research happenings in the area of wheat and barley improvement. Annually, SAWBAR gives awards to pioneer cereal workers in various award categories. 

About the Sh. VS Mathur Mathur Memorial Award:

The Sh. VS Mathur Memorial Award was constituted in year 2018 in the memory of eminent wheat worker Sh. VS Mathur. Mathur was one of the pioneer wheat workers who worked tirelessly with MS Swaminathan and HK Jain and developed a large number of high-yielding wheat varieties viz. Heera, Moti, Janak (HD 1982), Arjun (HD 2009), HD 2177, HD 2182, HD 2204, HD 2236, HD 2278, HD 2281, HD 2285, HD 2329, HD 2307 and HD 2327 for various regions of India.

Fertilizer scarcity may hamper crop cycle, cautions scientist

South Asian countries may see fertilizers scarcity in the next crop cycle as a result of the conflict situation in Ukraine and Russia, cautioned Bram Govaerts, Director General of the International Maize and Wheat Improvement Centre (CIMMYT) and the Borlaug Institute for South Asia (BISA).

The triple threat of climate change, COVID-19 and the conflict between Ukraine and Russia is exacerbating the challenge of how to feed the world, explained Govaerts.

Policy changes had the potential to address the crises, but investing in research and innovation is a fundamental part of solving the current challenges.

Read more: Fertilizer scarcity may hamper crop cycle, cautions scientist

Fragile global food system calls for a collaborative approach

Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), underscored the need for collaboration to address the challenges of global food shocks, climate change and agricultural trade.

Speaking at a Strengthening AR4D in South Asia workshop on Thursday, September 1, Govaerts highlighted the work of CIMMYT’s Borlaug Institute of South Asia (BISA) project.

“The collaborative, inclusive approach of BISA (Borlaug Institute for South Asia) is more relevant than ever today. In an era when the challenges of food and nutrition insecurity — exacerbated by climate change, poverty, and inequality — cannot be solved by one sector,” he explained.

Read more: Fragile global food system calls for a collaborative approach

Strengthening capacity and building national and regional partnerships in the seed sector

Hybrid seeds exhibit a significant potential to boost on-farm productivity and attain food security. Still, the availability, affordability and accessibility of such quality seeds remain a challenge for farmers in South Asia. Primarily driven by the demand from the poultry industry, maize productivity in the region is increasing annually. Yet, the hybrid maize seed coverage is below 50% in most South Asian countries.

In continuation of its capacity-building initiatives, the International Maize and Wheat Improvement Center (CIMMYT) conducted an International Training Workshop on Quality Hybrid Maize Seed Production and Seed Business Management in South Asia on August 15-18, 2022, in Kathmandu, Nepal. The four-day hybrid training was jointly organized by Nepal’s Seed Quality Control Center, Nepal Agricultural Research Council (NARC), Seed Entrepreneurs’ Association of Nepal and CGIAR’s Seed Equal Initiative. Primarily, the event aimed at strengthening the capacity of seed stakeholders on the latest advances in quality hybrid maize seed production and establishing competitive hybrid seed business strategies.

Around 60 participants comprising of private seed company owners, national and international seed system specialists, maize breeders, crop inspectors, seed agronomists, marketers, policymakers and researchers working in hybrid seed production and marketing attended the training. Representatives were invited from Nepal, India, Bangladesh and Pakistan.

Principal trainer, John MacRobert, shared examples and knowledge in the principles of hybrid maize seed production and seed business. Former principal scientist of CIMMYT, MacRobert is currently the managing director of Mukushi Seeds Pvt Ltd in Zimbabwe and director of Quality Seed Pvt Ltd in South Africa. The training also involved group discussions and exercises on preparing a seed road map as well as developing profitable seed business plans. The participants used a seed business model canvas tool to chart their production plans, develop marketing strategies and diagnose profit. In 2018, MacRobert trained 15 private seed companies from Nepal and Pakistan on hybrid seed business mentorship course in Kathmandu. Since then, the participants brought in and shared rich practical experiences from their own businesses and regulatory organizations during this year’s program.

Joining MacRobert were 14 national and international experts from CIMMYT and other institutions, who delivered sessions related to hybrid maize breeding principles and techniques, seed quality control measures and regulations, and variety registration and licensing policies and procedures.

The forum offered an excellent learning opportunity for the national and international participants to exchange knowledge and experiences from seed specialists on developing competitive hybrid maize and seed production technologies that will bring cost-efficiency in production and maximize crop yields and business profits. It also served as a ground for establishing networks and collaborations. The mutual learnings will contribute to building national and regional partnerships in the seed sector.

Participants reflected on the learnings and benefits gained from the comprehensive course, which they would apply to improve maize productivity in their respective countries.

Muhammad Aslam, assistant professor from the University of Agriculture Faisalabad in Pakistan, acknowledged the opportunity provided to him and his university. He mentioned the support of CIMMYT in Pakistan in strengthening the local maize seed industry, where the market share of local seed companies is gradually increasing due to the elite germplasm support and capacity development efforts by CIMMYT. He added that the practical knowledge gained from the training will enhance the university students’ skills.

Attendees at the International Training Workshop on Quality Hybrid Maize Seed Production and Seed Business Management in South Asia. (Credit: Bandana Pradhan/CIMMYT)

An ode to seeds

During the closing session of the training, Govinda Prasad Sharma, Secretary of the Ministry of Agriculture and Livestock, handed over diverse maize seeds to the NARC and seven private seed company partners of the Nepal Seed and Fertilizer (NSAF) project. CIMMYT acquired the elite maize parental lines and breeder seeds from its international maize breeding hubs in Mexico, Zimbabwe, Colombia and India. The seeds have the potential of yielding 6-7 metric tons per hectare for synthetics and more than 10 metric tons for hybrids–a significant increase from 3-5 metric tons of local seeds. More importantly, given the current climate challenges Nepali farmers are facing, these climate-resilient seeds reach maturity earlier than local varieties which reduces their exposure to drought. These seeds will also withstand Fall Armyworm infestations, a devastating pest threatening maize production in Nepal.

“Genetic materials that will not only enhance yield but diversify the gene pool of crops in Nepal is extremely important,” said Lynn Schneider, deputy director of the Economic Growth Office at United States Agency for International Development (USAID) Nepal. “Agriculture must combat climate change and malnutrition, which are critical for the South Asia region. So, I am really proud that we are working on these areas,” shared Schneider.

“Food security is a priority for the Government of Nepal,” explained Sharma. He mentioned maize as an essential commodity from the food and feed perspective for South Asia and plans to collaborate with the private sector and donor organizations to increase maize productivity in the country. “The event will definitely help in augmenting the activities and accelerate the pathway towards achieving food and feed security,” he added.

Moreover, a certificate of appreciation was presented to Nepal’s National Maize Research Program to recognize their effective collaboration in hybrid maize varietal promotion and source seed distribution. Similarly, three partner seed companies of the project were also recognized for the breakthrough in becoming the first recipients of the Government of Nepal’s research and development license to register and produce hybrid seeds on a commercial basis.

CIMMYT also launched an assessment report on Cereal Seeds Value Chain in Nepal that provides evidence-based recommendations for developing Nepal’s formal cereal seed sector, specifically maize and rice. The publication highlights the need for a well-performing seed system where high-quality seeds of a wide range of varieties and crops are produced and available in time and affordable to farmers.

Deepak Bhandari, executive director of NARC, also congratulated the authors and expressed the significance of formulating and implementing inclusive strategies to build a vibrant seed industry in Nepal. He also acknowledged the event organizers for conducting an exceptional international workshop on hybrid maize seeds for the public and private seed stakeholders.

Cover photo: Training attendees gather to discuss competitive hybrid maize seed production technologies and build relationships with seed systems professionals. (Credit: Bandana Pradhan/CIMMYT)

Cereal seed systems

For certified seed to reach a farmer’s field for cultivation, it passes through many hands – international and national breeding programs, government regulatory agencies, private seed companies, and retailers or agrodealers. These organizations each play an important role in the design, testing, production and distribution of improved maize and wheat varieties.

Together, these processes, actors, and the relationships between them form a seed system, which incorporates the production, conservation, exchange, and use of propagation materials for crops. As defined by the CGIAR Community of Excellence for Seed Systems Development (COE), seed systems are complex, involving arrangements between public and private sectors, layers of regulation, and years of research and development, and are specific to each crop, country, agroecological environment and market context.

The International Maize and Wheat Improvement Center (CIMMYT) has extensively researched and worked with the facets and actors of cereal seed systems in Latin America, Asia and Africa, specifically in relation to cereal crops, and with maize and wheat in particular.

The role of CIMMYT scientists in supply and demand

Breeding teams use traditional and advanced techniques to identify improved maize and wheat breeding lines according to the desired traits determined by farmers and consumer markets. In addition to higher grain yields, other preferred traits include more and larger grains or fruit, resistance to pests and diseases, tolerance to environment pressures (such as drought or poor soils), better nutritional quality, or flavor and ease of processing.

These lines are used for further breeding, testing, seed multiplication by public and private sector partners. Others engage in varietal testing on farmers’ fields and support seed companies in production.

To foster smallholder farmers’ access to these improved varieties, CIMMYT implements a seed systems strategy divided into supply side development, concerning breeding and seed production, and demand side development, covering issues related to variety distribution and uptake. On the supply side, CIMMYT scientists’ work is carried out in three phases:

  • Product development phase: Breeders advance through CIMMYT’s breeding funnel (pipeline) the most promising materials from one improvement stage to the next. The best candidates are first tested in field trials at research stations and then in farmers’ fields. Afterwards, CIMMYT organizes field days to showcase the best performing materials to public and private sector partners.
  • Product allocation phase: Local partners request new CIMMYT products and sign licensing agreements that protect the new seed from private ownership claims and help accelerate marketing and distribution in target regions at affordable prices.
  • Release and commercialization phase: Farmers can obtain and benefit from seed of improved maize and wheat once national authorities register and release varieties that excel in national performance trials and public and private sector partners begin seed production and marketing or distribution.

On the demand side, CIMMYT scientists work to support seed systems development though its work on:

  • Farmer preferences and demand for varieties: Scientists look to understand current and future preferences and needs for varieties. This involves the use of innovative tools, such as product concept testing, on-farm testing and ranking, and participatory varietal evaluation.
  • Seed industry development: Small and medium sized seed businesses, as well as agrodealers, play a critical role in the distribution of seed. Our work looks to understand entry points for support to the seed industry for advancing faster uptake of new varieties by farmers.
  • Consumer demand for grain: The preferences of consumers and agroindustry for grain and grain-based foods provide an important source of demand for new varieties. CIMMYT scientists engage with consumers and agroindustry for innovation in food product design and testing consumer acceptance. Insights gains are reported back to breeding and seed production teams for design of future cereal varieties.

Gender-sensitive seed systems

A team of social scientists at CIMMYT with expertise in economics, gender and marketing works to understand the needs and preferences of farmers, consumers, and the agroindustry for new varieties. They develop retail strategies, such as targeted marketing, in-store seed assessment support and price incentives, promote the adoption of better policies in support of seed companies and seed markets.

CIMMYT explores mechanisms to help seed companies adapt their products to women’s preferences. Research shows that beyond yield potential, women seek different characteristics in seeds than men. For example, women are more inclined to favor a variety with a longer grain shelf life. Similarly, when women engage in participatory variety selections, they tend to make more objective evaluations of varieties than men.

Our experts advance strategies to promote inclusive and effective delivery systems, helping both female and male farmers obtain the seed that works best for their specific needs. This ongoing model gives CIMMYT feedback from farmers and public and private sector partners, which informs subsequent breeding research.

Why are cereal seed systems important?

CIMMYT contributes to new improved seeds getting to farmers, consumers and agroindustry, which ultimately leads to lasting positive impacts in terms of food security and economic development.

Cereals such as maize and wheat play a critical role in global food security. Increasing their productivity in the Global South remains a key developmental priority. Smallholders face increasing pressure to sustain and increase their yields in the face of three main issues: climate change, which increases the frequency of severe drought, floods, and pest and disease outbreaks; rapidly rising costs of inputs, such as land, labor, fertilizer; and unfavorable marketing conditions for their grain.

As a critical entry point for improved agricultural technology, seed systems are in urgent need of improvement and modernization. Since the onset of the Green Revolution in the 1960s, the discovery, development, and delivery of improved seed for smallholder farmers has remained an essential part of global and local initiatives to increase smallholder productivity.

What does a sustainable, inclusive, and productive seed system look like?

For the future, there are serious challenges for expanding and deepening the impact from investments in breeding. Market intelligence systems are urgently needed to support breeding teams in future product design and evidence-based prioritization. Innovation is needed in terms of how actors within the systems inform and support farmers to experiment with new seeds.

CIMMYT is working with CGIAR partners to implement a new, 10-year strategy. Effective seed systems achieve the widespread adoption of varieties that capture the gains from crop improvement and connect actors along the value chain so that all can benefit from a productive crop, from seedbank to soil. In close collaboration with national agricultural research systems (NARS), CGIAR has had historic success introducing improved cultivars to smallholder producers of staple crops, with high return on investment. However, there is still some standing criticism that large, public breeding programs take a technologically-biased and supply-pushed approach to agricultural innovation.

Cereal crop breeding programs can become more demand-oriented by employing more market segmentation strategies – breaking down target client markets into smaller, more geographically and demographically specific groups – and developing a more accessible description and profile of its products. Using similar approaches, CGIAR is likely to expand demand-oriented programs in genetic innovation and seed systems development in the new phase of operations.

Cover photo: Staff members bag maize at the Demeter Seeds warehouse. (Photo: Emma Orchardson/CIMMYT)

CRAFT tool helps Ethiopian experts predict crop yields to improve early warning decisions

Ethiopian wheat farmers will soon benefit from the CRAFT tool.
(Credit: Bioversity)

The negative impacts of climate shocks have undermined the food security of millions of people in Ethiopia, where predominantly rain-fed agriculture and cereals comprise 82% of the crop area and are particularly susceptible to extreme climate events like drought or flooding. Predictions that can account for potential climate events can facilitate efforts of governmental agencies to proactively engage in climate mitigation efforts.

Led by the International Center for Maize and Wheat Improvement (CIMMYT), the Accelerating Impact of CGIAR Climate Research for Africa (AICCRA) project conducted a five-day training workshop in Adama, Ethiopia for 12 data experts from 23-27 December 2021 on the CCAFS Regional Agricultural Forecasting Toolbox (CRAFT) Tool.

The five-day training workshop exposed select national experts involved in data collection and analysis of crop performance to the CRAFT tool, which is expected to improve accuracy, efficiency, and speed of forecasts.

The participants of the training were experts from the Ministry of Agriculture (MoA), National Meteorology Agency (NMA), and Ethiopian Disaster Risk Management Commission (EDRMC).

CRAFT has been developed in collaboration with CIMMYT, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), and the University of Florida through the Capacitating African Smallholders with Climate Advisories and Insurance Development (CASCAID-II) program. CRAFT is a flexible and adaptable software platform, relying on a crop engine to run pre-installed crop models and on the Climate Predictability Tool (CPT) to utilize seasonal climate predictions to produce crop yield forecasts. The tool has been calibrated, evaluated, and tested under Ethiopian ecological conditions.

In the opening of the training workshop, Esayas Lemma, Director of the Crop Development Directorate at the MoA, emphasized institutions must be equipped with the necessary analytical and decision support tools to enable decision makers to make critical decisions at the right time due to increasing challenges to food security. He added the training organized by CIMMYT through the AICCRA-Ethiopia project was timely and important for enhancing the capacity of the experts drawn from the three institutions and building national capacity in using modern decision support tools.

Kindie Tesfaye, senior scientist at CIMMYT, stated the training was organized to help experts in national institutions in applying decision support tools to equip decision makers with information to help them minimize costs, save lives, and enhance long-term climate risk management and policy options in Ethiopia. “We hope to bring this technology to other countries following this roll-out in Ethiopia,” Tesfaye said.

“The training is an eye-opener for me, and this is the type of tool that we have been looking for,” said Mss. Berktawit, a trainee from EDRMC.

“The CRAFT tool has several applications in the MoA, and we are lucky to have this training. With some additional training, we at the ministry should be able to use it to support our crop monitoring and early warning works,” said Mr. Zewdu, a trainee from the MoA.

A follow up training session will be organized to certify participants as they continue working with CRAFT. “Feedback from these users will be vital to optimize inputs for CRAFT and to develop an intuitive user interface,” Tesfaye said.