Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Analyzing 25 years of maize supply and demand in the Global South

Over the next 10 years, maize is due to become the most widely grown and traded crop globally and is already the cereal with the highest production volume. Its versatility offers multiple purposes – as a livestock feed in both developed and developing economies, as a key component of human diets in several low- and middle-income countries in sub-Saharan Africa, Latin America and Asia, and for an array of non-food uses worldwide.

To analyze the changes in the supply and demand for maize in the last 25 years, scientists at the International Maize and Wheat Improvement Center (CIMMYT) conducted a review of maize production, consumption, and international trade.

The study primarily focused on the Global South, where intensive work is being done to transform the agrifood systems in which maize plays a key role. Through scientific advancements over time, maize yields have increased, although heterogeneously, while the area under cultivation of maize has also expanded due to sharply growing demand.

Research determined that this transformation offers opportunities for investment in maize research and development (R&D) to determine ways that production and productivity can be significantly improved without expanding maize area or creating negative impacts on the environment.

Read the study: Global maize production, consumption and trade: trends and R&D implications

Cover photo: Maize diversity in Tlaxcala, Mexico. (Photo: Thomas Lumpkin/CIMMYT)

Agriculture for Peace platform launches at Borlaug Dialogue

Events of the past year have underscored the correlation of food supply chains, and weaknesses that need to be addressed. Tackling threats to global food security caused by COVID-19, conflict, and climate change require joint action and long-term commitments, with approaches based on partnerships, collaborative research and information sharing, and involvement from all actors within agrifood systems.

These topics and potential solutions were integral to the 2022 Norman E. Borlaug International Dialogue, hosted between October 18-20, 2022. With a theme of Feeding a Fragile World and overcoming shocks to the global food system, seminars and workshops explored scalable solutions for adaptation and mitigation to limit global warming and meet the UN Sustainable Development Goals (SDGs).

One event which proposed a solution to these challenges was Agriculture for Peace (Ag4Peace): A Call for Action, which marked the official launch of a platform aiming to support national food and agriculture strategies.

The initiative was founded by seven partners: Norman Borlaug Foundation, the International Maize and Wheat Improvement Center (CIMMYT), Cornell University College of Agriculture and Life Sciences, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Livestock Research Institute (ILRI), the International Rice Research Institute (IRRI) and Texas A&M University.

During the event, two additional collaborators were announced: World Wide Fund for Nature and Inter-American Institute for Cooperation on Agriculture (IICA).

The Ag4Peace concept

Ag4Peace is built on the understanding that without peace there is no food, and without food there is no peace. Conflicts and violence severely disrupt agricultural processes and limit access to food, which in turn forces people to take increasingly perilous actions as they attempt to secure their lives and those of their families. High food prices and hunger cause instability, migration, and civil unrest as people become more desperate.

Using a collaborative approach, partners will design holistic strategies that encompass the multi-faceted nature of agrifood systems and their interconnections with nature, nutrition, and livelihoods. This requires broad-based collaborations, so the Ag4Peace partners welcome other institutions, private sector, and non-governmental organizations that share their aspirations to join them.

Partners are co-constructing the Cross-Sector Collaboration to Advance Resilient Equitable Agrifood Systems (CC-AREAS), the first operational plan for the platform. This is a 10-year proof-of-concept program that applies a holistic, systems approach to achieve resilient agrifood systems and accelerate development of the circular bioeconomy in five low- and middle-income countries (LMICs) that are increasingly exposed to food security risks due to climate change and reliance on imported staple foods.

They will support national efforts to upgrade agrifood systems, adopt regenerative agriculture and climate-smart strategies, expand the circular bioeconomy, and achieve nutrition and food security goals.

In all aspects of the initiative (science, planning, implementation, and evaluation), participation priority will be given to small-scale farmers, women, and socially diverse groups, which will maximize positive outcomes and ensure inclusivity.

Benefits for farmers, communities, value chain participants, consumers, and ecosystems will be demonstrated throughout to encourage adoption and continued use of improved technologies and practices and demonstrate effectiveness.

Partner support for Ag4Peace

After the concept was introduced by Bram Govaerts, Director General of CIMMYT and recipient of the 2014 Norman Borlaug Award for Field Research and Application, a roundtable discussion with a diverse panel of experts began.

Speakers included Manuel Otero, Director General of the Inter-American Institute for Cooperation on Agriculture (IICA), Hon. Sharon E. Burke, Global Fellow of Environmental Change and Security Program at the Wilson Center, Per Pinstrup-Anderson, Professor and World Food Prize Laureate, and Alice Ruhweza, Africa Regional Director of the World Wildlife Fund (WWF).

Moderated by Margaret Bath, Chair of CIMMYT Board of Trustees, the panelists conveyed Ag4Peace’s aims of building productive, sustainable, and resilient agrifood systems, improving livelihoods for small-scale producers and other value chain actors, and deliver nutritious, affordable diets.

“Hunger is part of the picture of conflict,” explained Burke. “These strapped communities are often competing for resources with each other, within their own boundaries, and sometimes food is a weapon in these places, just as destructive as a bomb or a gun. Without food there is no peace, in the near or the long-term.”

Trade-offs versus win-wins

Pinstrup-Anderson ruminated on the importance of win-wins, which are solutions that work for supporting human health and protecting our natural environment without sacrificing results in one area for results in another. “We do not have to give up improving nutrition just to save the climate or save the earth – we can do both,” he said.

The significance of strong partnerships arose multiple times, such as when Otero explained, “It is not a matter of working just with the agriculture ministers but also with other ministers – foreign affairs, social development, environmental – because agriculture is a sector that crosses across all these institutions.”

Ruhweza explored whether threats to food security, such as COVID-19, conflict, and climate change, can also bring opportunities. “The right action on food systems can also accelerate the delivery of all our goals on climate and nature,” she said. “WWF is looking forward to partnering with this initiative.”

Final remarks from Julie Borlaug, President of the Norman Borlaug Foundation, where the platform will be housed, reiterated a call for more partners to join the coalition. “This is a learning lesson as we go. We will iterate over and over until we get it right, so we need all of you to be involved in that,” said Borlaug. “Join us as we move forward but let us know as we’re going sideways.”

CGIAR scientist honored with award

The winner of the annual Norman Borlaug Award for Field Research and Application award was announced at the Borlaug Dialogue, which this year went to Mahalingam Govindaraj, Senior Scientist for Crop Development at HarvestPlus and at the Alliance of Bioversity International and CIAT, a CGIAR research center.

Govindaraj received the award for his leadership in mainstreaming biofortified crops, particularly high-yielding, high-iron, and high-zinc pearl millet varieties. This work has contributed to improved nutrition for thousands of farmers and their communities in India and Africa, and estimates show that, by 2024, more than 9 million people in India will be consuming iron- and zinc-rich pearl, benefiting from improved nutrition.

Cover photo: The historical moment when Manuel Otero, Director General of IICA, joins the Agriculture for Peace initiative with Bram Govaerts, Director General of CIMMYT. (Photo: Liesbet Vannyvel/CIMMYT)

Plant health data is critical for effective policy change

Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)

With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.

The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.

Data-driven approaches

The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.

Cambria Finegold, Global Director, Digital Development, CABI said, “If you are not measuring crop loss well, then you don’t know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.”

Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.

Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.

Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)

Establishing global networks

The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.

Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYT’s Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.

With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.

Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.

To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partners’ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.

Removing the barriers for data sharing

The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.

These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.

Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.

“The OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,” said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.”

About the Global Burden of Crop Loss:

The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data. 

The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.

About the Centre for Agriculture and Bioscience International (CABI):

CABI is an international, inter-governmental, not-for-profit organization that improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.

Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.

Is food security possible without peace?

The intersection between agriculture and peace has been brought to the forefront of the news agenda this year due to the Ukraine crisis, which has caused widespread disruption to wheat supply chains – disruptions that are contributing to food insecurity for millions of people worldwide.

Agriculture was therefore a compulsory topic for the International Week of Science and Peace, and formed the main theme for an online fireside chat between Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), and the Hon. Sharon Burke on November 8.

Burke was the director of New America’s Resource Security program and a senior advisor to New America’s Future of War project in the Department of Defense. She served in the administrations of Barack Obama, George W. Bush, and Bill Clinton.

Futureproofing security and food

“[Food] is a foundational element of all security,” explained Burke, when asked about the connection between the two. “We are facing global pressures. Everything that’s made us successful has also made us vulnerable – with biodiversity loss, with climate change. The challenge of having that foundational element of food security has never been harder than it is right now.”

This is a central vision of CIMMYT as a Wallace center, which Burke referenced to highlight how conflict and food insecurity drive one another: “It’s this terrible knot where things are connected. But when we add in climate change, biodiversity loss and pollution and other elements of our modern life, it’s more important than ever to understand how these elements fit together.”

“Peace, prosperity, and equity… are more relevant than ever in the environment we are working in,” agreed Govaerts.

Govaerts then invited Burke to offer recommendations for the development of CIMMYT’s new strategy. She suggested three points to consider:

  • How is climate change going to shift what agricultural production and productivity means – 10 years from now, 20 years from now, 30 years from now?
  • In that world, how does that reflect through your research and development priorities?
  • How do you continue to have that dialogue with farmers, so that you affect them, and they affect you, and what are the ways to make sure that you deepen that and the equity that’s inherent in that conversation?

Govaerts reflected on recent examples from history where conflict destabilized the global food system, such as the Arab Spring as provoked by consecutive droughts that heavily impacted wheat crops. Burke agreed that it was essential to build peace and secure food supplies simultaneously, always having peace as the end goal before any conflict even begins, and the importance of showing the systems effect to donors to encourage future investment.

“One of the reasons that I really love what CIMMYT does, is that you’re talking about not just food security as some abstract concept but as the people and the places where it’s created,” shared Burke.

CIMMYT’s role in peacebuilding

Burke highlighted the commitment from the United States Government to invest money in food security and food assistance, not just for necessary emergency aid but also for improving food production, farming, and last mile technology.

“How can we leverage this investment that is being made now in an emergency to be one that also builds resilience for this longer-term emergency that we are all facing?” she asked, encouraging research and development organizations to always evidence the impact of their work.

In her closing words, Burke expressed high levels of admiration for our scientists. “You get to actually touch the problem and deliver the solution and work in that two-way dialogue with farmers and that you get to bring that all together – how we think about a problem, how we come up with novel science and technology for solving the problem, and then you get to actually carry it to the field and make it work.”

“You’re not just thinking about peace or researching about peace – you’re delivering it!”

Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub

The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is one of the ways in which Feed the Future, the U.S. government’s global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. It’s a two-year rapid response effort that connects farmers to innovative tools and information they need to manage the high costs and input supply disruptions over the next several cropping seasons.

AID-I provides targeted assistance to up to three million African smallholder farmers by improving soil health and fertilizer management; strengthening local seed systems; connecting farmers to financial products and services; and delivering extension and advisory services. AID-I Delivery Hubs focus on areas where the need and potential is greatest: Malawi, Tanzania, and Zambia.

The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is establishing agile, networked rural innovation hubs to enhance the adaptation of technology, co-ownership, and sustainable inputs and outputs for value chains development. The project is fostering diversification through the scaling of productive and resilient agronomic practices and seed systems for cereals, legumes, vegetables and feed/fodder products, and strengthens rural-urban linkages to enable national capacity for cross-network management.

It is being implemented in close consultation with One CGIAR programs and integrates both CGIAR and non-CGIAR innovation partners to support scaling by last-mile delivery partners.

This work contributes to six of the United Nations Sustainable Development Goals (SDGs):

  1. Zero Hunger
  2. Good Health and Well-Being for People
  3. Gender Equality
  4. Decent Work and Economic Growth
  5. Responsible Consumption and Production
  6. Climate Action.

What are the project’s primary objectives?

  • Improve soil health and fertilizer management to grow more, more profitably and with less waste.
  • Strengthen local seed systems so agribusinesses can reach smallholder farmer customers with a diversity of crop seeds, including climate-resilient and more nutritious varieties.
  • Connect to financial products and services designed to overcome the unique needs smallholder farmers and small and medium agribusinesses face; and,
  • Deliver extension and advisory services on good agricultural practices, soil and water management practices, and post-harvest storage solutions so smallholder farmers and small and medium agribusiness owners are more productive and keep more of what they grow.

Video 

Deputy Assistant Administrator, USAID Resilience Environment and Food Security Bureau, Ann Vaughan, visits an AID-I demonstration plot of drought-tolerant maize varieties in Zambia.

Reports

Buffering the effects of extreme drought in Zambia: New crops and Advisories are helping farmers

Sustainable Agrifood Systems Approach for Sudan (SASAS)

Sustainable Agrifood Systems Approach for Sudan (SASAS) takes a modular and multi-crop approach, implementing an integrated agrifood system that supports food security, employment, and equity. The project focuses on soil fertility management integrated with agrifood systems based on smallholder farmer productivity gains, leveraging both One CGIAR and non-CGIAR innovation partners to support scaling on the ground by last-mile partners.

SASAS moves beyond humanitarian response and resilience to inclusive agriculture-led economic growth and enables landless and under resourced people to participate in functional and gender-sensitive high-production value chains.

This work contributes to six of the United Nations Sustainable Development Goals (SDGs): Zero Hunger; Good Health and Well-Being for People; Gender Equality; Decent Work and Economic Growth; Responsible Consumption and Production; and Climate Action.

SASAS Feature Film 

Technical Overview: Interventions and Food Security Initiative

Abdelrahman Kheir, chief of party for SASAS, highlights the project’s rapid deployment of agricultural technologies across Sudan.

Imtithal Ali Atta Allah from the El-Harram Cooperative

Ali Atta Allah, a farmer, talks about her recent financial gains from selling vegetables cultivated with SASAS-provided seeds.

Aziza Haroun from the El-Harram Cooperative

Aziza Haroun shares her story working with Mercy Corps and SASAS who have provided her with improved seed, doubling her crop yields compared to previous years.

‘Perennial’ rice saves time and money, but comes with risks

The largest real-world test of grains that grow year after year without replanting is showing promise for saving money, helping the environment, and reducing labor in China.

Initial trials with perennial rice as part of the Sustainable Agrifood Systems (SAS) program by the International Maize and Wheat Improvement Center (CIMMYT) suggest the crop could be a game changer for agriculture and food security.

The next phase of the research will determine whether farmers wish to adopt Perennial Rice 23 (PR23), which has been developed by breeding an Asian variety of rice with a wild, perennial relative from Nigeria.

Read the original article: ‘Perennial’ rice saves time and money, but comes with risks

Tackling wheat price rises instigated by conflict

The conflict between Russia and Ukraine undoubtedly impacts food security, as these two countries are responsible for more than a quarter of wheat traded globally. Developing countries that rely heavily on wheat imports are most at risk from this supply disruption.

Set against an existing backdrop of food insecurity and increasing poverty, the conflict exacerbates present challenges. The United Nations Food and Agriculture Organization (FAO) predicts that a further 11 to 19 million people will be experiencing chronic hunger by 2023, on top of the existing 193 million people facing food insecurity, and at least 47 countries are expected to fall short of the Zero Hunger target, one of the UN Sustainable Development Goals (SDGs).

In a study at the International Maize and Wheat Improvement Center (CIMMYT), scientists theorized that the domestic price of wheat is determined by the international price. Their hypothesis also supposed that wheat production is constant and that no significant change in wheat consumption habits is expected in the foreseeable future.

Schematic diagram on the relationship between export-import price, producer price, and wheat consumption.

Scientists discovered that a 1 percent decrease in the global wheat trade could increase the producers’ price by 1.1 percent in the countries sampled. Furthermore, a 1 percent increase in the producers’ price could reduce annual per capita wheat consumption by 0.59 percent, daily calorie intake by 0.54 percent and protein intake by 0.64 percent. A 50% reduction in Russian and Ukrainian wheat exports could increase prices by 15 percent, leading to an 8% reduction in wheat consumption and dietary energy intake.

Rising costs of staple foods such as wheat can lead to violence and social unrest, as witnessed in 2007-11. It is therefore vital to ensure that import-dependent, resource-poor countries are supported to address their precarious food security. Steady public funding, investment in research, and enhanced production in wheat-growing nations can play an integral role in achieving a solution. In the long-term, closing the yield gap through research and investment, particularly in Africa, will lead towards self-sufficiency in wheat in Africa, contributing towards overall food security across the continent.

Read the study: Potential impacts of Ukraine-Russia armed conflict on global wheat food security: A quantitative exploration

This study was financially supported by the CGIAR Initiative on Foresight and Metrics for the Transformation of Food, Land and Water Systems (FMI). We would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund.

Cover photo: Scientists from CIMMYT’s Sustainable Agrifood Systems (SAS) program in wheat fields, Ethiopia. (Photo: Rabe Yahaya/CIMMYT)

Achieving sufficiency and sustainability in maize production

The International Maize and Wheat Improvement Center (CIMMYT) Director General, Bram Govaerts, participated in a panel discussion on applied maize science to sustainably feed the world as part of the International Maize Congress on October 19-20, 2022 in Argentina. 

The congress was organized by the governments of Córdoba and of the Central Region provinces of Argentina, together with the Argentine Maize and Sorghum Association (MAIZAR) and the Córdoba Grain Exchange. 

Other panelists for the session included representatives from Argentina’s National Agricultural Technology Institute (INTA), the National Scientific and Technical Research Council (CONICET), and the National University of Mar del Plata. 

In his presentation, Govaerts highlighted CIMMYT’s scientific efforts to improve the resilience of grain-based systems and produce sufficient, nutritious, and sustainable diets. He also shared CIMMYT’s determination to adopt a collaborative and future-proof approach to research, factoring in climate change to support effective decision-making processes for food producers and to meet demand for innovations and technologies. 

New CIMMYT maize hybrids available from Latin America Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce four new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecological zones. Public- and private-sector organizations are hereby invited to apply for licenses to pursue national release and /or scale-up seed production and deliver these maize hybrids to farming communities.

Product Code Target agroecology Key traits
CIM20LAPP1A-11 Latin-American lowland tropics and similar agroecologies. Intermediate maturing, white, high yielding, drought tolerant, and resistant to TSC, MLB, and ear rots
CIM20LAPP1A-12
CIM20LAPP1C-9 Intermediate maturing, yellow, high yielding, drought tolerant, and resistant to MLB and ear rots
CIM20LAPP1C-10

 

Performance data Download the CIMMYT Latin America Stage 4 and Stage 5 Trials: Results of the 2020 and 2021 Trials and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 25 November 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids, CIM20LAPP1C-9, CIM20LAPP1C-10, CIM20LAPP1A-11 and CIM20LAPP1A-12, were identified through rigorous trialing and a stage-gate advancement process which culminated in the 2020 and 2021 CIMMYT Latin America Stage 4 and Stage 5 Trials. The products were found to meet the stringent performance criteria for CIMMYT’s LA-PP1A and LA-PP1C breeding pipelines. While there is variation between different products coming from the same pipeline, the LA-PP1A and LA-PP1C pipelines are designed around the target product profiles described below:

Product Profile Basic traits Nice-to-have / Emerging traits Target agroecologies
LatAM-PP1A

(Tropical Lowland White)

Intermediate maturing, white, high yielding, drought tolerant, and resistant to TSC, MLB, and ear rots GLS, Fusarium Stalk Rot Latin-American lowland tropics and similar agroecologies.
LatAM-PP1C

(Tropical Lowland Yellow)

Intermediate maturing, yellow, high yielding, drought tolerant, and resistant to MLB and ear rots GLS, Fusarium Stalk Rot Latin-American lowland tropics and similar agroecologies.
MLB: Maydis leaf blight; TSC: Tar spot complex; GLS: Grey leaf spot

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Increasing yield gain in Afghanistan

Faced with climate change and having to keep pace in the race to feed the world’s growing population, farmers of staple crops like wheat are under pressure to constantly increase yield per hectare.

Increasing yield gains is especially important in Afghanistan, where per capita consumption of wheat is nearly three times more than the global average and wheat accounts for up to 60% of daily caloric intake of the average Afghan citizen.

The International Maize and Wheat Improvement Center (CIMMYT) develops and distributes improved seed targeted toward diverse wheat growing regions in the developing world, including Afghanistan, a net importer of wheat. A study by CIMMYT scientists, published in Crop Science, measured yield gain and improvement in a variety of traits of CIMMYT developed varieties compared against local wheat, over a 14-year period. The results showed the CIMMYT varieties confer yield gains, contributing to an increase in Afghanistan’s wheat productivity.

In terms of yield, the CIMMYT varieties showed an increase of 123 kilograms per hectare (kg/ha) over the time interval studied, compared to 107 kg/ha for local varieties.

“This study shows continual increases in yield from CIMMYT varieties across Afghanistan,” said lead author Rajiv Sharma. “This shows the potential of genetically improved germplasm to increase yields, strengthen resistance to diseases and improve other important traits.”

Researchers also examined specific traits, like days to heading and overall plant height. Days to heading refers to the number of days from planting to when the plant is ready to be harvested and overall plant height is the highest measurement a plant reaches. This is important because if a wheat plant grows too high, it will lodge (fall over) under its own weight, rendering it non-harvestable.

Across the CIMMYT varieties there was a 1.8 day per year reduction in days to heading. This is a positive sign for Afghan wheat production as research has shown that crop durations will be reduced because of climate-associated stresses. Shorter crop duration also reduces the cost of crop production, since shorter crop duration reduces the requirements for water, labor, fertilizer, and other resources.

In terms of plant height, the CIMMTY varieties showed a gain of 0.77 cm per year. Although a negative correlation between plant height and grain yield has been reported in other studies, this is not the case in Afghanistan. Increased plant height is often an indicator of higher biomass (the amount of aboveground volume including leaves and stems which might fall to the ground) which drives higher yield, provided the plant does not lodge. Higher biomass is also required in many developing countries, including Afghanistan, to produce straw that is used dry fodder feed for livestock. This appears to result from selections to increase overall production, mitigate negative impacts and fulfil the changing preference of farmers.

“This kind of evaluation is important in determining the efficacy of CIMMYT’s efforts to provide  improved wheat varieties tailored to diverse production environments around the world,” said Alison Bentley, co-author of the study and director of CIMMYT’s Global Wheat Program. “It also makes a strong case for continued investment in plant breeding and for the collaboration between Afghanistan and CIMMYT.”

Read the study: Plant breeding increases spring wheat yield potential in Afghanistan

Cover photo: Farmers working in a field in the Shibar Valley in Bamian province, Afghanistan. (Adam Ferguson/The New York Times)

Leading Norwich plant scientists call for action to mitigate food crisis

Guidance from an interdisciplinary group of experts lists crucial actions for governments and investors to move towards long-term resilience in agrifood systems as part of a World Food Day campaign.

Plant health scientists from The Sainsbury Laboratory, the John Innes Institute at Norwich Research Park, and the International Maize and Wheat Improvement Center (CIMMYT) have collaborated on guidance divided into short-, medium- and long-term priorities, designed to mitigate impending food crises and stabilize wheat supply chains.

In the short-term, wheat production must be increased and wheat flour can be blended with other low-cost cereals. Increasing the local, regional and global resilience of wheat supply is the medium-term solution, while long-term proposals center on ensuring diversity in agro-ecosystems.

Read the original article: Leading Norwich plant scientists call for action to mitigate food crisis

CIMMYT and China: A successful partnership since 1974

The International Maize and Wheat Improvement Center (CIMMYT) is a non-profit international organization focused on applied agricultural research and training. It empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Established in 1974, the research partnership between the People’s Republic of China and CIMMYT is improving the lives of millions of people in China through science-driven, evidence-based solutions. CIMMYT has five offices and over 20 collaborators throughout China.

The CIMMYT–China collaboration over four decades has added some 10.7 million additional tons of wheat to China’s national wheat output. Since 2000, CIMMYT germplasm has been planted on more than one million hectares across the country.

We look forward to many more years of collaboration to improve the lives of millions of people in China and the world.

Cover photo: An agricultural landscape in Yunnan Province, China. (Photo: Michelle DeFreese/CIMMYT)

Planting Better Seeds a Key for Mexico’s Food Security

In an article for Mexico Business News, Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), provides context for the organization’s seed systems strategy in relation to current challenges in agriculture.

Despite producing roughly 27 million tons of white maize used each year, Mexico imports approximately 18 million tons of yellow maize for fodder and raw material. To reduce reliance on imports, productivity of staple crops needs to be increased, during a time when climate change, conflict, COVID-19 and cost of living are all causing additional pressures.

Developing seeds with high yields and resilience to the impacts of climate change is required to close yield gaps in a sustainable way. However, the needs of smallholders differ from those of commercial farming, so inclusivity in seed systems is essential.

Read the original article: Planting Better Seeds a Key for Mexico’s Food Security

CIMMYT delivers seed to Svalbard Global Seed Vault

The Ambassador of Mexico to Norway, Ulises Canchola Gutiérrez, delivers a box of CIMMYT maize and wheat varieties to the Svalbard Global Seed Vault. (Photo: Petra Pajdakovic/Crop Trust)

The Ambassador of Mexico to Norway, Ulises Canchola Gutiérrez, delivered a deposit from the International Maize and Wheat Improvement Center (CIMMYT) to the Svalbard Global Seed Vault on October 12.

CIMMYT was the ninth depositor in the Seed Vault in 2022, with a contribution of 263 accessions of maize and 3,548 accession of wheat.

“Professionally, I am pleased to carry out this activity that contributes to the conservation of genetic resources and guarantees food security of two of the major crops that feed the world,” said Rocio Quiroz, assistant research associate at CIMMYT. “When we prepare a shipment as a team, it is extraordinary because we contribute to the perpetuity of each accession deposited in the vault. Very few people have the privilege of doing so.”

Maize and wheat seeds begin their journey to the Seed Vault from CIMMYT Headquarters in Texcoco, near Mexico City, on September 22. (Photo: Francisco Alarcón/CIMMYT)

What is the Seed Vault?

The Seed Vault is a genebank collection that holds duplicates of seeds from more than 1,700 genebanks around the world, playing the role of a backup collection. By protecting these varieties from catastrophic loss, the Seed Vault contributes towards food security for future generations.

Owned by Norway and managed in partnership between the Norwegian Ministry of Agriculture and Food, NordGen, and the Crop Trust, the Seed Vault currently holds 1,165,041 seed varieties, with capacity for millions more.

In 2020, CIMMYT was the largest contributor, providing 173,779 maize and wheat accessions from 131 countries.

Colleagues from CIMMYT’s germplasm bank prepare a delivery of 263 accessions of maize and 3,548 accession of wheat. (Photo: Francisco Alarcón/CIMMYT)

How is germplasm stored at CIMMYT?

CIMMYT’s own germplasm bank contains approximately 150,000 unique collections of wheat seed and its ancestors and is the largest unified collection in the world for a single crop.

For maize, the germplasm bank contains more than 28,000 samples, including the world’s largest collection of maize landraces, representing nearly 90% of maize diversity in the Americas.

Carolina Sansaloni, manager of the wheat genebank at CIMMYT, said, “I am proud of all CIMMYT germplasm bank staff that made a great effort to send an additional 3,800 accessions to the Svalbard as safety duplications. This contribution is for the food security of humanity.”