Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Plowing through poverty

CIMMYT E-News, vol 6 no. 4, June 2009

As part of the global work to test and disseminate conservation agriculture, CIMMYT and partners have introduced and promoted new agricultural machinery in Bangladesh, helping farmers to improve their crop yields, food security, and livelihoods.

Continue reading

Resistant wheats and Ethiopian farmers battle deadly fungus

When a devastating stripe rust epidemic hit Ethiopia last year, newly-released wheat varieties derived from international partnerships proved resistant to the disease, and are now being multiplied for seed.

Wheat farmers and breeders are embroiled in a constant arms race against the rust diseases, as new rust races evolve to conquer previously resistant varieties. Ethiopia’s wheat crop became the latest casualty when a severe stripe rust epidemic struck in 2010. “The dominant wheat varieties were hit by this disease, and in some of the cases where fungicide application was not done there was extremely high yield loss,” says Firdissa Eticha, national wheat research program coordinator with the Ethiopian Institute of Agricultural Research (EIAR). “This is a threat for the future because there is climate change—which has already been experienced in Ethiopia—and the varieties which we have at hand were totally hit by this stripe rust.”

Ethiopia is not alone; stripe rust has become a serious problem across Africa, the Middle East, and Asia, with epidemics in 2009 and 2010 which many countries have struggled to control. What’s new is the evolution of stripe rust races that are able to overcome Yr27, a major rust resistance gene that many important wheat varieties rely on. Although recent weather conditions have allowed the new rust races to thrive, they first began to emerge more than a decade ago, and CIMMYT’s wheat program, always looking forward to the next threat, began selection for resistance to Yr27-virulent races in 1998.

“CIMMYT has a number of wheat lines that have shown good-to-excellent resistance to stripe rust without relying on Yr27, in screening in Mexico, Ecuador, and Kenya,” says Ravi Singh, CIMMYT distinguished scientist and rust expert who leads the breeding effort in Mexico. Many of these are also resistant to the stem rust race Ug99 and have 10-15% higher yields than currently-grown varieties, according to Singh. The current step is to work with national programs to identify and promote the most useful of the resistant materials for their environments—a process that was underway in Ethiopia when the epidemic struck.

Eticha is leading his country’s fight against stripe rust. Reflecting on the disease, he says: “For me it is as important as stem rust. I find it like a wildfire when there is a susceptible variety. You see very beautiful fields actually, yellow like a canola field in flower. But for farmers it is a very sad sight. Stripe rust can cause up to 100% yield loss.” There is no official figure yet on the overall loss to Ethiopia’s wheat harvest for 2010, but it is expected to be more than 20%.

Stripe rust symptoms in the field in Ethiopia. | Photo: Firdissa Eticha

The other common name for stripe rust is yellow rust. Severely-infected plants look bright yellow, due to a photosynthesis-blocking coating of spores of the fungus Puccinia striiformis, which causes the disease. These spores are yellow to orange-yellow in color, and form pustules. These usually appear as narrow stripes along the leaves, and can cover the leaves in susceptible varieties, as well as affecting the leaf sheaths and the spikes. The disease lowers both yield and grain quality, causing stunted and weakened plants, fewer spikes, fewer grains per spike, and shriveled grains with reduced weight.

Epidemic flourishes with damp weather

Normally, Ethiopia has two distinct rainy seasons, one short and one main, allowing for two wheat cropping cycles per year. However, 2010 saw persistent gentle rains throughout the year, with prolonged dews and cool temperatures—perfect weather for stripe rust. Most wheat varieties planted in Ethiopia were susceptible, including the two most popular, Kubsa and Galema, so damage was severe. Under normal conditions, the disease only attacks high-altitude wheat in Ethiopia, but last year it was rampant even at low altitudes. This could reflect the appearance of a new race that is less temperature sensitive, or simply the unusual weather conditions; Ethiopian researchers are currently waiting for the results of a rust race analysis.

There was little Ethiopia could do to prevent the epidemic; imported fungicides controlled the disease where they were applied on time, but supplies were limited and expensive. Newly-released, resistant varieties provide a way out of danger. In particular, two CIMMYT lines released in Ethiopia in 2010 proved resistant to stripe rust in their target environments: Picaflor#1, which was released in Ethiopia as Kakaba, and Danphe#1, released as Danda’a. Picaflor#1 is targeted to environments where Kubsa is grown, and so has the potential to replace it, and Danphe#1 could similarly replace Galema. Both varieties are also high-yielding and resistant to Ug99.

CIMMYT scientists Hans-Joachim Braun (left) and Bekele Abeyo visit the fields of the Kulumsa Research Station where CIMMYT materials resistant to stripe rust are being multiplied for seed supply to Ethiopian farmers.

Seed multiplication of resistant CIMMYT varieties

As soon as the situation became clear, EIAR and the Ethiopian Seed Enterprise (the state-owned organization responsible for multiplication and distribution of improved seed of all major crops in Ethiopia) worked together to speed the multiplication of seed of these varieties, using irrigation during the dry seasons. This is happening now, with almost 500 hectares under multiplication over the winter—421 of Picaflor#1 and 70 of Danphe#1. Financial support from this project came from the USAID Famine Fund. Two resistant lines from the International Center for Agricultural Research in the Dry Areas (ICARDA) were released in Ethiopia in 2011, and will add to the diversity for resistance.

Eticha does not foresee any difficulty encouraging farmers to adopt the new varieties. In 2010 they were grown by 900 farmers on small on-farm demonstration plots, as part of EIAR’s routine annual program, so they have been seen—free of stripe rust—by thousands of farmers, and there will be more demonstration plots as more seed becomes available. However, “farmers are at risk still even if the varieties are there,” he says, “the problem is seed supply.” Some seed will reach farmers this year, but the priority will be ongoing multiplication to build up availability as fast as possible.

Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program, visited Ethiopia in 2010. “The epidemic was a real wake-up call,” he says. “Researchers have known for more than ten years that the varieties grown are susceptible. Farmers are not aware of the danger, so it is the responsibility of researchers and seed producers, if we know a variety is susceptible, to replace it with something better.”

Exploring rust solutions in Syria

The ongoing fight against the wheat rust diseases is an international, collaborative effort involving many partners in national programs and international organizations. CIMMYT works closely with ICARDA, which leads efforts against the wheat rust diseases in Central and West Asia and North Africa. At the International Wheat Stripe Rust Symposium, organized by ICARDA in Aleppo, Syria, during 18-20 April 2011, global experts developed strategies to prevent future rust outbreaks and to ensure the control and reduction of rust diseases in the long term.

Other participating organizations included CIMMYT, the Borlaug Global Rust Initiative (BGRI), the Food and Agricultural Organization (FAO) of the UN, the International Development Research Center (IDRC, Canada), and the International Fund for Agricultural Development (IFAD). More than 100 scientists from 31 countries presented work and shared ideas on wheat rust surveillance and monitoring, development and promotion of rust-resistant wheat varieties, and crop diversity strategies to slow the progress of rust outbreaks.

CIMMYT was represented by Hans-Joachim Braun and Ravi Singh. “Wheat crops and stripe rust like exactly the same conditions,” says Braun, “and they both love nitrogen. This means that where a farmer has a high yield potential, stripe rust takes it away, if the wheat variety is susceptible. In addition to the really devastating epidemics, the disease is very important because even in bumper years, farmers who grow susceptible varieties still can’t get a good yield.”

One thing all the attendees agreed on was the immediacy of the rust threat. New variants of both stem rust (also known as black rust) and stripe rust (or yellow rust), able to overcome the resistance of popular wheat varieties, are thriving under the more variable conditions caused by climate change, increasing their chances of spreading rapidly. Breeders in turn are quickly developing the varieties farmers need, with durable resistance to stem and stripe rust, as well as improved yield performance, drought tolerance, and regional suitability.

Other major areas of focus are the development of systems for monitoring and surveillance of rust to enable rapid response to initial outbreaks, and overcoming bottlenecks in getting resistant seed quickly to farmers. There is much to be done, but Singh is confident: “If donors, including national programs and the private sector, are willing to invest in wheat research and seed production, we can achieve significant results in a short time.”

“Ethiopian scientists responded quickly to the epidemic”, says Braun, “but there were heavy losses in 2010. What we need is better communications between scientists, seed producers, and decision makers to ensure the quick replacement of varieties.”

Building on a strong partnership

The value of the collaboration between CIMMYT and Ethiopia is already immeasurable for both partners. CIMMYT materials are routinely screened for rust at Meraro station, an Ethiopian hotspot, in increasing numbers as rust diseases have returned to the spotlight in recent years. CIMMYT lines are also a crucial input for Ethiopia’s national program.

“The contribution of CIMMYT is immense for us,” says Eticha. “CIMMYT provides us with a wide range of germplasm that is almost finished technology—one can say ready materials, that can be evaluated and released as varieties that can be used by farming communities.” Ethiopia has favorable agro-environments for wheat production, and the bread wheat area is expanding because of its high yields compared to indigenous tetraploid wheats. “Wheat is the third most important cereal crop in Ethiopia,” explains Eticha, “and it is really very important in transforming Ethiopia’s economy.”

Bekele Abeyo, CIMMYT senior scientist and wheat breeder based in Ethiopia, works closely with the national program. CIMMYT helps in many ways, he explains, for example with training and capacity building, as well as donation of materials, including computers, vehicles, and even chemicals for research. “In addition, we assign scientists to work closely with the national program, and facilitate germplasm exchange, providing high-yielding, disease resistant, widely-adapted varieties.” Speaking of the stripe rust epidemic, he says, “last year, the Ethiopian government spent more than USD 3.2 million just to buy fungicides, so imagine, the use of resistant varieties can save a lot of money. Most farmers are not able to buy these expensive fungicides. During the epidemic, fungicides were selling for three to four times their normal price, so you can see the value of resistant varieties.”

“I think East Africa is colonized by rust. Unless national programs work hard to overcome and contain disease pressure, wheat production is under great threat,” says Abeyo. “It is very important that we continue to strengthen the national programs to overcome the rust problem in the region.” With Yr27-virulent stripe rust races now widespread throughout the world, Ethiopia’s story has echoes in many CIMMYT partner countries. The challenge is to work quickly together to identify and replace susceptible varieties with the new, productive, resistant materials.

For more information: Bekele Abeyo, senior scientist and wheat breeder (b.abeyo@cgiar.org)

Bangladesh and CIMMYT: decades of partnership, commitment, and achievement

CIMMYT E-News, vol 5 no. 8, August 2008

01aWork by CIMMYT with researchers, extension workers, policymakers, and farmers in Bangladesh for nearly four decades has helped establish wheat and maize among the country’s major cereal crops, made farming systems more productive and sustainable, improved food security and livelihoods, and won ringing praise from national decision makers in agriculture, according to a recent report published by CIMMYT.

“CIMMYT is one of the leading centers of the CGIAR 
working in Bangladesh since the early 70s
initiating multi-dimensional work for varietal improvement, improved crop management, conservation of natural resources, and human resource development,” says Dr. Md. Nur-E-Elahi, Director General, Bangladesh Rice Research Institute, citing the center’s contributions to the development of high-yielding maize and wheat varieties, wheat-rice and maize-rice systems, whole-family training, small-scale farm mechanization for conservation agriculture, and triticale (a wheat-rye hybrid) for fodder. “CIMMYT’s contributions to agricultural research and development in Bangladesh are highly recognized.”

aug06
Building capacity among scientists and farm families

More than 140 Bangladeshi wheat and maize scientists and extensionists have taken part in courses at CIMMYT-Mexico or come as visiting scientists in crop breeding, agronomy, pathology, cereal technology, experiment station management, seed production, economics, heat stress, and resource conserving practices. Dozens of scientists from Bangladesh have also attended conferences or international workshops organized by the center and partners. Finally, joint efforts in crop, soil, and water management research over the last 20 years have added to expertise in Bangladesh.More often than not, women and children contribute substantively to farm activities, so CIMMYT and the Wheat Research Centre (WRC) developed and refined a whole-family-training approach that has boosted adoption of improved cropping practices. “We’ve reached over 27,000 women and men farmers on maize and wheat production, and around 700 small-scale dairy farmers,” says Anton Prokash Adhikari, CIMMYT-Bangladesh Administrator. Follow-up studies in 1996 among a randomly-selected subset of families who attended training sessions showed a 90-100% adoption of improved practices. After training, maize farmers adopted a range of improved production practices, planting the crop on more land and raising grain yields by 0.8 tons per hectare. “This type of training has raised the quality of farming in Bangladesh,” says Adhikari.

With an average of over 1,000 inhabitants per square kilometer, Bangladesh is among the world’s most densely-populated countries, and nearly two-thirds of its people work in agriculture. The country furnishes a case study for the future of farming in developing countries: as a result of intensive cropping rotations, every square centimeter of arable land is used 1.8 times a year, and resources are stretched beyond what is normally considered “sustainable.” A recent report on CIMMYT efforts in Bangladesh gives an interesting account of how, through broad partnerships and sustained research for farmers, an international agricultural center can help improve farmers and consumers’ lives.

Joint work brings food and windfalls

“The last quarter century of work by a small team of dedicated CIMMYT staff and their colleagues in Bangladesh national programs has brought improvements in local and national income, food security, human nutrition, and well-being,” says agronomist Stephen Waddington, who worked for CIMMYT in Bangladesh during 2005-2007. “This is easily seen by any visitor to Bangladesh, where nowadays many otherwise poor people regularly have wheat chapattis for their breakfast, a glass of milk from triticale fodder-fed cows for their lunch, and maize-fed chicken, eggs, or fish for their dinner.”

Bangladesh emerged on the map of significant wheat-growing countries in the 1980s, according to Waddington. “Wheat became the second major cereal after rice, contributing to food security and human nutrition, and improving the livelihoods of resource-poor farmers and urban consumers,” he says. “Nineteen of the twenty-four wheat varieties released in Bangladesh carry CIMMYT lines in their backgrounds.” Much crop management and soil research for wheat was conducted in joint Bangladesh Wheat Research Center (WRC)-CIMMYT programs.

With climate change, enter maize and alternative crops

After playing a crucial role in Bangladesh agriculture, wheat production has declined in recent years, due chiefly to higher temperatures that hamper grain filling and incubate wheat diseases. But maize has become increasingly popular, partly in response to rising demand from the poultry sector for feed. “Last year farmers produced 1.3 million tons of maize, and output and interest are growing ,” says Enamul Haque, Senior Program Officer for CIMMYT-Bangladesh. “Maize fits well in Bangladesh’s climate, soils, and intensive farming systems.”

Again, CIMMYT has helped in a big way, providing improved maize lines adapted to local conditions, offering expertise in hybrid-based maize breeding and crop management research, helping to promote dialogue on enabling policies that foster productivity and effective markets. “Six out of the seven maize hybrids released by the Bangladesh Agricultural Research Institute, in recent years contain CIMMYT maize lines, and there is significant use of CIMMYT maize by emerging private breeding companies,” says Haque.

Finally, in recent years, triticale has become a source of high-quality green fodder for small-scale dairy producers during the cool, dry, winter season. “Dual-purpose fodder and grain triticale can produce 7 to 12 tons per hectare of fresh fodder, and as much as 2 tons per hectare of grain for poultry feed or for chapattis,” says Haque. All triticale varieties sown in Bangladesh come from CIMMYT.

Mechanization and resource-conserving practices

Within the last decade or so, agriculture in Bangladesh has become highly-mechanized: 8 of 10 farmers use two-wheel tractors, which are more apt for their small and scattered land holdings than the four-wheel variety. Since 1995, Haque has worked with the WRC and local organizations to promote a varied set of implements for reduced, more efficient tillage and seeding. One key aim has been to enable farmers to sow wheat or other crops directly after rice harvest in a single day—instead of after two weeks of back-breaking, fuel-hungry plowing—thus saving money and allowing the new crop to mature before the pre-monsoon heat shrivels the grain.

 Craig Meisner (left), a CIMMYT wheat agronomist during 1990-2005, contributed significantly to CIMMYT's presence, partnerships, and achievements in Bangladesh.
Craig Meisner (left), a CIMMYT wheat agronomist during 1990-2005, contributed significantly to CIMMYT’s presence, partnerships, and achievements in Bangladesh.

“To date thousands of farmers have adopted a small, two-wheel tractor-driven implement that tills, seeds, and covers the seed in a single pass,” says Haque. “This reduces turn-around between crops by 50%, cuts costs 15-20%, saves 30% in irrigation water and 25% in seed, and improves fertilizer efficiency—all this, as well as increasing yields by 20%, for wheat.” Owners of the single-pass seeding implement often hire out their services, earning USD 1,000-2,000 a year and each helping 20-100 other farmers to obtain the above-mentioned benefits. In addition, the reduced tillage implement and practices help address labor shortages that constrain farm operations at peak times, and are opening lucrative opportunities for machinery manufacturing and repair businesses.

For the future, CIMMYT staff are testing and promoting with researchers and farmers the use of permanent, raised beds and straw retention systems that can increase yields as much as 50% in intensive, wheat-maize-rice cropping sequences. Future activities of CIMMYT-Bangladesh will also focus on strengthening wheat and maize breeding programs, system-based research and resource-conserving practices, and the use of maize as food, fodder, and feed. “We’d also like to do more capacity building, study soil health and nutrition, and better disseminate useful technologies to farmers and extension agents,” Haque says, “but much depends on the resources available.”

Extensive partnerships key to past and future success

“CIMMYT has worked with national programs, NGOs, the private sector, farmers, donors, and policy planners,” says Md. Harun-ur-Rashid, Executive Chairman, Bangladesh Agricultural Research Council, and Director General, Bangladesh Agricultural Research Institute. “These joint programs have accumulated an impressive array of achievements and benefits.”

In addition to the key partners cited above, CIMMYT has worked with agricultural universities in Bangladesh, the Department of Agricultural Extension, the Bangladesh Livestock Research Institute, the Soil Resource Development Institute, the Bangladesh Rural Advancement Committee (BRAC), the Bangladesh Chashi Kollan Samity, the Bangladesh Institute of Nuclear Agriculture, Deoel Agro Industries Complex Ltd., and the Mahbub Engineering Workshop at Jamalpur. IRRI; ILRI; ICRISAT; IFDC; FAO; Murdoch University, ACIAR, and CSIRO, in Australia; Cornell University, Texas A&M University, Winrock International, and the Helen Keller Foundation, USDA, in the USA.

For more information: Enamul Haque, Senior Program Manager, CIMMYT-Bangladesh (e.haque@cgiar.org)

Latin American ministers visit CIMMYT and develop food price crisis strategy

CIMMYT E-News, vol 5 no. 5, May 2008

may05Skyrocketing food prices recently brought Latin American agriculture ministers from 14 countries and development experts to CIMMYT to seek a way forward for a region characterized by serious rural poverty.

On 26 May 2008, ministers of agriculture and government officials from Belize, Bolivia, Costa Rica, Cuba, the Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, and Venezuela, as well as representatives of international organizations working in agricultural development and the Mexican media—more than 70 persons in all—visited CIMMYT’s headquarters in Mexico to learn about the center’s work and discuss collaborative strategies for addressing the food price crisis. The visit was part of a two-day summit organized by Mexico’s agriculture (SAGARPA) and foreign relations (SRE) ministries, following up on recommendations from a regional summit on the same topic in Nicaragua earlier this month.

Speaking on behalf of the Alliance of Centers of the Consultative Group on International Agricultural Research (CGIAR) in his welcoming talk, CIMMYT Director General Tom Lumpkin emphasized the need to move from the present emergency to a permanent vision for addressing the crisis. “It appears that two decades of complacency about basic food production has finally given way to a sense of urgency,” Lumpkin said. “We must now transform that urgency into a long-term vision, making sensible investments in agricultural research and extension to provide food for our children and our grandchildren.”

Have policy makers forgotten small-scale farmers?

The rising cost of food is being felt around the world, especially by poor people in rural zones. Though often not on the radar screens of policymakers, the rural poor are numerous. A recent paper from the International Food Policy Research Institute (IFPRI) says there are more than 400 million small farms in developing countries, and that these are home to most of the world’s hungry and disadvantaged. In Latin America and the Caribbean, nearly 64% of the rural population lives below the poverty line, according to a report by the International Fund for Agricultural Development (IFAD). Over the last two decades, the number of poor people in rural areas in the region has increased in both absolute and relative terms, the report says.

SAGARPA and CIMMYT undertake new, joint projects

As the meetings closed, Lumpkin urged “
the governments of Mexico and other countries in the region to re-examine their relationship with CIMMYT and bring new backing for research to increase food production and farm productivity.” In the week following the visit and at the invitation of Mexico’s Secretary of Agriculture, Alberto CĂĄrdenas JimĂ©nez, the center has submitted proposals for joint SAGARPA-CIMMYT work to develop, test, and disseminate drought tolerant maize varieties, as well as management practices that reduce small-scale farmers’ losses of stored maize grain to insect pests.

For more information: Rodomiro Ortiz, Director, Resource Mobilization (r.ortiz@cgiar.org)

may06

CIMMYT and Syngenta: working together for global food security

The Director of CIMMYT’s Global Wheat Program, Hans Braun, visited Syngenta in Basel, Switzerland, on 10 October 2011, to present CIMMYT’s current work towards achieving global food security. CIMMYT and Syngenta began collaborating in April 2010, and have been working together to develop multiple projects focused on Ug99 and wheat research activities.

During the presentation, Braun highlighted the need for increased investment in agriculture to address threats to food security, such as emerging diseases. He also stressed the need to further develop and utilize genetic diversity to feed the growing global population. Braun referred to Ug99 as the ‘Bird Flu’ of wheat, in reference to its devastating impact on wheat crops, and its high virulence. He urged the scientific community to focus on the development of durable resistance in wheat, stating that 50% of CIMMYT’s wheat research is focused on maintaining disease resistance alone.

When asked about the nature of public-private partnerships and CIMMYT’s interaction with Syngenta, Braun said: “Why is CIMMYT here? We don’t want to help Syngenta to increase its production in Germany, but we want to look into how we can work together to use some of the technologies for our clients, which are the poor farmers in developing countries. CIMMYT has some contributions which Syngenta can use so it’s really a win-win situation.”

CIMMYT and Syngenta will be expanding their areas of collaboration by developing new projects on rust control, hybrid wheat, heat tolerance and crop enhancement.

INIFAP visit

As part of a Mexican government initiative to enhance the quality and service of its research organizations, on 20 September 2011 a team of specialists from the National Institute of Forestry, Agriculture, and Livestock Research (INIFAP) spent the day at El BatĂĄn interacting with CIMMYT staff on respective organizational cultures and values, missions and visions, research and business plans, and professional development.

Launching the visit with an overview of INIFAP, forestry support director Juan Bautista Rentería Anima described a rich and challenging research agenda keyed to Mexico’s diverse native crops and cropping environments. “In recent years the emphasis has again shifted to extension,” said Rentería, “trying to reach farmers with our products.”

Prefacing an introduction to CIMMYT, corporate communications head Mike Listman remarked on the strong parallels in scientific and institutional challenges facing both organizations. “I guess it shouldn’t come as a surprise, but we’re talking the same language on these issues” he said. The origins and evolution of CIMMYT are linked to INIFAP history, the director of the institute, Dr. Pedro Brajcich Gallegos, served as a CIMMYT wheat breeder, and both Brajcich and Salvador Fernández-Rivera, INIFAP Coordinator for Research, Innovation, and Partnerships, currently serve as CIMMYT Trustees.

Karen GarcĂ­a, executive director of the Sustainable Modernization of Traditional Agriculture (MasAgro) project launched in 2010, highlighted the key role of INIFAP in the Mexico-funded initiative.

Presentations by Luz George, head of the project management unit, Carolina Roa, head of the intellectual property unit, and Carlos López, head of information and communications technology, addressed services and applications offered by those areas. Bibiana Espinosa, research assistant in wheat genetic resources, also took part in discussions. The event was organized by Isabel Peña, head of interinstitutional relations in Latin America.

The INIFAP team thanked CIMMYT warmly for its hospitality and open sharing of information. In a closing session, Scott Ferguson, deputy director general for support services, thanked the visitors for coming, and emphasized that CIMMYT is still finding its way to more efficient systems and structures: “We’ve doubled our budget over the four years, after 28 years of zero growth in real terms. We are dealing with all the organizational problems of such rapid and dramatic growth, and appreciate the chance to share experiences and ideas with a longstanding partner.”

The INIFAP group comprised Bertha Patricia Zamora, Director of Programs and Strategic Projects; Juan Bautista Rentería Anima, Director of Forestry Support; Vicente Santacruz García, Director of Planning; Ceferino Ortiz Trejo, Director of linking Operative Units; Héctor Peña Dueñas, Director of Human Development and Professionalism; Ramsés Gutiérrez Zepeda, Director of Evaluation and Systems; Francisco Gonzålez Naranjo, Dirección of Efficiency and Accountability; Ricardo Noverón Chåvez, Head of the Legal Unit; Edmundo Mårquez Santana; Director of Scientific Exchange and Cooperation; Miguel Ignacio Moneta Porto, Head of Strategic Information Consolidation; and Omar Chåvez Aguilera, Head of Agreements for Scientific Cooperation.

Managing yellow rust disease in Nepal

From 2008-11 a Nepal Agricultural Research and Development Fund (NARDF)-funded project was conducted to try to minimize wheat losses caused by yellow rust in ten highly affected districts of Nepal, in partnership with the Department of Agriculture, CIMMYT (Nepal) and the Seed Quality Control Centre, Nepal. Following this project, a one-day interaction program organized by the Plant Pathology Division, CIMMYT (Nepal) and NARDF was held at the Nepal Agricultural Research Council (NARC), Khumaltar, Lalitpur on 14 July 2011. There were 52 participants, including members of NARDF, CIMMYT, Regional Agricultural Research Centers (Lumle), Agriculture Research Station (Dolaka and Pakhribas), National Wheat Research Program (NWRP) of NARC, and District Agricultural Development Officers of the ten affected districts.

Yellow-rust-meeting-14-July-1

In his opening address, chief of the Plant Pathology Division, Hirakaji Manandhar, thanked NARDF for funding the yellow rust project and CIMMYT (Nepal) for providing valuable support in terms of supplying new germplasm and organizing training, farmer’s field days, and this interaction program. Project coordinator Sarala Sharma went on to describe the achievements of the project, including the excellent performance of the CIMMYT varieties in the field. Farmers have been able to select seven rust-resistant wheat genotypes (BL2879, BL3235, BL3503, WK1182, WK1481, NL1064, and NL1073) within different domains and cropping systems of Nepal. The high-yielding genotypes NL1064 (Danphe) and NL1073 (Frankolin) also conveyed good resistance to the stem rust race Ug99, and high demand for the Danphe variety could lead to larger seed multiplication in the coming cycle.

Participants felt that the project enabled an increase in genetic diversity and wheat production through the introduction of improved varieties and effective control of yellow rust disease. Publications were distributed to farmers in order to increase awareness of the new varieties and 580 farmers received training in yellow and stem rust management and quality seed production. Subsequently, the farmers found that they obtained good prices for their seeds and farmer-farmer seed dissemination increased the coverage of resistant varieties.

The next step is to ensure promotion and uptake of the improved wheat varieties. Participants emphasized that because yellow rust is not only a regional problem, but a global one too, the new CIMMYT varieties should be integrated into the official release process by NWRP. Dhurba Bahadur Thapa, Sr. Wheat Breeder (NARC) promised to take action to assist this progression and Arun Kumar Joshi, Regional Wheat Breeder (CIMMYT) assured that CIMMYT will also continue varietal testing and seed multiplication with farmers in the ten districts, to aid sustainability of the project once NARDF funding ceases. Janaki Prasad Khanal, Member Secretary of NARDF said that he hoped projects such as this will help to make Nepal a food-secure country in the future.

World Food Summit 2009

The three-day World Food Summit led by the Food and Agriculture Organization of the United Nations (FAO) starts Monday 16 November in Rome. Nearly 60 heads of state are expected to attend to discuss important issues related to food security such as climate change adaptation and mitigation, rural development, and the economic crisis. Show your support by signing the related online petition at www.1billionhungry.org.

Lumpkin: CIMMYT should double in size in five years

On 23 May 2009, CIMMYT DG Tom Lumpkin told staff that the center needs to double in size in five years to accomplish its mission and confront, among other challenges, a looming global food security crisis. “We’ve got to grow,” he said. “The food situation is getting frightening out there. We need to do a better job of meeting the world’s needs. Otherwise, we’ll become irrelevant and others will take our place.”

Lumpkin and Scott Ferguson, deputy director general for Support Services, spoke to international staff at El BatĂĄn and to staff in Nairobi via Skype, about a new business plan being developed for the center, and other issues of common concern in a general meeting.

A new initiative to address global food insecurity

One of the Millennium Development Goals is to halve the proportion of hungry people by 2015. Sadly, this is unlikely to be realised because the causes of hunger are many and complex. One problem is the spread of the relevant literature over many journals. In order to overcome this, the International Society for Plant Pathology and the publisher, Springer, have launched  a new journal, Food Security: the Science, Sociology and Economics of Food Production and Access to Food. Its objective is to take a synthetic approach to the many relevant disciplines so that an overview is achieved.

The first issue of the journal is freely available online at http://www.springer.com/life+sci/agriculture/journal/12571. It contains a foreword by the Nobel Peace Prize Laureate, Norman Borlaug, in which he says “It is timely that ISPP and Springer are launching this journal with its topical title and with the breadth of coverage indicated by its subtitle.” There are then 10 papers addressing food security from physical, biological and socio-political viewpoints – including climate change, global resources of soil and water, maintenance of biodiversity, seed, biofuels, famines, and the emerging African Green Revolution.

The discounted annual subscription for ISPP Members and Members of Associated Societies is EUR 30. See the ISPP website for more details.

Scientists uncover DNA sequence of key wheat disease resistance gene

A global team of researchers that includes CIMMYT scientists has uncovered the molecular basis of a “wonder” gene that, in tandem with other resistance genes, has helped protect wheat from three deadly fungal diseases for more than 50 years, providing farmers benefits in excess of USD five billion in harvests saved.

Since the 1970s farmers have used wheat varieties that are resistant to leaf rust, a major fungal crop disease. Without these rust-resistant varieties, wheat farmers would have lost USD 5.36 billion in harvests. [Economics Program Paper 04-01] Now, a study in this month’s issue of the renowned Science journal has reported the sequencing of Lr34—a key gene underlying this “durable” resistance in wheat to leaf rust and to two other major diseases of the crop: stripe rust and powdery mildew. Until now, no one knew much about Lr34‘s physiological action. Uncovering its DNA sequence allowed the scientists to understand how the gene works.

“Combined with other minor-action genes, Lr34 does occasionally permit the pathogen to colonize and grow on the plant,” says Ravi Singh, CIMMYT wheat geneticist/pathologist and co-author of the Science report, “but it causes the disease to develop so slowly that yield losses are negligible. Lr34 has proven so useful that it’s been bred into wheat cultivars sown on more than 26 million hectares in various developing countries.”

Researchers from the University of Zurich and the Commonwealth Scientific and Industrial Research Organization of Australia (CSIRO) worked with Singh and co-author Julio Huerta-Espino, a rust scientist from Mexico’s national agricultural research institute, INIFAP, to sequence Lr34 and conduct combined molecular and field tests to uncover the gene’s resistance action. Among other things, they found that it behaves in a way unique from so-called “major” resistance genes.

The Lr34 gene encodes an adenosine-triphosphate (ATP) binding cassette transporter, according to CSIRO scientist Evans Lagudah, also a co-author on the Science report. ATP is a multifunctional “nucleotide”—a type of molecule that comprises the structure of DNA. It typically transports chemical energy within cells for metabolism. “In mammals, for example, ATP binding cassette transporters underlie resistance to chemo-therapeutic drugs in cancer treatment, where the transporters can pump out the drugs from the cancer cells,” says Lagudah. “In plants, certain transporters can inhibit or reduce pathogen colonization in infected tissues.”

Science in a deadly “arms race” against rust

In early research to breed rust-resistant wheat lines, scientists depended heavily on resistance genes showing “major” action; that is, completely blocking the entry or development of specific races of the rust fungus. This approach resulted in varieties that would yield well for some years—there was no predicting how long—but which would eventually fall to new, more virulent rust strains. “The major genes typically include a protein that ‘recognizes’ a protein in the pathogen, triggering the resistance reaction,” says Singh. “But with even a minute mutation in that pathogen protein, the resistance gene would no longer ‘detect’ an infection, no plant defense would be triggered, and the pathogen would thus regain virulence.”

Because of this, the wheat fields where farmers have sown varieties protected only by major resistance genes can be hit with sudden, potentially disastrous rust epidemics, as occurred in a large wheat-growing area in northern Mexico in the late 1970s. “The government and research organizations of the time were forced to undertake an expensive, military-like operation to quickly import and apply enough fungicide to avoid a total crop failure,” says Huerta-Espino.

To address such breakdowns in resistance, CIMMYT adopted a breeding strategy that entailed searching among diverse sources for resistance genes which, like Lr34, have small, additive effects that work across rust races. Researchers then would breed several such genes into high-yielding wheat varieties, according to Singh. “When CIMMYT wheat breeder Sanjaya Rajaram first implemented this strategy, it sounded good in theory, but there was no guarantee it would work,” says Singh. “The decision seems obvious now, but back then it was so risky that few breeding programs were willing to undertake it.”

The upshot for breeders

In addition to elucidating Lr34‘s cell-level action, the benefits of the new study include the development of a precise DNA marker for Lr34‘s presence in wheat varieties. This tool will allow breeders to manipulate the gene better in crosses or, according to Singh, focus on slow-rusting genes from other sources. “There are genes that appear to behave similarly to Lr34, but are different and are located elsewhere on the chromosome,” he says. “Because Lr34 is so common in our breeding materials, it’s hard to isolate these other genes. With the new marker, we can select against Lr34 to develop experimental wheat lines from which we’re sure it’s absent.” The lines can then be used in research on other slow-rusting genes and perhaps to create a wholly distinct type of resistance

Singh says CIMMYT is involved in additional work on other slow-rusting genes, similar to that reported in Science. “Collaboration is crucial in such studies,” he says. “No single group can handle the required lab and field work on its own.” He also hopes the Science report will prompt other groups to analyze slow-rusting genes, instead of the more-easily-studied major race-specific genes: “With demand going up and rising grain prices, and higher temperatures possibly favoring the emergence of new pathogen strains in developing country cropping areas, farmers need all the help they can get from research on disease resistance in staple cereals.”

Hugo CĂłrdova, Knight Commander of the Order Manuel Amador Guerrero in PanamĂĄ

Hugo Córdova will be invested by Panama’s president, His Excellence Martín Torrijos, and Grand Maestre of the Order, on August 28, 2008, during the Feria Agrícola de Divisa, where according to Román Gordon, Agrosalud project partner, two new QPM synthetics will be released. This award is the highest honor Panama gives for scientific contributions to development, and was named after Manuel Amador Guerrero, independence hero and first president of Panama.

The journey of a seed

aug03Seed is the lifeblood of CIMMYT research and partnerships. Behind the scenes at CIMMYT, many thousands of seeds are on the move. Constantly arriving and departing as seed is shared with partners, they may journey through rigorous health testing in the laboratory, planting in the soils of the center’s research stations, or storage in the icy vaults of the germplasm bank.

No man is an island, and CIMMYT, as the world center for maize and wheat research, certainly isn’t. The center’s lifeblood is genetic variability: it is preserved in the germplasm bank; useful genes derived from it are incorporated in new varieties and shared with partners. These genes come packaged up in seeds, and countless seeds enter and leave CIMMYT every year, traveling to and from far-flung destinations including breeding programs of national agricultural research systems and private seed companies, CIMMYT’s global network of offices, and its research stations within Mexico.

aug05
Seed arriving at CIMMYT-Mexico must pass through strict testing procedures in the Seed Health Laboratory (SHL), part of the Seed Inspection and Distribution Unit (SIDU). “For Mexico we represent a risk—we’re unique in importing seed from all over the world,” says Monica Mezzalama, seed health expert and plant pathologist in charge of the SHL. “We have a duty towards Mexico and our collaborators in other countries to make sure we are not distributing seed with diseases. It’s also important for seed quality—we send people our best material.”

Staff in the SHL test seed for insects, weeds, fungi, bacteria, and viruses (see photo slideshow). The lab routinely checks for pathogens under quarantine for Mexico and for partner countries. Seed that gets a clean bill of health—a “seed release”—moves on, often going to a breeder, whereby its potentially useful traits may enter improved varieties. Alternatively, it may be headed for another lab and more testing by scientists working on seed quality or micronutrient content. Finally, many seed samples are destined for storage in the seed bank.

Entering the vaults

On behalf of humankind, present and future, CIMMYT holds enormous collections of seed of wheat and maize, as well as of the crops’ wild and cultivated relatives. For Tom Payne, head of the wheat germplasm bank (seed bank), the focus is on useful diversity, particularly from materials that have already undergone some breeding. “The most valuable germplasm (genetic material or seeds) is the germplasm we know the most about. It lets you look for the traits you’re interested in,” he says. Nonetheless, Payne says that breeders also recognize the value of landraces—traditional farmer varieties—and wild relatives: “When Ug99 (a new, highly-virulent form of stem rust) broke out in Africa, we sent 4,000 randomly-selected landraces for screening and found new sources of resistance.”

In the case of wheat, once cleared by the SHL, seed of new samples for the germplasm bank goes into several packets with different destinations. At least 200 grams will enter the “active” collection, from which external requests for seed are met. Additional packets are prepared for long-term storage at CIMMYT and, finally, three partner banks as back-ups. Because the center normally receives small amounts of seed, it has to be grown out, or “multiplied,” to harvest enough for research, storage, and back-up purposes. Seed is also multiplied for distribution. Again, quarantine precautions require that new wheat seed first be grown at the center’s headquarters and then vetted by the SHL, after which it travels 2,500 kilometers north to be re-sown at a Mexican desert location certified as free from the diseases. The final product is shipped back to CIMMYT headquarters and once more inspected by the SHL.

aug04

Regenerating germplasm bank collections

Eventually seed in the germplasm bank ages and begins to lose its ability to germinate. Also, supplies of frequently-requested samples eventually run short. When either occurs, viable seed from the sample is sown to replenish the collection—a process known as “regeneration.” “In 2008, the germplasm bank regenerated a record 18,000 wheat lines,” says Bibiana Espinosa, the principal research assistant who manages CIMMYT’s wheat germplasm collection. “That’s 45% more than in typical years.”

Pollen from a single maize plant can fertilize seed of many neighboring plants, so regeneration of maize seed is more costly and complex than for wheat plants, which are self-fertilizing. Maize crosses must be carefully mapped out and controlled to ensure that the diversity from the original sample is as closely replicated as possible. “Regenerating and storing one sample of maize costs around USD 250 or more—maybe 20 times more than a sample of wheat,” says Payne. “On a single hectare of land you can regenerate thousands of wheat lines, but because individual maize populations or landraces may embody tremendous genetic diversity, they require far more space to regenerate properly.”

Keeping track of hundreds of thousands of seed collections poses a serious challenge for germplasm bank staff. CIMMYT has recently begun marking seed packets with a barcode linked to crop database systems for physical and molecular traits. “The goal is to internet-enable all these databases and link to specific seed collections in the bank, helping people make selections,” says Payne.

Seed collections and genetically modified crops

“CIMMYT’s internal policy is to avoid the involuntary presence of transgenes in its germplasm,” says Mezzalama, referring to genes from other species that are introduced into crop plants like maize using genetic engineering. This means strict monitoring of maize seed that the center introduces from abroad, either for storage in the bank or for breeding purposes. As a further measure, regeneration plantings are surrounded by “sentinel plots” from which seed is harvested and tested in the laboratory to check for the possible arrival of foreign pollen.

On the road again

All seed in the germplasm bank has been certified as clean by the SHL, so it is always ready to be planted in the field or sent to anyone who requests it. However, like any traveler, it must carry a passport—an international phytosanitary certificate—to move between countries. In addition, CIMMYT seed travels only if prospective recipients accept the “Standard Material Transfer Agreement”—which stipulates among other things that the seed may not be sold or patented, and was adopted in the first session of the Governing Body of the International Treaty on Plant Genetic Resources for Food and Agriculture.

aug07

Every year, SIDU receives hundreds of requests for samples of bank or breeding seed. CIMMYT also ships annual international nurseries (for wheat) and international trials (for maize). These are collections of the center’s best materials, grouped into sets for specific aims: high yield, heat tolerance, disease resistance, to name a few. Partners request sets, grow out and evaluate the experimental seed, and return data on the results to CIMMYT. The center collates and analyzes the data from all sources, publishes and distributes the results to partners, and uses the information to guide subsequent breeding efforts. Partners who grow the trials may keep and use seed of the varieties that interest them, or request additional seed.

EfrĂ©n RodrĂ­guez, who is responsible for seed distribution, estimates that public research organizations make up around two-thirds of CIMMYT seed recipients; the rest are private sector seed companies. “In many countries requests from small seed companies are increasing as the sector grows, for example in Mexico and India,” he says. In wheat, 70–80% of requests are for international nursery material, whereas in maize about 70% are requests for materials from the germplasm bank. “We have around 500 CIMMYT inbred maize lines, and all the seed companies want a sample of these lines to use in their breeding programs,” says RodrĂ­guez. His team can count partners in around 150 countries, and in a year meets around 800 requests for seed.

Most of this work by SIDU and the germplasm bank goes unnoticed by the casual visitor, but, says Mezzalama, “
the daily contact with people around the world who really need CIMMYT seed makes me feel very confident that I’m doing something valuable.”

For more information:

Tom Payne, Head, Wheat Genetic Resources (t.payne@cgiar.org);
Monica Mezzalama, Head, Seed Health Laboratory (m.mezzalama@cgiar.org)

Mexican wheat farmers sign national agreement

Representatives from national wheat farmers’ committees all signed a national agreement for wheat provisioning on 23 July 2008 at the Mexican Ministry of Agriculture (SAGARPA) facilities. The Secretary of Agriculture, Alberto Cárdenas, and a representative from the Economic Ministry also signed the agreement as witnesses.

This agreement confirms farmers’ willingness to reorganize and manage wheat production in Mexico, with the objective of increasing production and producing wheat that meets market demands.

During their speeches, Cårdenas and José Manuel Hernåndez López, a non-governmental representative from the National Committee for Wheat Production, stressed the importance of research and products developed by CIMMYT for the advancement of producers of basic foodstuffs in Mexico.

After the signing ceremony, CĂĄrdenas along with others headed a tour of SAGARPA’s esplanade and learned about CIMMYT’s work in conservation agriculture through Fernando Delgado, Toluca Station Superintendent. Roberto Javier Peña, Head of the El BatĂĄn Cereal Quality Laboratory, also spoke to CĂĄrdenas about wheat improvement and CIMMYT’s partnership with the Mexican Institute of Forestry, Agriculture, and Livestock Research (INIFAP). MarĂ­a Teresa RodrĂ­guez, Program Coordinator, Global Wheat Program, set up and ran CIMMYT’s display, along with Delgado and Peña.

The tour ended at INIFAP’s stand, which showed various modern wheat varieties, the majority of which originated from wheat germplasm developed by CIMMYT.

International nurseries shop revamped

Every year, CIMMYT’s Seed Inspection and Distribution Unit (SIDU) ships more than 1,000 sets of seed for international wheat trials and 300 sets of maize to collaborators in over 100 countries. Seed to be shipped must undergo rigorous selection, cleaning, treatment, and packaging by SIDU-seed preparation personnel. A consignment for 36 tons of seed from Mexicali for trials for the 2009 cycle arrived on Tuesday 1 July 2008.

Before preparing the shipment, in June, Antonio Luna, David GonzĂĄlez, AndrĂ©s Guerrero, and four temporary workers performed maintenance on the seed-preparation facilities. “We wanted to renovate the appearance of our workplace, so we can be more comfortable working there, while taking into account the phytosanitary requirement of the facilities for proper seed handling,” said GonzĂĄlez. His program bought the paint and some other material and he and his co-workers painted the walls, the floor stands, and the seed treatment machines in the warehouse. “It took us took weeks to paint the floor stands because we used oil-based paint to avoid having toxic fumes, and we had to take them apart, move them to La Redonda, and paint them there. All the ceiling lights were also changed,” says GonzĂĄlez. On 27 June, personnel from the Mexican Agriculture Secretariat (SAGARPA) of Texcoco inspected the warehouse of 99 m2 to check that it had been properly washed with bleach.