Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Fungal Resistance in Wheat: Biodiversity & Food Security

CIMMYT played a key role in advancing research on yellow rust resistance by supporting field trials in Mexico and providing access to its extensive collection of traditional wheat varieties. Through its collaboration with the University of Zurich and Kyoto University, CIMMYT contributed to the identification of novel genetic regions in Asian landraces that offer resistance to the destructive fungus. Its leadership in conserving one of the world’s largest wheat germplasm collections continues to be vital for global efforts to develop disease-resilient wheat and safeguard food security through biodiversity.

Read the full story.

Proudly announcing the 2025 Derek Tribe Award recipient – Velu Govindan

Dr Velu Govindan from CIMMYT pictured here in action during field days as part of CIMMYT’s Global Wheat Program activities in ObregĂłn, MĂ©xico. (Photo:CIMMYT Comms / Dinorah GuzmĂĄn Espinosa).

We have the great pleasure of announcing the Derek Tribe Award recipient for 2025 is Dr Velu Govindan, the Principal Scientist – Wheat Breeder at The International Maize and Wheat Improvement Center (CIMMYT) in Mexico.

Dr Govindan received the award in recognition of his work in plant breeding and genetics. His pioneering work on accelerating genetic gains in wheat has led to the release of over two dozen climate-resilient, zinc-enriched wheat varieties, significantly benefiting farmers across South Asia, Africa and Latin America, highlighting his influence on global food security.

The Crawford Fund’s Derek Tribe Award recognises the distinguished contributions of a citizen of a developing country to the application of research in agriculture or natural resource management in a developing country or countries. These people are often unsung heroes in their fields, with long and dedicated service that has incredible impact.

The Award was inaugurated in 2001 to mark the outstanding contributions of Emeritus Professor Derek Tribe AO OBE FTSE, Foundation Director of the Crawford Fund, to the promotion of international agricultural research.

Dr Velu Govindan from CIMMYT, pictured here in wheat trials in India, is the Crawford Fund’s 2025 Derek Tribe Award recipient (Photo: CIMMYT/Velu Govindan).

Velu is in very distinguished company with his Derek Tribe award, with other CIMMYT awardees including Sanjaya Rajaram, who received the inaugural award in 2001 and was also the recipient of the world food prize in 2014, Ram Kanwar Malik (2015) and Ismail Çakmak (2007). Details about previous recipients of the Crawford Fund Derek Tribe Award are available here.

“Velu has an outstanding record of applying cutting-edge research to enhance agricultural productivity and natural resource management in developing countries. Over the past 15 years, his research at CIMMYT, Mexico, has played a pivotal role in breeding high-yielding, climate-resilient, and biofortified wheat varieties, addressing food security and malnutrition challenges across South Asia and Africa,” said Shaun Coffey, Chief Executive Officer, the Crawford Fund.

“Velu’s research has had significant impact, leading to the release of over 25 improved wheat varieties, benefitting millions of smallholder farmers in India, Pakistan, Nepal, Bangladesh, Ethiopia, and Mexico,” he said.

“Dr Govindan has been instrumental in integrating genomic selection, high-throughput phenotyping, and precision breeding techniques to accelerate genetic gains in wheat and zinc mainstreaming efforts at CIMMYT. His collaborations with national agricultural research systems (NARS) in developing countries have strengthened local breeding programs, enabling faster varietal development and dissemination,” said Shaun.

Velu’s work has received significant funding from international agencies such as the Bill & Melinda Gates Foundation, USAID, and other national and international funding, further demonstrating its global impact.

“Beyond breeding, Dr Govindan has contributed to sustainable agricultural practices by promoting climate-smart wheat varieties that require fewer inputs and are resilient to heat, drought, and resistant to multiple wheat diseases,” he said.

Prior to his role at CIMMYT, Velu was involved in pearl millet biofortification at ICRISAT through the HarvestPlus program, leading to the development of high-iron pearl millet hybrids adopted by smallholder farmers in India.

“He is also an advocate for capacity building, training young scientists and breeders across Asia and Africa; fostering the next generation of agricultural researchers; and actively participating in policy discussions that have influenced large-scale adoption of improved wheat varieties,” said Shaun.

“The Crawford Fund congratulates Dr Govindan on his lasting impact on global food security and natural resource management. We look forward to highlighting his work with the Derek Tribe address, and further raising awareness of the benefits to Australia and developing countries of agricultural research for food and nutrition security,” concluded Shaun.

The Crawford Fund is pleased to partner with the University of Western Sydney and the University of Sydney for Velu’s visit to Australia. Plans are underway for him to be presented with his award and deliver the 2025 Derek Tribe Address in the coming months. Information regarding the 2025 Derek Tribe Address will be shared when Dr Govindan’s trip is finalised.

Originally published on the Crawford Fund website: 2025 Derek Tribe Award – Dr Velu Govindan.

Women Who Nourish the Earth: Yuridia HernĂĄndez and the Feminine Strength in Sustainable Agriculture

In the lands of Oaxaca’s Mixteca, where rainfall no longer comes as it once did and the soil begins to feel the weight of years and intensive use, a network of women producers has taken on the task of healing the land—while also healing themselves. One of these women is Yuridia Hernández, who has decided to farm differently: with more awareness, less haste, and the support of other women who, like her, believe that a different kind of farming is possible. 

Since 2023, Yuridia has been part of the Secure Maize Supply Program of the Secretariat of Food Promotion and Rural Development (SEFADER), supported technically by engineer Griselda Cruz Guzmán. On her three-hectare plot, she has begun applying agroecological practices: minimum tillage, biological pest management, the use of bio-inputs, and the reincorporation of crop residues. “We’ve gone back to practices we were already forgetting. Now we see our plants are more resilient. That motivates us to keep going,” she explains. 

Hernández, a producer from Oaxaca’s Mixteca region, proudly shows a corn cob grown on her rainfed plot. (Photo: Sarah Martínez/CIMMYT)

Last year, she planted late, like many in the region, due to delayed rains. But she didn’t give up. “This is a rainfed plot, and although the weather isn’t the same anymore, we can still produce if we change how we do it,” she says firmly. Though she works alongside her husband and eldest son in a family production unit, Yuridia makes her own decisions for her plot. “At first it was difficult—he (her husband) prefers mechanized methods, using chemicals. I would tell him: ‘wait, let’s try other options.’ And though it was hard for him to give up plowing, now he sees the results. Little by little, he’s adopted new practices.” 

Like the Earth that gives life and regenerates when treated well, Yuridia has found a shared strength in other women. “In the group, you can feel when there are more women,” she says. “The men often come in with a different mindset, they find it harder to work as a team. But among women, it’s different: it’s enough to say, ‘how should we do this?’ and we organize ourselves.” She has especially formed close ties with another producer’s daughter, with whom she shares not just the work, but also a critical and forward-looking view of farming’s future: “We have that urge to do things differently, to improve them. And that’s made us a solid team. We pull each other forward—and also bring along the men who want to join.” 

What began as an individual effort has now become a small network of learning, experimentation, and mutual support. By sharing knowledge, organizing field visits, and discussing what works and what doesn’t, Yuridia and her peers have been able to strengthen themselves and those around them: “That’s how we’ve grown stronger—by building a network.” 

Beyond her own experience, she’s attended events at research platforms like those of INIFAP and CIMMYT, where she saw firsthand that sustainable practices can be applied in her context. “That’s where I said: this works, I want to replicate this,” she shares. 

Yuridia also knows that climate change is not a distant issue. “It’s hit us hard. Rains aren’t like before, pests show up suddenly. But with these practices, the system is adapting. Where we leave more residues, the plants stay vigorous.” That’s why she doesn’t hesitate to send a message to those who support research and technical assistance: “Thank you for promoting these activities. Research really does help us. It lets us change or bring back what we already knew. If we do nothing, we’ll lose our land. But if we have tools, if we see examples, we can move forward,” she says gratefully. 

Yuridia’s testimony reminds us that caring for the planet is not an abstract task—it starts in plots like hers, in voices like hers, in hands that sow with hope, science, and community. And just like the Earth, the women who care for and work the land have an immense capacity to regenerate, sustain, and transform. 

Small grains and new methods bring resilience to Zimbabwean farmers

In Zimbabwe, farmers are turning to conservation agriculture and climate-resilient crops such as millet, sorghum and cowpeas in order to combat the growing threat of drought, which has been exacerbated by El Niño. Traditional farming methods have left soils degraded and yields diminished, prompting many farmers, such as Memory Mukototse from Kaidza village, to adopt new techniques through programmes like the R4 Rural Resilience Initiative, which is led by the World Food Programme.

By comparing conservation and conventional farming methods, farmers have discovered that practices such as minimal soil disturbance, crop rotation and maintaining ground cover can greatly enhance harvests and improve water retention. Backed by CIMMYT, this farmer-driven research and peer-to-peer knowledge exchange, facilitated through seed fairs, group coordination and exchange visits, has not only enhanced food security, but also empowered communities to adapt and flourish in the face of challenging climatic conditions.

Read the full story.

When the worm won’t wait: Battling Fall Armyworm with science, seeds and farmer-led solutions

The destructive Fall armyworm in a farmer’s field (CIMMYT)

Farmers in southern Africa face a double tragedy: drought in one season or flooded fields in another. Shredded leaves, twisted tassels, and frizzled maize cobs reflect more than just a failed harvest; they signal a deepening threat to food security and livelihoods. Compounding this hardship is the growing threat of pests and diseases, many of which are fuelled by climate change. Chief among them is the fall armyworm (FAW) (Spodoptera frugiperda), an invasive pest that arrived in Africa nearly a decade ago and continues to undermine smallholder farmers’ resilience, devouring crops stalk by stalk. 

Maize is central to food security in Zambia and Malawi, where it occupies up to 80% of cultivated land and accounts for over half of the daily calorie intake. In Zambia alone, more than 90% of smallholder households grow maize, underscoring its economic and political weight. Yet, in recent years, farmers have had to contend with losses not just from erratic rainfall and poor soils, but from pests and diseases that seem to multiply with each season. 

A recent CIMMYT-led study across 1,100 farming households in Malawi and Zambia, as part of the Southern African Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, highlights the long-recognized challenge of FAW damage. The study confirms that FAW is not only persistent but also costly. During 2023/2024 season, 70% of surveyed farmers reported FAW damage to their maize fields. On average, FAW infestations resulted in a 13.5% to 30% reduction in maize yields, translating to more than 230 kg of lost grain per hectare. Other crops were also heavily affected, with the rosette virus reducing groundnut yields by 27% and soybean rust causing up to 25% losses in soybean fields. 

The effects of FAW extend beyond crop harvests. It has also been shown to significantly undermine household income and food security. Although the 2023/2024 losses are slightly lower than earlier estimates, which ranged from 22% to 67% across Africa, they are still substantial enough to affect food security and livelihoods. Furthermore, the combined effects of FAW, rosette disease and rust had large income and food security impacts.  Households facing the triple burden of these pests and diseases – FAW, groundnut rosette virus and soybean rust on their three most important crops are twice as likely to experience food insecurity as compared to experiencing just one of these threats.  

In response, many farmers are turning to pesticides, improved seeds and crop rotation. However, as the data indicates, pesticides alone are far from being a comprehensive solution. They are often costly, frequently misapplied, and carry significant risks to both human and the environment. Moreover, FAW is increasingly developing resistance to commonly used pesticide formulations. Access to agricultural extension services remains limited: only 27% of surveyed farmers in Zambia and 54% in Malawi reportedly receiving such support. Without proper guidance on when and how to apply pesticides, their misuse can end up doing more harm than good. 

These findings highlight a broader challenge: the urgent need for sustainable, science- and data-driven solutions that are practical for farmers. At the core of the response is a new generation of maize hybrids with tolerance to FAW. CIMMYT in collaboration with its partners using conventional breeding has developed new generation of hybrids with native genetic (non-transgenic) tolerance to FAW. The breeding process is complex, requiring years of field testing across diverse agroecological zones to ensure adaptability and performance. 

In 2023, three FAW tolerant maize varieties developed by CIMMYT were officially released by the Zambia Agriculture Research Institute (ZARI) and sub-licensed to seed companies for commercialization. With support from AID-I and the CGIAR Sustainable Farming program, CIMMYT and partners are actively promoting these hybrids among smallholder farmers. The AID-I project has provided critical support to accelerate seed production of these hybrids. Zamseed and AfriSeed are leading efforts to bring these varieties to market. 

Mebby Chipimo Munyemba, a proud farmer showcasing her FAW-tolerant maize field in Mazabuka, Zambia (CIMMYT)

Through the Sustainable Farming program, on-farm trials have been established across three agroecological gradients in Siavonga, Mazabuka, and Mbala districts to test the performance under farmer conditions and understand their impact on farmer outcomes. There are two treatments, which include growing the FAW-tolerant maize variety alone, and intercropping it with other legumes. Rather than assuming a one-size-fits-all solution, CIMMYT is using randomized control trials (RCTs) to assess the real-world performance of these varieties under varying conditions. The goal is not only to validate the science but to build a stronger case for scaling. 

In Siavonga, where high temperatures and erratic rainfall create ideal conditions for FAW outbreaks, early results show promising benefits from using FAW-tolerant maize varieties. Preliminary foliar damage assessment indicates significantly reduced infestation levels compared to susceptible varieties. In contrast, the benefits in Mazabuka are less pronounced, while in Mbala – a cooler, higher-altitude location with lower pest pressure- no major gains have yet been observed. These location-specific findings are critical for informing hyperlocal, evidence-based policymaking.  Equally important is building awareness and trust among farmers, ensuring they know these improved varieties exist and understand how to grow them applying good agronomic practices. Through AID-I, CIMMYT is working to close that gap, demonstrating the business case for investing in FAW tolerant maize seed to the private sector, and equipping farmers with knowledge that goes beyond what is in the bag.  

For example, a survey carried out in Malawi, Tanzania and Zambia revealed that awareness of FAW-tolerant maize varieties remains low, with only 19% of farmers in Malawi, 34% in Tanzania and 39% in Zambia had heard of FAW-tolerant maize varieties. This underscores the urgent need to scale up awareness campaigns and initiatives to stimulate demand. Encouragingly, among the farmers who are aware of these varieties, the majority expressed a willingness to purchase them at prices comparable to those of other hybrid maize varieties. This indicates a strong business case for private sector investment in seed multiplication and distribution to meet potential demand and expand access to FAW-tolerant maize hybrids. 

For many farmers in Southern Africa, the FAW remains a persistent threat. However, through science, strong partnerships, and a commitment to field-based evidence, the tide is turning, one trial, one variety, one growing season at a time. 

IMIC-Africa Field Day 2025: Where science meets collaboration to accelerate maize innovation in Africa

Regional partners in front of the CIMMYT maize lines displayed during field day. (CIMMYT)

Every year, public and private sector partners participate at The International Maize Improvement Consortium for Africa (IMIC-Africa) Field Day for Southern Africa, a unique event that seeks to transform the maize sector. The 2025 field day, hosted at the University of Zimbabwe farm on April 9th, brought together an eclectic blend of partners from seven African countries, including long-standing collaborators and new entrants such as AMAC Seeds and Grow Trade Seeds. Moving beyond just showcasing key achievements and new germplasm to partners, the field day fostered critical and meaningful discussions and experience sharing among partners, from lab to farm.

By offering access to both early- and advanced-generation maize lines, the event was a critical intersection point where public and private players align to tackle the continent’s most pressing agricultural challenges. In addition, members have the opportunity to test their pre-commercial hybrids through CIMMYT-led multi-location trials, ensuring that the products are carefully evaluated across diverse agroecologies and for essential traits such as drought tolerance, pest resistance and high yield potential. It also provides an avenue for suggesting improvements to the demonstrations, ranging from labelling.

We took time to get a clear perspective from CIMMYT scientists, private and public sector representatives.

Q: How important is the IMIC-Africa Field day in addressing maize sector challenges?

“Success of breeding programs is hinged on injection of new genetics that drive gains. Developing high value inbred and donor lines is an expensive process and platforms such as IMIC Africa help reduce product development costs in maize breeding programs of the partners and reduce time taken to deliver solutions to farmers,” emphasized Aparna Das, Senior Technical Program Manager for the Global Maize Program.

“It is rare to get an opportunity to observe and select hundreds of lines in one location as it offers each participant an opportunity to see the performance potential of each line at a glance” said James Gethi, southern Africa Seed Systems Specialist and IMIC Africa southern Africa coordinator.

Mainassara Zaman-Allah, CIMMYT’s Country Representative for Zimbabwe, reflected on the core strengths of the consortium, “It has been 8 years since the launch of the initiative, and one of the core strengths of IMIC-Africa is its inclusivity. Whether from a national agricultural research institution, maize seed company or international agricultural research organizations, IMIC-Africa opens its doors for all involved in maize breeding for the African market. This diversity enables us to leverage a broad range of expertise and resources, to articulate the challenges faced by African farmers.”

Q: What impact have the maize lines had on breeding programs?

“We have seen major improvements in the vigor of materials displayed that open a new frontier for single cross hybrid varieties development” commented Oswell Ndoro from AMAC seeds, a new member of IMIC Africa, signalling optimism for the future.

Walter Trevisan, consultant for Helix Seeds, praised CIMMYT’s Zimbabwe scientists for their collaborative support in selections, “Thank you very much for this outstanding work! We sure appreciate the help of the CIMMYT Zimbabwe scientists in helping us with this task.”

Davison Chaingeni from ARISS, formerly DR&SS Zimbabwe, echoed this, “We continue to see value in getting more DH-based lines. We hope the vigor translates to yield.”

 

 

 

 

 

 

 

 

 

Q: Take us through on what was on offer in the field, where science meets need and demand.

“An array of 624 CIMMYT maize lines were on display, which consisted of 614 new lines from 4 different product profiles providing insights into the performance of different materials. The materials span early-, intermediate, and late- maturity groups to nutritious maize breeding pipelines. A critical component of the field display was trait donor lines where 5 lines were on display for selection. The traits donor lines on display were for drought, drought & heat and Low N & MLN tolerance. This comprehensive showcase enabled seed companies and NARS partners to make informed selections, tailored to their breeding needs,” Gethi explained.

Development of provitamin A-enriched maize (PVA) addresses one of the emerging challenges in combating hidden hunger and animal feed. He further adds, “On display were 126 lines originating from the PVA-enriched maize breeding pipeline. The efforts underscore CIMMYT’s commitment to address regional nutritional needs through targeted breeding initiatives.”

 

IMIC-Africa lines on display showing differences in phenotype for exploitation by partners (CIMMYT)

Q: What improvements would partners like to see moving forward?

Amsal Tarekegne, head of breeding at Zamseed Seed Company, pointed to a practical bottleneck, “It is a challenge understanding the pedigree information provided in the field book due to its length.”

 

 

 

 

 

 

 

 

 

 

Yet, the road ahead still demands refinement.  Lubasi Sinyinda from Zambia Agricultural Research Institute (ZARI), one of the NARS partners in IMIC-Africa since its inception, noted, “I would like to see more fall armyworm (FAW) and heat-tolerant lines displayed.”

For new entrants like Petros Guveya of Grow Trade Seed company, navigating CIMMYT’s updated heterotic groupings was a challenge, underlining the need for improved orientation for first-time participants.

On the brighter side, Themba Mutuvira complimented the design of the fields by indicating they were easy to navigate through. “The fields were well labelled, and we had no challenges at all identifying the materials”

A living laboratory for Africa’s Maize future

The 2025 IMIC-Africa Field Day was not just an event, but a living laboratory of innovation, critique, and partnership. In the face of mounting climate pressures, pest threats, and nutritional gaps, such platforms offer a rare and invaluable opportunity for the maize breeding community to align, adapt, and accelerate. As IMIC-Africa evolves, the call from partners is clear: deepen inclusivity, enhance clarity, and continually refine the experience to ensure that each plot, each line translates into impact on the farm and food on the table. The future of Africa’s maize sector will be built not in silos, but in such collaborative spaces where science meets the lived realities of farmers and seed companies alike.

How Crops to End Hunger is transforming CGIAR crop breeding from the ground up

When crop breeding succeeds, the impact is dramatic: improved varieties reach farmers, productivity increases, and resilience to climate change and disease improves. But breeding success doesn’t happen by chance. It relies on modern facilities, cutting-edge tools, and the ability to test and select for complex, evolving traits. That’s where Crops to End Hunger (CtEH) comes in. At CGIAR Science Week, the project team and beneficiaries demonstrated how.  

A project designed for exponential impact 

Launched in 2019, CtEH aimed to support the modernization of CGIAR’s crop breeding infrastructure, with support from GIZ, the Gates Foundation, the US government, DFID, and ACIAR. As it nears the end of the most recent two-year GIZ funding cycle, the project has made targeted investments in upgrading breeding station infrastructure, equipping them with advanced tools, building capacity across CGIAR and national breeding teams, and developing the foundational systems needed to accelerate the entire breeding process. 

Supporting CGIAR Centers’ core functions 

At CGIAR Science Week, Bram Govaerts, CIMMYT Director General, explained: “CtEH is crucial for implementing CIMMYT 2030 strategy. Support has increased our breeding capacity for maize, wheat, and newly added dryland crops that complement maize and wheat cropping systems.” 

One example is the Groundnut Biotic Stress Screening Network, established with CtEH support. The network has strengthened the capacity of partners in Uganda and Malawi to screen for groundnut rosette disease; a devastating disease spread by aphids can result in 100% crop loss, with annual losses of over $150 million. The screening network will enable development of resistant varieties. 

In Kenya, a $2.5 million worth infrastructure upgrade at the KALRO–CIMMYT Crop Research Facility in Kiboko, has accelerated breeding cycles. This investment is enabling the development of new varieties tailored to the needs of East African farmers. Drought-tolerant maize varieties developed through work in Kenya and Zimbabwe have expanded dramatically, from just 0.5 million hectares in 2010 to 8.5 million hectares across sub-Saharan Africa today. 

The Kiboko station is also a regional leader in pest and disease resistance. Its advanced screening capabilities for fall armyworm have led to the release of three tolerant maize hybrids, benefiting farmers in Kenya, Malawi, Zambia, Zimbabwe, South Sudan, and Ghana. The development of maize varieties resistant to maize lethal necrosis further demonstrates the station’s critical role in enhancing food security across the region. 

Operational improvements: more than bricks and mortar 

CtEH isn’t just about infrastructure; it’s also about operational transformation which profoundly change the breeding work. For instance, as Gustavo Teixeira explains, “The installation of reliable irrigation systems, one of CtEH’s key priorities, improves breeding efficiency in several ways. It enables off-season trials, allowing breeders to conduct multiple generations per year. It promotes plot control, ensuring uniformity across trial plots and data quality. Finally, it improves the ability to breed for drought tolerance.” 

In Ghana, Maxwell Asante of CSIR-CRI described how CtEH brought crop-neutral upgrades that have encouraged teams to strategically plan and align resources, enabled cost attribution to specific breeding programs, improving accountability, and fostered cross-location collaboration by making centralized services possible.  

These operational improvements are helping CGIAR and national systems move toward truly modern breeding programs that can operate with greater precision, speed, and coordination. 

Building for regional collaboration and innovation 

Bram Govaerts also emphasized that collaboration is central to the future of breeding, and that CtEH is helping to make that possible. 

“Strategic collaborations enhance our impact by leveraging diverse resources and expertise, especially through public-private partnerships that scale research and technology transfer for agricultural transformation.” 

Facilities and systems funded by CtEH are helping CGIAR foster cross-disciplinary innovation and strengthen ties with governments, donors, and technology companies. This makes it easier to bridge the gap between research and real-world application – exactly what’s needed to accelerate impact. 

Empowering women in breeding 

Infrastructure improvements under CtEH have considered inclusivity and gender equity. 

Aparna Das, CIMMYT Technical Lead, explained that modernized stations have been upgraded to better support women in breeding roles – such as providing restrooms and expression rooms in remote research stations, often located far from urban centers, which help attract talent. 

Why does this matter? Women breeders bring valuable perspectives, particularly in identifying gender-relevant traits, like cooking time, seed size, and ease of harvesting. Diverse, balanced breeding teams also tend to be more dynamic and innovative, leading to better science and more relevant products for farmers. 

Targeting the right traits 

Breeding for traits farmers need starts with the ability to test and measure those traits under real-world conditions. This can require specialized equipment. 

Maxwell Asante emphasized that this is where CtEH makes a difference: 

“Testing for traits is fundamental. And now, we’re not just selecting for yield – we’re breeding for disease resistance, climate resilience, cooking quality, and more. The only way to do this efficiently is through modern breeding infrastructure and processes.” 

Modern breeding enables scientists to combine multiple traits in a single variety and identify the best candidates with greater accuracy and confidence. This is made possible through CtEH investments in equipment and data analytics, such as Bioflow, the CtEH-funded breeding analytics pipeline developed for CGIAR and its partners. 

Long-term impact through smart design 

What makes CtEH unique is its sustainability-by-design approach. The project was structured to build long-lasting capacity and to leverage investments from across CGIAR Initiatives, amplifying both the quality of upgrades and their outcomes. 

Whether it’s enabling year-round trials, supporting new partnerships, or empowering a more diverse generation of breeders, CtEH is not just upgrading infrastructure, it’s also reshaping CGIAR and partners’ breeding. 

As CGIAR continues to respond to climate, nutrition, and food security challenges, projects like CtEH are making sure we have the tools, systems, and people in place to breed for tomorrow – starting today. 

To learn more about Crops to End Hunger, check out other stories here.

CIMMYT and WorldVeg Unite for Better Nutrition and Farmer Incomes

MEXICO CITY — CIMMYT and the World Vegetable Center (WorldVeg ) accelerated its global partnership by launching a new WorldVeg office in Mexico at CIMMYT’s headquarters. This joint location will provide improved nutrition, soil health and earning potential for global farmers.

“When vegetables and cereals grow together, the benefits multiply for people and the planet,” said Bram Govaerts, Director General of CIMMYT.

Govaerts said he is eager to scale a proven global track record of collaboration across Mexico, Latin America and the wider world. CIMMYT and WorldVeg’s partnership is already delivering results in Mexico and Central America. For years, the organizations have collaborated to improve production in the traditional milpa system—where maize is grown with beans and squash, often known as the “three sisters.” Collaboration increased yields, helped balance diets and conserved biodiversity.

The collaboration also builds on the more than 100,000 people reached in Sudan, Malawi, Tanzania, and Zambia through CIMMYT and WorldVeg collaboration. These joint projects have improved dietary diversity, soil health and incomes by cultivating both vegetables and cereals. In Tanzania alone, the collaboration has increased the sales of value-added products by 50%.

“This partnership represents tangible, scalable diversification options for farmers,” said Marco Wopereis, Director General of WorldVeg. “Integrating vegetables into cereal systems improves nutrition, raises incomes, and builds sustainability, beginning in Mexico and expanding globally.”

Led by WorldVeg Scientist Roland Schafleitner, the WorldVeg Mexico office in partnership with CIMMYT, local universities, research organizations and farmers will identify and promote adapted vegetable varieties suitable for smallholder production, as well as intercropping systems.

This initiative will improve supply of nutrient-rich vegetables that directly address the pressing global challenge highlighted by a 2020 FAO report—that over 3 billion people worldwide lack affordable access to diverse and nutritious diets.

“Whether it is in the field or on plates – cereals and vegetables go better together,” said Govaerts. “This marks an acceleration CIMMYT’s efforts to work with other organizations that share in our mission to advance a more food- and nutrition-secure world for all. We are eager to partner with other organizations that share this focus.”

The strategic alliance between CIMMYT and WorldVeg marks the first of several anticipated collaborations, transforming CIMMYT’s global headquarters into a hub for food and agricultural innovation.

CIMMYT and the World Vegetable Center inaugurate their new office at CIMMYT headquarters (Photo: CIMMYT)

About CIMMYT

CIMMYT is a cutting edge, nonprofit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets and associated crops through applied agricultural science, particularly in the Global South, building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers while working toward a more productive, inclusive, and resilient agrifood system within planetary boundaries. For more information, visit: cimmyt.org.

About WorldVeg

WorldVeg is an international non-profit institute for research and development of vegetable technologies. It mobilizes resources from the public and private sectors to realize the potential of vegetables for healthier lives and more resilient livelihoods. WorldVeg’s improved varieties, production and postharvest methods help farmers increase vegetable harvests, raise incomes in poor rural and urban households, create jobs, and provide healthier, more nutritious diets for families and communities. Headquartered in Taiwan, it operates in 15 countries. More information: worldveg.org.

 

New Breakthrough in Wheat Blast Resistance: A Novel Non-2NS QTL Identified

A newly published study has identified a significant breakthrough in the ongoing battle against wheat blast: a novel quantitative trait locus (QTL), named Qwb.cim-7D, located on the long arm of chromosome 7D and derived from Aegilops tauschii, offers stable and moderate resistance to wheat blast—independently of the widely used 2NS translocation.

Wheat blast, caused by Magnaporthe oryzae pathotype Triticum (MoT), is a rapidly spreading disease threatening wheat production, particularly in tropical and subtropical regions of the world. First detected in Brazil in 1985, the disease has since caused devastating yield losses—up to 100% in severe cases. Its transboundary spread, including recent incursions in Bangladesh and Zambia, has intensified international concerns about food security, especially among vulnerable smallholder farming communities. Control through chemical means has proven unreliable, placing even greater emphasis on the development and deployment of resistant wheat cultivars.

Fig. 1 Global incidence of wheat blast with years of its first identification indicated for the affected countries

For years, wheat breeders have relied on a single major source of genetic resistance—the 2NS/2AS translocation from Aegilops ventricosa. While initially effective, recent field observations—particularly in Brazil—suggest that wheat blast pathogens are evolving to overcome this resistance. Despite extensive efforts, previous studies have failed to identify any non-2NS QTLs with both significant and stable effects across environments in field trials.

Fig. 2 Contrasted wheat blast reactions between BWMRI Gom 3 (left, a 2NS carrier) and BARI Gom 26 (right, a non-2NS carrier)

A New Genetic Solution for Blast Resistance

In a recently published study entitled “A novel QTL on chromosome 7D derived from Aegilops tauschii confers moderate field resistance to wheat blast”, CIMMYT’s wheat pathology team and collaborators reported the identification of a novel and consistent QTL—Qwb.cim-7D—which provides significant resistance to wheat blast independent of the 2NS translocation.

The donor bread wheat line, Gladius*2/KU 2097, inherited its resistance from the resistant Ae. tauschii accession ‘KU-2097’. Field experiments were conducted at two Precision Phenotyping Platforms (PPP) in Bolivia (Quirusillas and Okinawa) and one PPP in Bangladesh (Jashore), under artificially inoculated conditions—ensuring a robust evaluation of resistance. The QTL was mapped to the long arm of chromosome 7D, where it explained between 7.7% and 50.6% of the phenotypic variation across different environments. This is a significant finding, as previous studies identified non-2NS resistance loci with typically small effects (less than 10%) and inconsistent performance. In contrast, Qwb.cim-7D is the first moderate-effect QTL to demonstrate stable resistance across multiple field conditions.

To facilitate its adoption in breeding pipelines, researchers successfully converted the flanking DArTseq markers into KASP markers—enabling more efficient marker-assisted selection.

Importantly, Qwb.cim-7D provides approximately half the resistance effect of 2NS, highlighting its value as a complementary resistance factor. When deployed through gene pyramiding strategies alongside 2NS and Rmg8, this new QTL could help breeders develop varieties with stronger and more durable resistance to the evolving wheat blast pathogen.

This breakthrough marks a turning point in global wheat blast resistance breeding. It addresses the urgent need to diversify the genetic basis of resistance and equips breeders with a viable new tool to safeguard wheat yields. As wheat blast continues to threaten food security in key regions, the introgression of Qwb.cim-7D into breeding programs offers a promising path toward enhanced crop resilience and improved farmer protection.

Nigeria Releases Hybrid Pearl Millet to Boost Nutrition and Climate Resilience

As a key partner in the release of Nigeria’s first biofortified hybrid pearl millet varieties, CIMMYT contributed its scientific expertise and commitment to advancing climate-resilient, nutrition-rich crops for smallholder farmers. Collaborating closely with ICRISAT, HarvestPlus, and the Lake Chad Research Institute (LCRI), CIMMYT played a pivotal role in supporting the development and scaling of high-yielding, early-maturing millet hybrids enhanced with iron and zinc. This effort reflects CIMMYT’s broader mission to strengthen agrifood systems through innovation and partnership, addressing the dual challenges of malnutrition and climate stress while empowering rural communities across Nigeria’s drylands.

Read the full story.

Double the Harvest, Double the Income: Intercropping for Yield, Income and Security

In the quiet villages of eastern India, a transformation is unfolding—led by smallholder farmers and powered by the science of intercropping.

“I got a good price for the cabbages, and I’m hopeful maize will do just as well. Look at it—it’s healthy and thriving,” says Nirmala Devi with a proud smile. At 45, Nirmala tends her small farm in Butijhari village, Kishanganj, Bihar.

She is one of 20 women in her village redefining farming through knowledge-sharing, new skills, and small-scale entrepreneurship.

In her maize field, Nirmala Devi proudly displays the remaining cabbages from her intercrop harvest, now set aside for livestock fodder after sale and household consumption (Photo: Nima Chodon/CIMMYT)

“For the past two rabi (winter) seasons, we’ve been practicing intercropping with maize, Nirmala says, gesturing toward her fields. “We not only sell what we grow – cabbage, garden pea, beans, spinach, etc – but also exchange it among ourselves, depending on what we need at home.”

This approach has brought more than just additional income. It’s improving household nutrition, providing animal fodder, and increasing land productivity by growing two crops in the same plot during the rabi season.

Growing Together

Not only in villages of Kishanganj, into the villages of Coochbehar and Malda in West Bengal, farmers are seeing similar results. Now in their second year with the CIMMYT-led intercropping project, they are seeing substantial benefits—improved yields, additional income, and greater resilience against climate and or the failure of any single crop.

While intercropping isn’t new, this approach is different. CIMMYT and its partners, supported by the Australian Centre for International Agricultural Research (ACIAR), are promoting additive intercropping in wide-row staple crops like maize across India, Bangladesh and Bhutan.

Swaraj Dutta from Dr. Kalam Agriculture College under Bihar Agriculture University, working on the project, explains how this works: “We help farmers adjust the way they plant maize—either 60-60 cm spacing in single rows or a paired-row system at 30-90 cm. Between these rows, short-duration vegetables like cabbage, spinach, or legumes thrive early in the season.”

Maize and More

“The intensive cultivation of rice and maize (and previously wheat) is placing significant stress on natural resources and is becoming increasingly unsustainable in the face of growing climate change challenges. Yet, many farmers continue with these practices, even as returns diminish, due to a fear of diversifying,” explains Biplab Mitra of Uttar Banga Krishi Viswavidyalaya (UBKV), the university is supporting the intercropping project in Coochbehar and Malda districts of West Bengal.

“Traditionally, maize has been grown densely and often as a monocrop following rice in these regions. However, maize’s adaptability to both kharif and rabi seasons presents an opportunity to shift away from this unsustainable pattern”, added Mitra.  Through intercropping maize with vegetables during the rabi season farmers are now exploring more diversified and resilient farming systems that reduce pressure on resources and improve income potential.

“We used to grow only maize after rice,” says Santos Deb from Dinhata village, Coochbehar, standing proudly beside his wife Sochirani Deb. “But now, following the advice of scientists from UBKV, we intercrop. Two different crops, one cereal and one vegetable from the same field in the same season—that’s something we never attempted.”

On just 800 square meters, Barman adopted paired-row planting and added vegetables between maize rows. After covering input costs, he earned an additional â‚č15,000–17,000 (US$180–200) for the vegetables, gained fresh food for the family, and produced fodder for their livestock. “This has been very rewarding for us. I have started growing in all my plots now,” he beams. “We’ll keep intercropping every rabi season throughout our lives.”

Intercropping offers a crucial buffer against climate-related risks by providing farmers a valuable source of additional income during the rabi season. Adverse weather events such as high winds, untimely late-season rains or storms often cause maize to lodge, resulting in significant yield losses and reduced income. By adopting intercropping, farmers can cover production costs earlier in the season and minimize exposure to climate-related economic losses.

 

Farmer Santos Deb and his wife Sochirani stand on their intercropped farm, where they grew vegetables alongside maize to boost both income and household consumption (Photo: Nima Chodon/CIMMYT)

Some farmers, like Kamal Ganesh from Chapati village in Kishanganj, see intercropping as a form of security against unpredictable harvests. “I grew cabbage and cauliflower under the project. Due to unavoidable circumstances, I was delayed in applying fertilizer and irrigating my maize crop, so the maize yield may be poor this harvest. But I’ve already earned a profit from the vegetables. Having a second crop in the same field acts as a safety net—if one fails, the other can still bring returns,” he explains.

Looking Ahead

Researchers assert that the project’s introduction of vegetable intercropping with maize offers new opportunities for diversification and resilience in the agriculture sector already stressed by climate change.

For many farmers, this is just the beginning. Alison Laing, leading the intercropping project at CIMMYT, shares her optimism: “This is only our second harvest across India, Bangladesh, and Bhutan, and already we’re seeing encouraging results. More and more farmers want to try it next season.”

Intercropping with sugarcane, on-station research trial fields at the Indian Institute for Farming Systems Research (ICAR-IIFSR), Meerut, Uttar Pradesh, India (Photo: Nima Chodon /CIMMYT)

Laing noted that further adjustments, including crop selection based on management needs, market value, and nutritional benefits, as well as efficient fertilizer use and market linkages, are being explored by researchers to enhance sustainability and broader adoption. “Apart from maize, we’ve also introduced intercropping in sugarcane fields in Meerut, Uttar Pradesh, in collaboration with the Indian Institute for Farming Systems Research (ICAR-IIFSR). We will review and analyse the results from the past two years in both maize and sugarcane practices to better understand farmers’ needs and support wider adoption,” she added.

Wide Row, Additive INTERCROPPING Project, led by CIMMYT and funded by ACIAR, is a 5-year initiative (launched in 2023) bringing together research institutions and agriculture scientists from India, Bangladesh and Bhutan to help smallholder farmers boost yields, increase their resilience to climate change and improve nutrition.  

Ethiopia’s Offer to China, Mexico On Agricultural Modernization

CIMMYT is a key partner through which Mexico supports Ethiopia’s efforts to modernize its agricultural sector. During a meeting with the Mexican Ambassador to Ethiopia, Minister of Agriculture Dr. Girma Amente reaffirmed the country’s interest in working with Mexico to promote agricultural technologies, enhance the value chain of Bonga Products, and develop areas such as irrigation, durum wheat, soil health, and the Green Legacy initiative. He specifically requested that Mexico continue its support through CIMMYT and encouraged Mexican private investors to engage in processing agricultural products and meeting the growing mechanization needs of Ethiopian farmers.

Read the full story.

Sugar Signalling Breakthrough Could Increase Wheat Yields by Up to 12%

Extensive multi-year field trials conducted by CIMMYT in Mexico played a pivotal role in validating the efficacy of the Trehalose 6-phosphate (T6P) spray treatment, confirming its potential to boost wheat yields by up to 12%. Despite challenges posed by fluctuating rainfall—an increasingly common constraint under climate change—CIMMYT’s trial plots consistently outperformed untreated controls across four consecutive crop cycles. These results underscore CIMMYT’s leadership in translating laboratory innovations into resilient, field-ready solutions that enhance food security while advancing sustainable agrifood systems in diverse agroecological conditions.

Read the full story.

Caring for the Earth to Secure the Future

The first leaves of a crop emerging through crop residue. (Photo: CIMMYT)

“The conventional way we used to prepare the land involved heavy soil disturbance, and now we see that’s not necessary. We used pesticides that were, let’s say, not kind to the soil. Now, we are becoming increasingly mindful of the environment — and it turns out to be more profitable. Today, I wouldn’t dare use a pesticide or any polluting product that could harm people or the environment.”

Leopoldo is a farmer from Sinaloa participating in the Supporting Responsible Sourcing in Mexico project — a collaboration between Kellogg Company and CIMMYT. For him, ceasing the practice of burning crop residues and instead using them to cover and protect the soil from erosion signifies a shift in values and a better way of practicing agriculture — one that actively contributes to regenerating the Earth.

The agronomic innovations adopted by farmers involved in the project promote a more balanced relationship with nature, aiming to strengthen a responsible sourcing model that ensures equilibrium between the economic, social, and environmental needs of both current and future generations. This contributes to a more sustainable production and consumption model, capable of feeding a growing global population within planetary boundaries.

If current patterns of production and consumption persist, it is estimated that in less than 30 years we would require the resources of three Earths to meet global needs. The rising scarcity of water and the reduction in arable land—driven by urban expansion and soil degradation—are clear reminders that our planet’s natural resources are finite. These facts underline the urgent need to accelerate the adoption of sustainable practices in agrifood systems.

Within the observance of International Mother Earth Day, efforts like the Supporting Responsible Sourcing in Mexico project serve as a reminder of the importance of forging a new relationship with the planet. Above all, they emphasize recognizing the Earth and its ecosystems as the shared home of all humanity. Failing to care for this home could lead us into further crises — in health, socioeconomic stability, and food security — and agriculture offers powerful solutions to safeguard this common home.

Globally, the agriculture sector is responsible for 24% of greenhouse gas emissions — which contribute to climate change — and 70% of freshwater withdrawals from rivers, lakes, and aquifers. Additionally, for every 1°C increase in global temperature, cereal yields are estimated to decrease by about 5%. Therefore, a new model of sustainable production and consumption must aim for reduced environmental impact, while increasing productivity and delivering benefits for farmers.

The Conservation Agriculture practices promoted by the Kellogg-CIMMYT project are advancing these goals: in just three years of work in Sinaloa and Guanajuato, nearly 7,000 hectares have adopted sustainable agricultural practices, leading to a 36% increase in average maize productivity. In 2021 alone, more than 350 farmers were engaged across over 2,400 hectares, producing nearly 26,000 tons of yellow maize through sustainable intensification technologies.

Looking ahead, the initiative aims to impact around 20,000 hectares to produce close to 180,000 tons of maize with a reduced carbon footprint. Already, farmers have achieved reductions in fuel use for grain production and improved water-use efficiency in irrigation.

“We save on machinery, on fuel, on agrochemicals, and on fertilizers. Now we produce with higher quality and at a lower cost because we practice minimal tillage. They also teach us integrated pest management and even how to optimize fertilizer use,” says Leopoldo, highlighting a system that also eliminates crop burning, one of the leading causes of wildfires.

By providing farmers with the knowledge and tools they need to integrate sustainable production methods, we benefit not only the Earth — but all of humanity.

Strengthening One Health Approach in Agriculture Requires Cross-Sectoral Partnerships, Information

The One Health approach, which connects human, animal, and environmental health, is increasingly shaping agricultural research to address global health and food security challenges. During CGIAR Science Week, experts highlighted the need for cross sector collaboration and evidence based policy. CIMMYT’s Dr. Jordon Chamberlin shared how research on livestock health and sustainable farming aligns with this approach, supporting integrated solutions for resilient agrifood systems.

Read the full story.