Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

CSISA: Making a Difference in South Asia

Anu Dhar, Cynthia Mathys, Jennifer Johnson

Staff members of the Cereal Systems Initiative for South Asia (CSISA) are developing and implementing projects aimed at improving agricultural production and standards of living for farmers in South Asia, with excellent results. At their “Seed Summit for Enhancing the Seed Supply Chain in Eastern India” meeting in Patna, Bihar on 14-15 May they worked to design solutions to improve the delivery of high-yielding seed varieties in eastern India, a region that has traditionally suffered from lack of access to these varieties and low seed replacement rates. The meeting, which included over 60 seed experts from the government, research and private sectors, focused on topics such as better-targeted subsidies on seeds, improved storage infrastructure and stronger extension systems to increase accessibility and adoption of improved seed varieties.

The roundtable “Sustainable Intensification in South Asia’s Cereal Systems: Investment Strategies for Productivity Growth, Resource Conservation, and Climate Risk Management” was held on 19 May in New Delhi. It brought together 20 firms and entrepreneurs to build collaborative action plans and joint investment strategies under CSISA to identify new product tie-ins, joint ventures, technical collaborations and shared marketing channels in order to bring high-tech farming ideas to India’s risk-prone ecologies.

In India, CSISA seeks to increase crop yields through the provision of more accurate, location-specific fertilizer recommendations to maize and rice farmers with the “Crop Manager” decision-making tool. The web-based and mobile Android application uses information provided by farmers including field location, planting method, seed variety, typical yields and method of harvesting to create a personalized fertilizer application recommendation at critical crop growth stages to increase yield and profit.

CSISA-Nepal has initiated a series of participatory research trials in farmers’ fields, in order to promote maize triple cropping, the practice of planting maize during the spring period after winter crop harvesting, when fields would usually be fallow. The practice, while proven to be highly remunerative, is not widely popular. The trials seek to determine optimum management practices for maize in order to encourage triple cropping and to generate additional income for farmers.

Greater gender equality in agriculture is also an important goal of CSISA, supported through the creation of Kisan Sakhi, a support group to empower women farmers in Bihar, India by “disseminating new climate-resilient and sustainable farming technologies and practices that will reduce women’s drudgery and bridge the gender gap in agriculture.” A CSISA-Bangladesh project has already had a positive impact on the lives of rural women, providing new farming and pond management techniques that have helped them to greatly increase the productivity of their fish ponds and gain new respect within their families and communities.

Recent activities and accomplishments of the Agricultural Innovation Project (AIP) for Pakistan

The Agricultural Innovation Project (AIP) for Pakistan, led by CIMMYT and funded by USAID, has accomplished a great deal since its inception in March 2013. Among this year’s most notable AIP achievements by partner institutions were numerous training sessions and workshops, important vaccine developments, progress in baseline surveys and advances in seed improvement and distribution.

In May, 25 stakeholders involved in dairy production received training on the seven rapid assessment (RA) tools developed and modified by the International Livestock Research Institute (IRLI). Another 25 stakeholders involved in small ruminant production were given training on the small ruminant value chain rapid assessment (SRVC RA) tools by scientists from the International Center for Agricultural Research in the Dry Areas (ICARDA). On 4 June, a wheat seed value chain workshop organized by CIMMYT in collaboration with the Cereal Crops Research Institute (CCRI) and the Pakistan Agricultural Research Council (PARC) was held at CCRI in Nowshera, Khyber Pakhtunkhwa Province (KPP).

Nearly 50 actors in the wheat seed value chain participated in the workshop, in order to analyze gaps and identify opportunities in the KPP wheat seed system. A “training of trainers” was organized by the International Rice Research Institute (IRRI) on developing and validating a local rice crop check system at Engro Eximp, Muridke, Sheikhupura for seven field staff of the private sector on 24 June.


The World Vegetable Center held a series of customized training workshops with its partners in order to identify gaps, exchange experiences and to further streamline the Center’s activities among public and private partners. Advances have also been made in improved maize seed under the AIP maize component, which evaluated the performance of about 220 recently introduced maize varieties against locally available checks in spring 2014. Preliminary results from the harvested sites show the good selection potential of introduced maize varieties, which consisted of early to intermediate maturity, climate-resilient and bio-fortified white and yellow kernel hybrids and open pollinated varieties.

Best or comparable varieties identified will be further tested to fulfill variety release procedures. With the help of ILRI, the production of the Peste des Petits Ruminants (PPR) vaccine in Pakistan will soon be improved. The version of the vaccine currently produced in Pakistan is thermo-stable at 35˚C, while the version of the vaccine produced by IRLI is thermo-stable at 45˚C and is therefore more resistant to damage and able to be kept at a wider variety of temperatures.

Dr. Jeff Mariner, a former ILRI employee, visited Pakistan in June and conducted a technical audit of the production process in the two laboratories that produce the PPR vaccine. An action plan that includes training and production of a first batch of vaccine based on ILRI’s vaccine composition was created based on this audit, and will be implemented in August in order to help Pakistan create a more heat-resistant variety of the PPR vaccine.

AIP staff members have also worked this year to address the issue of quality fodder for livestock in Pakistan by promoting the growth of spineless cactus on range-land. AIP Livestock, in collaboration with the Rangeland Research Institute (RRI) of the National Agricultural Research Council (NARC), held a farmer’s field day at NARC on 15 May to train farmers in the advantages and methodology of growing spineless cactus. Forty farmers participated, and many have since planted spineless cactus on their lands. IRRI, in collaboration with Engro Exemp, distributed 600 kilograms (kg) of certified, high-yielding Basmati-515 rice seed to 30 farmers in the Punjab region to scale up the adoption of this variety. Basmati-515 has good quality attributes and a comparatively short growing duration, and is an excellent supplement to super basmati, which has lost its yield potential and is also prone to damage by insects and diseases.

One hundred kg of high-yielding, salt-tolerant seed of low phytate rice variety NIAB IR-9 was also distributed to farmers in Usta Muhammad in Balochistan. In addition, IRRI is working to promote mechanized dry rice seeding in Pakistan; a method which uses significantly less water than rice cultivated using the conventional planting method and is much easier to harvest. IRRI scientists, with the help of local farm machinery manufacturer Greenland Engineering, have identified a proper seed drill for direct dry seeding, which they are popularizing through the creation of public and private partnerships.

In addition, AIP reports that baseline surveys for wheat and conservation agriculture as well as vegetables and mung bean value chains are in progress in Pakistan’s four provinces. A maize baseline survey will be launched in August, and will interview more than 500 maize growers. The CIMMYT socio-economics team is also preparing to initiate durum wheat value chain studies in Pakistan, which will target producers, millers, food processors, seed companies, dealers, consumers and restaurants. A total of US $82,829 in funding was awarded to 14 research and extension projects, including: three projects related to grape and mango processing from PMAS Arid Agricultural University, Rawalpindi; seven projects on citrus from a research group at Citrus Research International; and four projects focusing on mangoes from faculty at the Institute of Horticulture and Institute of Food Science and Technology at the University of Faisalabad.

UC-Davis and the AIP Perennial Horticultural Project in-country coordinator will conduct the first review of these funded projects in September. Looking to the future, AIP partners chaired by UC-Davis met in Islamabad in June and created a working group for vocational training, which collaboratively planned cross-institute vocational training activities. The top priorities are to implement a short course on proposal writing that will enable the collaborators to prepare highquality proposals for upcoming competitive grant submissions on AIP call, as well as statistics courses that cater to the specific needs of trials and breeders.

Sustainable intensification (GCAP)

Go back to Conservation Agriculture

The primary purpose of the CIMMYT Global Conservation Agriculture Program (GCAP) is to co-develop sustainable intensification options for and with smallholder farmers in maize- and wheat-based farming systems in Latin America, Africa and Asia. Doing so contributes to CGIAR intermediate development outcomes on food security and poverty reduction. GCAP initially focused on conservation agriculture (CA) principles and high-quality, site-specific field agronomy research in a wide range of agro-ecosystems. Over the past few years, GCAP broadened its research portfolio in close collaboration with the CIMMYT Socio-Economics Program (SEP) to more holistically address sustainable intensification pathways and tackle adoption and adoptability of technical innovations.

In short, sustainable intensification of agriculture seeks to increase farming enterprises’ productivity in regard to land, water, labor and input productivity of farming enterprises in a socially equitable manner while preserving the natural resource base and the environment. This is easier said than done as the sustainable intensification paradigm requires understanding of the complex interactions (synergies and trade-offs) between bio-physical, environmental and socio-economic/market/policy factors at different scales/levels (field, farm, landscape, regions) in order to develop viable options in changing rural environments.

Not being ‘lost in, but dealing with complexity’ is GCAP staff members’ primary concern in order to achieve impact at scale and propose site- and farm-specific integrated adoptable solutions. This requires the use of systems research approaches and the development and use of conceptual frameworks. An example of this is the partnership with Wageningen University funded by the MAIZE and WHEAT CRPs.

Reaching impact at scale also requires strategic partnerships with a wide range of stakeholders – from advanced research institutions to government and private extension agencies, non-governmental organizations (NGOs) and the private sector. GCAP’s flagship projects in South Asia (CSISA), Africa (SIMLESA) and Mexico (MasAgro/TTF) were all designed specifically to use agricultural research for development (AR4D) to intensify farming systems. At the same time, these projects implement innovative approaches with effective methodological use of gender and innovation. A specific program to backstop gender and innovation in GCAP projects is led by the Royal Institute of the Tropics (KIT) of the Netherlands and funded by the MAIZE and WHEAT CRPs.

GCAP operates on the principles that technical innovations and scientific progress have great potential to help smallholder farmers when properly put in context. Therefore, a large part of the GCAP research portfolio is still focused on technical innovations and on the following themes:

  • Conservation agriculture and its contribution to sustainable intensification (i.e. the Nebraska Declaration).
  • Small-scale mechanization and labor saving technologies (i.e. the FACASI project).
  • Decision support tools (DSTs) for site-specific nutrient/water management and precision agriculture/remote sensing for smallholders farmers.
  • Effective use of information and communication technologies.

For more information, please contact: Bruno Gerard (b.gerard@cgiar.org)

Strategic research theme leaders for sustainable intensification:

In East and Southern Africa: Peter Craufurd (p.craufurd@cgiar.org)
In South Asia: Andrew McDonald (a.mcdonald@cgiar.org)
In Latin America: Bram Govaerts (b.govaerts@cgiar.org)

 

When rural farmers are given a voice: successful farmers share their experience with sustainable intensification

When traveling from Chimoio to Tete along one of the main roads in central Mozambique, one inevitably passes through Malomue, a small rural village in Báruè District. Since 2008, conservation agriculture (CA) technologies and improved drought-tolerant maize varieties have been promoted to farmers through various donor-funded projects, including a USAID-funded Feed the Future initiative.

In the past, farmers in the area would cultivate their land, clear the surface of all protective cover and burn the residue from the previous cropping season. The main food security crop in the area is maize, and due to lack of access to improved seed, lowyielding landraces were often planted. The introduction of improved agriculture technologies developed and tested by the Platform of Agriculture Research and Innovation (PARTI) and the Collaborative Research Support Program (CRSP) of the Sustainable Agriculture and Natural Resource Management Lab (SANREM) at Virginia Polytechnic Institute and State University (Virginia Tech) implemented in collaboration with the University of Tennessee, have brought significant change to Malomue. Farmers have been exposed to improved seed, fertilizers, improved weed management practices and more sustainable planting techniques based on conservation agriculture principles and practices.

Josè Leuane Dicane, a rural farmer from the community with approximately 15 hectares of cultivated land, said, “The first lesson I learned is that no fire should enter my plots, and I have managed to avoid burning grass from my neighbors.” Dicane also appreciates the reduced labor required when chemical weed control options and direct seeding techniques are used, as well as the increased moisture retention and fertility increases when legume crops are rotated and crop residues are kept on the soil surface. Improved drought-tolerant maize varieties, developed by CIMMYT and extended through Mozambican private seed companies, have further increased the yields on the fields of farmers such as Dicane. Dicane and his large family have become food self-sufficient. He has planted a garden where he produces higher value horticulture crops under small-scale irrigation, and has become an emerging commercial farmer by successfully selling his produce at a profit in the nearby town of Catandica.

The project has identified him as one of the most visionary and successful farmers in central Mozambique, worthy of sharing his experiences with others in the world. With support from USAID, Dicane and his wife were invited to go to the United States to attend a meeting of SANREM/CRSP. On 16 May, Dicane and his wife Judisse boarded an airplane on their way to the U.S. Neither had ever flown, stayed in a hotel or seen the world outside of Mozambique. This was the experience of a lifetime for them. During the SANREM/CRSP meeting on 20 May, they shared their new farming expertise with other participants and farmers. They spoke as if they had presented to an audience many times. Their very impressive report on the lives of rural farmers from Mozambique made a difference to many of the participants. The farmers from Malomue have been given a voice and the opportunity to describe the gradual changes in their lives. The changes might be small, but viewed through another lens, they are also groundbreaking.

CCAFS study finds limited potential of no-till agriculture for climate change mitigation

By Clare Stirling/CCAFS

A study funded by the Climate Change, Agriculture and Food Security (CCAFS) CRP involving three CIMMYT staff and an international team of scientists has just been published in the journal Nature Climate Change.

The authors of “Limited Potential of No- Till Agriculture for Climate Change Mitigation” conclude that claims relating to no-till agriculture’s role in slowing climate change may be overstated. No-till and reduced tillage are methods of establishing crops with minimum soil disturbance, in contrast to conventional tillage involving plowing or other cultivation practices.

No-till agriculture can deliver benefits in many, though not all, situations; these benefits include improved soil quality and retention of water in soil for use by crops. Therefore the technologies have a clear advantage in dry regions of the world. No-till usually leads to an increase in the concentration of organic matter near the soil surface. This is often interpreted as an absolute accumulation or “locking up” of carbon in soil, termed carbon sequestration; this has led to no-till being promoted as a form of climate change mitigation. This claim was recently restated in the 2013 Emissions Gap Report of the United Nations Environmental Programme (UNEP).

Contrast between maize grown in rotation with wheat, with zero tillage on the flat, and retention of all residues (left), with maize grown without rotation, with conventional tillage and removal of all residues (right), on long-term conservation agriculture (CA) trial plot D5 at CIMMYT’s headquarters, El Batán, Mexico. Photo: CIMMYT
Contrast between maize grown in rotation with wheat, with zero tillage on the flat, and retention of all residues (left), with maize grown without rotation, with conventional tillage and removal of all residues (right), on long-term conservation agriculture (CA) trial plot D5 at CIMMYT’s headquarters, El Batán, Mexico. Photo: CIMMYT

The review found that there was sometimes a genuine, but small, net accumulation of organic carbon in soil under no-till conditions compared with conventional tillage. However, much of the observed effects result from a redistribution of organic carbon with depth – extra organic carbon near the surface but less carbon in deeper soil. In addition, the soil sampling methods normally used tend to exaggerate the effect. Consequently the climate change mitigation achievable from converting to no-till agriculture is likely to be overstated. The authors of the new paper conclude that no-till agriculture has a role to play as one of the strategies contributing to global food security and the protection of soils, and thus to climate change adaptation (through building agricultural systems that are more resilient to climate and weather variability).

In regions where no-till or reduced tillage is agriculturally appropriate it should be promoted on these grounds, but not on the basis of equivocal evidence for climate change mitigation. Climate change mitigation is a small, but useful, additional benefit, not the key policy driver for its adoption. The review also states that those who promote no-till as a means of combating climate change frequently refer to the potential amount of additional carbon that may be stored, or sequestered, in soil. However, in the UNEP report and elsewhere, the barriers to adoption of no-till tend to be ignored.

The authors argue that there are numerous social, practical and infrastructural factors that can make its adoption difficult for farmers, particularly smallholder and resource-poor farmers in developing countries. These issues are being addressed by CIMMYT and others but progress in overcoming the barriers is often slow. Thus, even where there is a real potential for mitigating climate change, it is often difficult to achieve in practice.

Clare Stirling, CIMMYT-CCAFS Project Leader, said, “Overstating the climate change mitigation benefits of no-till is serious because it gives a falsely optimistic message of the potential to reduce climate change through altered agricultural practices.” She added, “Given that the climate change mitigation achievable through adoption of no-till is likely to be far less than claimed, there is even more pressure to decrease greenhouse gas emissions from other agricultural areas. In regard to wheat and maize – the two staple crops CIMMYT focuses on – improved nitrogen management is the key to low-carbon development.”

Precision farming down under at the National Centre for Engineering in Agriculture

In late June, while the great majority of the conservation agriculture community converged on Winnipeg, Canada, in the Northern Hemisphere, Dr. Francelino Rodrigues, a CIMMYT post-doctoral fellow in precision agriculture in the Biometric and Statistics Unit of the Genetic Resources Program, and Dr. Jack McHugh, a CIMMYT cropping systems agronomist in the Global Conservation Agriculture Program, ventured into the much colder Southern Hemisphere to take part in the Digital Rural Futures Conference at the University of Southern Queensland (USQ) in Toowoomba, Queensland, Australia.

Although the conference itself held considerable incentive to visit Australia, it was the National Centre for Engineering in Agriculture (NCEA) at USQ that was of greater interest, because of the possibilities for future collaborations in precision farming research and development (R&D). The NCEA was established in 1994 and specializes in engineering research relevant to the agribusiness sector and the natural resource base it utilizes. The center promotes research through extension, training and commercialization. Having worked at NCEA prior to CIMMYT, McHugh thought there were benefits in closer collaboration between CIMMYT and NCEA to take advantage of the precision agriculture R&D being conducted there.

Prior to the conference, Rodrigues and McHugh presented their work from Mexico and China, respectively, to NCEA staff. The discussion highlighted the complementary nature of the two organizations in the areas of precision agriculture, field monitoring, smart technologies and remote sensing. A tour of the NCEA ‘smart farms’ was the highlight of the conference for McHugh, who was able to see that much of his earlier work had been developed into significant applied instrumentation.

Rodrigues commented on the versitile multi-proximal sensor platform developed by McHugh at the NCEA: “The platform [on a motorbike] allows simultaneously on-the-go measurements of apparent soil electro-conductivity and the normalized difference vegetation index (NDVI), which gives a tremendous advantage compared with stop-and-go measurements. It’s something we started to do with a wood sled in the past year at CIMMYT’s experiment station in Obregón, but the motorbike would definitely create a new opportunity for fast and efficient measurements during crop growth.”

According to the NCEA, the farming system of the future will have robotic sensing systems and decision support tools that interface seamlessly with commercial on-farm operations to optimize resource usage. The NCEA is working on components of this, but much of what the CIMMYT researchers saw could be applied immediately to current farming systems and already includes considerable integration. Some of the systems displayed were controlled remotely by tablets and interfaced on large screen monitors that displayed real-time feedback of sensors, machinery and field activities including the following: smart weed spot sprayers that are able to differentiate crops from weeds based on reflectance and leaf shape; aerial vehicles with multispectral and thermal sensors; and irrigation monitoring for water scheduling.

Smart weed spot sprayer working with reflectance and leaf shapes to differentiate crops from weeds.

Other sensors on display included NDVI sensor platforms, automated cone penetrometers, sensor-equipped bee traps and automated adaptive control of furrow irrigation systems. Of particular note was the augmented reality (AR) for real-time interactivity with on-farm devices and information. AR automatically filters information from online sources based on the user’s current location and viewing perspective, using the camera in a tablet or smartphone. AR markers in the ‘real-world’ (e.g., weather stations, pumps, field sensors, crops and more) can be discovered and online information can be retrieved. The data is merged into the device’s real-world observation, and the user can interact with the content to control and configure machinery. The next step is to build collaboration between both institutes. McHugh and Rodrigues are looking forward to the identification and application of the NCEA technology through future research exchanges and project development.

CIMMYT-led climate project is finalist at Asia Mobile Tech Awards

By Katie Lutz 

A CIMMYT-led project was named as a finalist for the 2014 mBillionth Award South Asia thanks to its mobile platform that helps farmers adapt to changing climate conditions.

“Dissemination of climate-smart agro-advisories to farmers in CCAFS benchmark sites of India” was launched in August 2013 under the leadership of Dr. Surabhi Mittal, a senior agricultural economist based in India, in cooperation with the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). In the past 10 months, the project has helped 1,200 male and female farmers in eight Indian villages to gain more knowledge about climate-smart technology and adopt technologies to lessen their risks from climate fluctuations. The project also measured how receiving information on mobile telephones will affect farmers.

More than 300 entries were submitted for the award, which honors the most influential and leading practices in the mobile and telecommunications industry in South Asia. It was presented 18 July by the Digital Empowerment Foundation and Vodafone in a ceremony at the India Habitat Center. The CIMMYT project received acknowledgment for its impact on small farmers from Sanjeev Gupta, joint secretary of the Indian Ministry of Agriculture, and M.V. Ashok, chief general manager of the National Bank for Agriculture and Rural Development.

CIMMYT’S director general, Dr. Thomas A. Lumpkin, congratulated everyone involved with the project. “This shows your technological leadership,” he said in a staff email announcing the award. “Use this to energize your activities.”

Boosting productivity of smallholder farms in Nepal, India and Bangladesh

By Mahesh Gathala, TP Tiwari, Pat Wall/CIMMYT

CIMMYT will lead a new research initiative to make agriculture more productive, profitable   and sustainable for smallholder farmers in the Eastern Gangetic Plains (EGP) of Nepal, Bangladesh and India.
Launched in Dhulikhel, Nepal, on 4 July, the five-year  US$6.8 million regional research initiative, Sustainable  and Resilient Farming Systems Intensification in  the Eastern Gangetic Plains (SRFSI), will tap the  agricultural potential of the area and target 7,000  farmers to test and adopt appropriate new technology  and farming approaches.

The program, funded by the Australian Centre for International Agricultural Research (ACIAR), will operate in eight districts: two in northwest Bangladesh, two in the eastern Terai of Nepal and two each in the Indian states of Bihar and West Bengal.

The three-day Inception and Planning Meeting that launched the program was attended by 84 participants from Australia, Bangladesh, India, Mexico and Nepal.  SRFSI is managed by CIMMYT on behalf of multiple partners including the national research and extension systems of Bangladesh, India and Nepal, Indian and Australian universities, national and international nongovernmental organizations, the Commonwealth Scientific and Industrial Research Organisation of Australia and four CGIAR Centers (CIMMYT, the International Rice Research Institute, the International Food Policy Research Institute and the International Water Management Institute).

The project was officially initiated by the Australian Ambassador to Nepal, Glenn White, together with the Executive Director of the Nepal Agricultural Research Council (NARC), Dr. Dil Bahadur Gurung; the Joint Secretary of the Nepal Ministry of Agricultural Development, Dr. Rajendra Prasad Adhikari; Dr. Claire Glendenning of the Australian Department of Foreign Affair and Trade; and Dr. John Dixon, principal adviser for ACIAR.

“This initiative will help to raise agricultural productivity in a region which has the potential to become one of Asia’s great food bowls,” White told the gathering of scientists and development practitioners.

The EGP is home to some 300 million people, with the world’s highest concentration of rural poverty and a strong dependence on agriculture for food security and livelihoods. The region is dominated by small farms with many female farmers who have little access to credit, quality seeds, fertilizers, irrigation or formal extension services. They also have to contend with climate-related risks and extreme events such as floods, drought and cold snaps.

“This program will allow farmers to test a range of innovations to help them boost food production, including conservation agriculture and efficient use of water resources, while strengthening their ability to adapt and link to markets and support services,” White said. “Our aim is to enable at least 130,000 farmers to adopt these technologies within the next 10 years.”

Gurung and Adhikari lauded the long-term partnership between CIMMYT and Nepal, as well as the ACIAR support of this project, and assured that the Ministry will extend its full support.

Key Objectives of the SRFSI

The Eastern Gangetic Plains region has the potential to become a major contributor to South Asian regional food security, but rice and wheat productivity remain low and diversification is limited because of poorly developed markets, sparse agricultural knowledge and service networks, and inadequate development of available water resources and sustainable production practices. Labor shortages – mainly during sowing and harvesting – are becoming more acute. These factors lead to smallholder vulnerability to climate and market risks that limit investments in new technologies.

SRFSI will undertake several high-priority activities to reduce these factors:

• Improving farmers’ access to inputs, services and market information in order to reduce the risk associated with adopting new practices.

• Removing policy barriers to technology adoption.

• Analyzing the appropriateness of technologies, service provider models, markets and policies for women farmers, and adjusting them where necessary, to help ensure food security and gender equity in the region.

• Developing new knowledge among farmers, researchers, extension and change agents, service providers, agro-dealers and others involved in agriculture. This has been identified as the key to achieving widespread adoption of new technologies and reductions in poverty in the EGP.

• Investing heavily in capacity building at multiple levels, from field days to short courses to linkages with advanced research institutions. Ultimately the project focal communities, where all aspects of the project activities are put into place to achieve the desired change, will become demonstration or learning sites for institutions or individuals interested in agricultural development, where they can observe the technological changes and talk with farmers and farmer organizations about the importance of the different components of the project in bringing about agriculture change.

SIMLESA Phase II up and running

By Gift Mashango and Mekuria Mulugetta

Members of the project management committee discussed SIMLESA’s second phase during a 1 July planning meeting in Addis Ababa.

Phase II of the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa project (SIMLESA) began 1-4 July with a series of planning meetings in Addis Ababa, Ethiopia. SIMLESA-II is a five-year project funded by the Australian Centre for International Agricultural Research (ACIAR).

Members of the project   management committee   (PMC) met on 1 July  to ensure that management and  implementing partners have a  common understanding of project  objectives, targets, milestones,  indicators and the assignment  of coordination responsibilities.  The PMC includes Olaf Erenstein,  director of the Socio-economics  Program; Bruno Gérard,  director of the Conservation  Agriculture Program; Mekuria  Mulugetta, SIMLESA project coordinator; Daniel Rodriguez  of the Queensland Alliance for  Agricultural and Food Innovation;  and Peter Craufurd, SIMLESA strategy leader.

Based on lessons learned from SIMLESA’s first phase, the PMC adjusted the design of activities, timelines and strategies for scaling out SIMLESA practices to farmers.  One recommendation was to assign a coordinator to each of SIMLESA’s four objectives: Paswel Marenya for objective one, Isaiah Nyagumbo for objective two, Peter Setimela for objective three and Michael Misiko for objective four. The PMC noted that during the first phase, research scientists were operating in silos, and they urged the scientists to work as a team since the project objectives and activities are more closely linked in the second phase.

Olaf Erenstein, director of CIMMYT’s Socio-economics Program, addressed CIMMYT scientists, SIMLESA national coordinators and partners during a SIMLESA planning meeting.

The PMC also appointed a committee to spearhead the selection of partners for competitive grants in each country. The committee will consist of the national coordinator for each of the five target countries, an ACIAR representative, a project steering committee member, the objective four leaders and a PMC member. The two new partners, the International Livestock Research Institute and the International Center for Tropical Agriculture, are responsible for forage- and soil science-related activities, respectively.

A joint meeting with SIMLESA country coordinators was held on 3-4 July. The coordinators gave presentations on achievements of the first phase and lessons learned, plus the challenges and strategic plan for the second phase. Planned project activities for the second phase are not homogeneous across the SIMLESA countries; they are guided by the country’s priorities, the amount of support that will be required and the opportunities for scaling out. Discussion centered on strategies to scale out new technologies to more than 650,000 small-scale farmers by 2023.

At the end of the meeting, all participants agreed on an implantation plan that will be further refined at the national level during country-specific planning and review meetings.

Bolivia and CIMMYT partner to boost sustainable grain production

By Ricardo Curiel/CIMMYT 

Nemesia Achacollo, Bolivia’s Minister of Rural Development and Land, joined CIMMYT Director General Dr. Thomas A. Lumpkin in the lobby of the Borlaug building during her visit earlier this year. The two signed a scientific collaboration agreement to strengthen food security in the Andean country last week in Bolivia.

Bolivia became the first  country in South America   to adopt the sustainable intensification strategy for agriculture that CIMMYT has used successfully in Mexico with the Sustainable Modernization of Traditional Agriculture project (MasAgro), and in countries in Africa and Asia through similar projects. The project in Bolivia will develop new, high-yielding maize varieties adapted to the country’s growing conditions that will be commercialized by the local seed sector. The project also plans to develop and to transfer new technologies for sustainable farming practices based on conservation agriculture principles. “When combined, these factors account for higher and more stable yields, and contribute to mitigate agriculture’s impact on the environment,” said CIMMYT Director General Dr. Thomas A. Lumpkin.

The agreement was signed during the “Day of Collaborative Evaluation of Maize Research” organized by INIAF. Hans Mercado, INIAF Executive Director General, outlined the main activities planned for the three years of work that have been initially approved for the project. These include: analyses of  commercial and family agriculture  systems to improve their economic  and ecologic performance; breeding  of maize varieties adapted to  Bolivia’s growing conditions; advice  on the development of a seed  production system that includes  private and public players; and  capacity building and training of  human resources at different levels  of specialization.

The ceremony was hosted by Bolivia’s Minister of Rural Development and Land, Nemesia  Achacollo, who announced an  investment of US$ 350,000 per year  in the rural development project.  She noted that the agreement was reached following her visit to CIMMYT earlier this year, when she had an opportunity to see and learn about MasAgro achievements in Mexico. Achacollo also stressed that INIAF had already introduced two maize hybrids developed by CIMMYT that yield seven tons per hectare, double the average yield obtained in Bolivia.

“CIMMYT celebrates Bolivia’s vision and leadership in investing in research for rural development,” said Lumpkin. “We hope that more countries in the region will follow Bolivia’s example and adopt similar strategies to strengthen food and nutritional security while also protecting the environment.”

 

CIMMYT and Punjab agricultural research institutions partner to introduce multi-crop bed planter

By Imtiaz Hussain and Hafiz Nasrullah/CIMMYT

Farmers visiting cotton planted on wide beds with the planter.

CIMMYT and the Punjab Department of Agriculture Research have introduced a multi-crop bed planter system in Bahawalpur, Pakistan that can be used to plant crops such as cotton, maize, pulses, rice and wheat on raised beds while applying fertilizer at the same time. The Agronomy Research Station (ARS) and the Regional Agriculture Research Institute (RARI) are collaborating with CIMMYT to test and promote the planters in Punjab State.

To create awareness among the farming community in Bahawalpur, ARS and RARI held a field day on 26 June. More than 100 farmers and agriculture experts visited the cotton field that had been planted using the multi-crop bed planter, and Dr. Muhammad Akhter of ARS shared his experience in using the planter to plant cotton on wide beds. Farmers were impressed with the crop stand in the cotton fields and were later given a demonstration on planting mung bean with the planter.

Demonstration of mung bean planting with multi-bed crop planter.

Dr. Ghulam Hussain, director of RARI, highlighted the importance of using mechanical planting for different crops in order to save resources and time while also increasing yields. Dr. Muhammad Aslam of ARS said that planting on raised beds reduces the amount of water needed for irrigation by 30 to 40 percent and also improves crop yield by 15 to 25 percent.

An assistant agronomist at RARI, Dr. Hafiz Nasrullah, explained to farmers that they only need to purchase one planter, which can be used for various crops.  Farmers also learned that the multi-crop bed planter can be used to plant crops in residue and in zero tillage conditions, and that this would save them the cost of land preparation.

Farmers attending discussion and lectures on the field day in Bahawalpur.

 

Aslam and Chaudhary Bashir Ahmed, agriculture extension experts, assured farmers and researchers that the extension department would do its best to transfer the successful and productive technologies to the farmers after the pilot testing had been completed.

This effort to promote conservation agriculture in Pakistan is supported by Feed the Future U.S. Agency for International Development under the Agricultural Innovation Program.

Farmers in southern Africa reap benefits of conservation agriculture

CIMMYT’S Global Conservation Agriculture Program Manager, Irene Christiansen, received a first-hand look at the benefits and challenges of practicing conservation agriculture (CA) in southern Africa during a 9-13 June visit to the region.

Irene Chakoma of ILRI explains how livestock feeding trials have helped demonstrate the value of fodder crops to farmers.

On the first day, she met with scientists in the CIMMYT Southern Africa Regional Office and the country liaison officer, Dr. Mekuria Mulugetta. The scientists gave formal presentations of their key activities and how these are linked to GCAP activities in the region. The remainder of the week was enriched by site visits to project areas and partner meetings.

One of the highlights was a visit to the Integrating Crops and Livestock for Improved Food Security and Livelihoods in Rural Zimbabwe (ZimCLIFS) project, which is funded by the Australian Centre for International Agricultural Research. The project is joined by the International Livestock Research Institute (ILRI), CIMMYT, and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“Our work under conservation agriculture is focused on three aspects – food, feed and soil fertility management,” explained cropping systems agronomist Isaiah Nyagumbo. Christiansen met farmers who are testing different maize-legume systems, including fodder legumes. “The use of velvet beans and lablab as supplementary feed for livestock during the dry season is proving to be very popular among farmers,” said Irene Chakoma of the International Livestock Research Institute.

Photo: Jefias Mataruse

Another group of farmers, who are implementing ZimCLIFS trials in Goromonzi District, said they have benefited from learning new farming techniques such as growing grain and forage legumes for soil fertility improvement, growing crops for fodder and preparing hay bales from forage crops. One challenge they face is keeping maize residue on the fields, a key component of CA. Because of communal grazing, they said, most of the maize residue is eaten by livestock, leaving thatch grass species as the main source of residue for soil cover. “Residue application is the most labordemanding task for us when practicing CA, as it involves fetching grass from our field boundaries and from fields that are farther away,” one said.

To address this challenge, ZimCLIFS is testing the potential of using biomass from unpalatable legumes such as fish bean and common rattlepot. Finding innovative solutions to smallholder farmers’ problems is a key component of the program. “We are also testing the effects of different residue types in CA such as maize residues, grass and leaf litter and their interaction with nitrogen management in trials implemented in the 11 wards across Goromonzi and Murehwa districts,” reported cropping systems agronomist Walter Mupangwa.

Later in the week Christiansen visited a site near Bindura, Mashonaland Central, where farmers have been implementing CA with a CIMMYT team led by cropping systems agronomist Christian Thierfelder for the last 10 years. Farmers in the Pindukai Valley explained that they stopped using plows in all their operations after realizing the benefits of minimum soil disturbance. Using a direct seeder or ripper allows them to plant their fields in one-quarter of the time it would take to plow the heavy soils.

Farmers also use herbicides for weed control, which makes CA very attractive to them. “We arrived in 1987 at this farm with 16 families and have now grown to 56 families. None of us is currently using a plow except for some tobacco growers,” said farmer Hendrixius Zvamarima during discussions.

Another farmer said the long-term intervention “changed our way of agriculture completely.” Christiansen then enjoyed lunch with farmers in the field, testing local chicken with sadza (maize porridge) and muriwo (rape leaves). Wrap-up discussions with the GCAP team focused on developing new strategies to bridge funding gaps when projects end to ensure continuity with stakeholders. Christiansen added examples from her own experience in Tanzania and stressed the need to involve the private sector in GCAP activities.

The visit was a great success for everybody involved, as Christiansen saw first-hand the work of GCAP scientists in the region, while the scientists used the opportunity to highlight challenges with current funding and support needed in future work.

Hidden factors contribute to food insecurity in female-headed households

By Florence Sipalla/CIMMYT

Results of a survey conducted by the Adoption Pathways (AP) project indicate that even when male-headed and female-headed households have the same resources, the latter are still less food-secure. This difference could be attributed to unreported social exclusion, discrimination and access to credit facilities which the researchers will explore further through group discussions and using repeated observations (panel data) with the farmers.

ACIAR donor representatives at Egerton University.

“Equal access to inputs, human capital, resources and institutional services may not close the gender food security gap,” said Menale Kassie, CIMMYT socioeconomist and the AP project leader. “The quality of information extension workers are providing to female farmers could be different.” Kassie presented research results of a survey conducted in Ethiopia, Kenya, Malawi, Mozambique and Tanzania to donor representatives from the Australian Centre for International Agricultural Research (ACIAR) led by Nick Austin, the chief executive officer, and Mellissa Wood, director of the Australian International Food Security Research Centre (AIFSRC) at Egerton University in Njoro, Kenya.

Farmers who adopt a suite of conservation agriculture (CA) technologies get the best returns. “If farmers combine technologies, the income they generate is much higher,” Kassie said. “Farmers who adopted a combination of sustainable intensification practices (SIPs) such as crop rotation, minimum tillage and improved maize seed had the highest returns.” Survey results from Tanzania also show that adoption of improved varieties improves the food security status of food-insecure households.

The results also shed light on the spill-over effects of SIP adoption, risk of crop failure and the cost of risk reduction. The AP project is compiling detailed gender-disaggregated data to study causes of food insecurity and technology gaps. “This data set is cross-cutting and will be used by stakeholders beyond the project partners,” Kassie said. “We are bringing students on board to increase research productivity.”

From right: Donor representatives ACIAR CEO Nick Austin, AIFSRC director Mellissa Wood and Australian High Commission’s Paul Greener listen to Egerton University

Wilcyster Nyateko, a master’s student at Egerton University using AP data and working under the supervision of Professor Gideon Obare, presented her research proposal “Determinants of diffusion of agro-innovation amongst smallholder farmers in Eastern and Western Kenya” to the donor delegation. “The AP data helped to widen my perspectives,” said Nyateko, who is going to include variables such as plot characteristics, tenure and distance of the plot from the household and market in her analysis based on the feedback she received. Other stakeholders who will have access to the panel data include Egerton University’s policy thinktank, Tegemeo Institute. “This is a fascinating data set,” Austin said after the presentation.

The project has contributed to capacity building of partners and young economists who have participated in data collection. “The project also provided employment opportunities to the enumerators,” Kassie said. The project has produced 15 publications and seven policy briefs and presented research results in various international forums. “Some of the challenges encountered include attrition problems such as spouses working in distant places and who are not able to participate in the survey or families included in the original sample who had migrated to other villages.”

AP plans to produce more empirical outputs using the panel data, build the capacity of partners and share the research outputs with key stakeholders (e.g. policymakers, development partners, researchers and farmers). “The key challenge is taking research products to these stakeholders; doing so requires more resources and time, beyond the project period,” Kassie said. The donors also paid a courtesy call to the Egerton University leadership where they were hosted by Professor Rose Mwonya, the deputy vice chancellor of academic affairs, and Professor John Mwangi, who gave them an overview of the university and its involvement in the AP project.

New technologies help Indian farmers improve nutrient management

By ML Jat, RS Dadarwal, Tripti Agarwal and Love Kumar Singh/CIMMYT

In the intensively cropped region of northwest India, farmers generally use imbalanced and inappropriate nutrient doses, which leads to low yields, high production costs and low nutrient efficiency. The resulting loss of applied nutrients, particularly nitrogen, creates a large environmental footprint.

Photo: Vikas Choudhary

An interactive workshop was held 5-6 June in Haryana State to promote the use of precision nutrient management tools in smallholder production systems. The 175 participants received hands-on training in Nutrient ExpertTM, a software tool that helps determine fertilizer requirements in cereals, and GreenSeekerTM, an optical sensor that measures the Normalized Difference Vegetation Index, an indicator of crop development and health.

To encourage widespread adoption of both technologies, the agriculture departments in the participating districts received them for free. Meanwhile, Haryana’s Department of Agriculture has planned more than 1,000 demonstrations of the tools in maize and rice fields during this year’s rainy season.

The training was jointly organized by the International Plant Nutrition Institute-South Asia Program, CIMMYT and the Haryana Department of Agriculture, under the umbrella of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Many of the participants were agriculture development officers or extension experts who will use the tools to devise climate-smart management strategies for sustainable development.

First SRFSI strategic planning meeting

By Mahesh Gathala and Pat Wall/CIMMYT

A new project designed to improve farming systems in Bangladesh, India and Nepal kicked off work with a strategic planning meeting 19-21 May in New Delhi.

The Sustainable and Resilient Farming System Intensification (SRFSI) project, funded by the Australian Centre for International Agricultural Research (ACIAR), is scheduled to run for 50 months and will focus on the heavily populated Eastern Gangetic Plains, home to some 300 million people and the world’s highest concentration of rural poverty. Together with farmers – especially women farmers – project staff will develop more intensive, sustainable and resilient farming systems by incorporating conservation agriculture (CA) and strategic supplementary irrigation into the current farming systems. The changes allowed by these two practices will permit more timely planting of the main cereal crops – rice, maize and wheat – increasing yield and allowing for a third crop to be sown between the main winter crop and summer rice. Supplementary irrigation will help ensure timely planting and act as a buffer against mid-season droughts, predicted to become more frequent with the advance of climate variability.

The project also calls for crop and system modeling to aid the development of farmer decision support tools, frequent farmer discussions and consultations, support and training of local service providers and agricultural dealers and farmer-to-farmer information exchange.

The strategic planning meeting set the stage for summer field work in Bangladesh, India and Nepal. Photo: Mahesh K Gathala

The meeting opened with an introduction to the program and background information from Dr. John Dixon, the ACIAR principal advisor responsible for SRFSI and a former director of CIMMYT’S Impact and Assessment (Socio-economics) Program, and Dr. Mahesh Gathala, a CIMMYT cropping systems agronomist and leader of the SRFSI project. Partners from the region then presented results from pre-project activities, including reports of field research in Bangladesh and West Bengal, and studies on the hydrology of the communities where the project will be based. Dr. Rasheed Sulaiman discussed a survey of potential partners for the innovation systems developed in the project.

With this background, workshop attendees began to focus on planning the field work for the coming summer season. Gathala and Andy McDonald presented a view of the researchable issues common to the project areas, followed by presentations from longtime CIMMYT partners in the region on opportunities for change. Based on these presentations, Gathala and Pat Wall, former director of CIMMYT’s Global Conservation Agriculture Program who has been involved in the development of the SRFSI project, developed and proposed a core research program for the coming season based on direct seeding and/or direct transplanting of rice (a key strategy to reach CA systems), strategic supplementary irrigation of the rice crop and short-season rice varieties, all of which will enable timely harvest of the rice crop and allow for seeding of the winter crops at the optimum time. This plan will be discussed and refined with partners in separate country planning workshops.

Initially the SRFSI was to include a large component of technology out-scaling (commonly called extension), but ACIAR decided to make out-scaling the focus of a separate but associated project. Dixon discussed current thinking on the phases of technology generation, out-scaling, adoption and impact, followed by interesting and enlightening presentations on successful projects linking agribusiness and small farmers to achieve technology adoption from Sanjeev Asthana and N. Sai Krishna of the National Skills Foundation of India, Srivalli Krishnan of USAID and Madan Pariyar of the SRFSI partner organization, iDE. A framework for the project will now be developed and this will be the focus of discussion at the next planning workshop set for 6-7 July in Kathmandu, Nepal.