Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

Growing land scarcity, the Borlaug hypothesis and the rise of megafarms

Derek Byerlee, former director of the CIMMYT economics program (1987-94) and current visiting scholar at Stanford University and adjunct professor at Georgetown University, presented some of his latest research at a brown bag lunch at CIMMYT headquarters on 1 May. His presentation, “Growing Land Scarcity, the Borlaug Hypothesis and the Rise of Megafarms,” examined the economic and environmental benefits and repercussions of cropland expansion, the recent rise of agribusiness and the delicate balance between crop intensification and deforestation.

The “Borlaug Hypothesis” is the idea that increasing crop yields can help prevent cropland expansion and deforestation, thus alleviating hunger and poverty without dramatically increasing environmental impact. Developed by the legendary Nobel Prize Laureate and CIMMYT scientist Norman Borlaug, the postulate is controversial in environmental circles, and some researchers have published studies showing that higher crop yields in the tropics increase incentives to clear forests, thus making investments in crop research potentially counterproductive to sustainable growth.

Byerlee noted that the world has increased per capita cereal production by about 40 percent over the last 50 years on about half the arable land per capita that it used in 1961. Models developed by Byerlee and his associates show that, without CGIAR work since 1965 to develop improved crop varieties, the land area devoted to food crops would have increased by 18 to 27 million hectares, mostly in developing countries. Byerlee supports Borlaug’s claim that broad-based investment in crop research and development indeed contributes to saving the world’s forests, although estimates by Byerlee and his associates are an order of magnitude lower than those of Borlaug.

Investment in crop intensification may be more important than ever, as the world’s growing population demands ever-growing quantities of food and land. “Meta-analysis of demand estimates suggests that, given current yield trends, agriculture will require an additional 200 to 450 million hectares of land by 2030 — as much as the entire combined land area of India and South Africa,” Byerlee said. At the same time, Byerlee found that an estimated 450 million hectares of land could be available for crop expansion but is concentrated in just a few countries and its cultivation could have negative impacts on the environment and on people already using that land for other purposes.

Linked to the question of where crops should be cultivated is the issue of who will cultivate them, especially on the land frontier. Byerlee described the recent rise of “megafarms” run by agribusiness companies and examined their economic benefits (or lack thereof) in comparison to traditional family farms that still prevail across the world. Byerlee argued that family farms were more efficient, equitable and contribute to more growth than megafarms, which benefit from professional management and technologies that allow for larger scale but do not display significant cost advantages over traditional family farms. Byerlee ultimately recommends models that combine agribusiness and smallholder farms for best results.

Please click here to view the full presentation.

First international training workshop on farming systems analysis in India

The international training workshop “Approaches for integrated analysis of agricultural systems in South Asia: Field, to farm, to landscape scale,” jointly organized by CIMMYT and the Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute (CSSRI), was held at Karnal, Haryana, India, during 18-23 May. The workshop targeted farming systems and agricultural development researchers in South Asia and provided an overview of the approaches and tools used to assess agricultural systems.

Workshop participants and facilitators. Photo: CIMMYT
Workshop participants and facilitators. Photo: CIMMYT

Compared to the rest of the world, South Asia’s natural resources are 3-5 times more stressed due to population and economic pressures. Several agricultural technologies and practices have been developed to address resource management challenges. However, researchers need to conduct specialized analyses of complex farming systems to find out which technologies are appropriate for farmers.

The training workshop allowed participants to share their experiences in the field and create better methods to ensure successful interventions. P.C. Sharma, Head of the Crop Improvement Program, CSSRI, commenced the workshop and greeted the participants, who comprised 30 young researchers from national research institutions and universities in India, Nepal and Bangladesh. Santiago López Ridaura, CIMMYT Global Conservation Agriculture Program Systems Agronomist, presented workshop objectives, which included introducing participants to integrated farming systems analysis as well as to modeling tools and technology designed for specific farming communities.

“This course is the first of its kind in the region,” emphasized M.L. Jat, CIMMYT Cropping Systems Agronomist. “It is unique, demand-driven and organized to strengthen the capacity of young researchers in the region so that they may more effectively help build livelihood security for smallholder farmers.”

D.K. Sharma, CSSRI Director, stressed the need for systems research in the region and how partnerships with centers ike CIMMYT have helped to successfully implement conservation agriculture, sustainable intensification and other practices. Sharma also described CSSRI’s farmer participatory model, which provides farmers with land for cultivation against their annual compensation, thereby improving livelihoods.

A book on sustainable intensification was released. Photo: CIMMYT
A book on sustainable intensification was released. Photo: CIMMYT

Workshop attendees participated in modeling, analysis and participatory exercises that helped them to better understand the challenges of technology adoption in the field. Participants also visited farms, where they learned farmers’ needs first-hand and observed the complexity of different farming systems.

The workshop was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the Cereal Systems Initiative for South Asia (CSISA) and the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project of the Australian Centre for International Agricultural Research’s (ACIAR). Other attendees included Mahesh Gathala, CIMMYT Cropping Systems Agronomist and SRFSI Project Leader; Jeroen Groot, Wageningen University Farming Systems Modeling Specialist; David Berre, CIMMYT Farming Systems Agronomist; Timothy Krupnik, CIMMYT Agronomist; and Alison Laing, Cropping Systems Modeler at ACIAR CSIRO Climate Adaptation Flagship.

Well-positioned for next phase, CSISA India plans for monsoon cropping season

As Phase II of the Cereal Systems Initiative for South Asia (CSISA) draws to a close in India, it is well positioned for a Phase III, according to Andrew McDonald, CIMMYT Cropping Systems Agronomist and CSISA Project Leader speaking at the Objective 1 planning and evaluation meeting for the 2015 monsoon cropping season held in Kathmandu, Nepal, on 22-24 April. The meeting was attended by CSISA’s Objective 1 teams from the Bihar, eastern Uttar Pradesh, Odisha and Tamil Nadu hubs, comprising diverse disciplinary experts from CIMMYT, the International Food Policy Research Institute (IFPRI), the International Livestock Research Institute (ILRI) and the International Rice Research Institute (IRRI).

Phase II began in October 2012 and will be completed in October of this year. The external evaluation report, commissioned by the United States Agency for International Development (USAID), commended the uniqueness of CSISA’s work with service providers and farmers, its staff’s dedication and the strong collaboration among CSISA partners. CSISA was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems, and operates rural “innovation hubs” throughout Bangladesh, India and Nepal.

The teams took a critical view of activities from the previous monsoon cropping season and highlighted priority areas for this year. “Sustainable intensification of cropping systems should be the centerpiece of our growth strategy. Rice followed by mustard followed by spring maize or green gram is a great system that can help us achieve 300% cropping intensity,” said R.K. Malik, CIMMYT Senior Agronomist and CSISA Objective 1 Leader. “We need to focus not only on how to create new service providers but also on how existing ones can be used as master trainers. This will help fill the gap of field technicians and further strengthen delivery,” Malik explained, regarding CSISA’s network of more than 1,800 service providers.

Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee
Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee

Leading discussions on the Odisha hub, Sudhir Yadav, IRRI Irrigated Systems Agronomist, emphasized the importance of identifying the non-negotiable steps for successful technology implementation. “The performance of zero tillage, for example, depends on soil type, date of seeding and whether the crop is rainfed or receives supplementary irrigation,” said Yadav. CSISA successfully introduced zero tillage in Odisha’s Mayurbhanj District, where it has enabled crop intensification thanks to the retention of residual soil moisture.

The meeting served as a platform for representatives from Catholic Relief Services’ (CRS) Improved Rice-based Rainfed Agricultural Systems project to showcase lessons in managing rainfed rice systems in northern Bihar.

CSISA is currently in discussions with USAID and the Bill & Melinda Gates Foundation (BMGF) to design the technical program, and determine the scope, geography, duration and budget of Phase III.

Maize protects Colombian coffee from climate change

The Eddy Covariance microclimate station in Paraguaycito takes meteorological data needed to predict climate variability. Phots: Claudio Romero Perilla.
The Eddy Covariance microclimate station in Paraguaycito takes meteorological data needed to predict climate variability. Phots: Claudio Romero Perilla.

Preliminary results have shown that a maize-coffee cropping system acts like a huge atmospheric carbon sink, capturing up to 60 times more carbon than a coffee-bean system during one cycle of the associated temporary bean crop. In addition, maize creates a more adequate micro-climate for coffee’s growth and development because it reduces air temperature, helps to maintain soil moisture and decreases daytime-nighttime soil temperature fluctuations. This has a buffer effect that benefits soil biochemical processes and improves crop productivity.

To demonstrate advances of the project “Increasing the profitability of maize-coffee systems” that CIMMYT has been conducting in Colombia for 10 years in collaboration with the National Federation of Colombian Coffee Producers (FEDERECAFE, Spanish acronym), two field days were held at the Paraguaycito–Quindío (29 April) and La Catalina–Risaralda (7 May) Experiment Stations belonging to CENICAFE, FEDERECAFE’s research unit. At these events, attended by 158 representatives of the Local Coffee Growers’ Committees and the National Federation of Cereal Growers (FENALCE, Spanish acronym), the latest advances in the areas of climate change, agronomy and genetic improvement were presented.*

At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.
At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.

On the subject of climate change, Angela Castaño, a Ph.D. student at Cauca University linked to CENICAFE, indicated that at the Paraguaycito Experiment Station, the performance of agro-ecosystem depends on energy-water-carbon dynamics, because its distribution is related to the production system. In the case of coffee, solar radiation, water and atmospheric carbon are distributed differently depending on whether the coffee is fully exposed to the sun, or if it is grown in association with other crops.

With the aim of studying energy-water-carbon dynamics in different coffee production systems, at Paraguaycito there is an Eddy Covariance micro-climate station that measures the sun’s energy and the amount of carbon and water vapor in the production system. Strategically placed sensors in the micro-climate station measure air and soil temperature and humidity, as well as the flow of latent heat (energy used for evapotranspiration) and of perceivable heat (energy used to heat the air). This information is used to study four types of agro-ecosystems that include growing temporary crops during the growth stage of coffee, namely, coffee with maize; coffee with common beans; coffee with pigeon-pea; and coffee under full sun exposure.

At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.
At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.

Myriam Cañon, Paraguaycito Station Coordinator, mentioned that the coffee-maize association reduces the number of coffee plants that die.

Diego Montoya, La Catalina Station Coordinator, explained that rain is now less frequent but more intense. This causes damage due to surface runoff on the steep terrain where coffee is grown in Colombia. However, there is less damage when coffee is cropped in association with maize because the soil is better protected by both crops.

This is the first of a two-part report; the second part will be published in the next issue of the CIMMYT Informa.

SUPER WOMAN: Paula Kantor engages men to support gender progress

FOCUS ON WOMEN CAN INADVERTENTLY END UP ALIENATING MEN

PaulaKantorGender research and outreach should engage men more effectively, according to Paula Kantor, CIMMYT gender and development specialist who is leading an ambitious new project to empower and improve the livelihoods of women, men and youth in wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

“Farming takes place in socially complex environments, involving individual women and men who are embedded in households, local culture and communities, and value chains — all of which are colored by expectations of women’s and men’s appropriate behaviors,” said Kantor.

“We tend to focus on women in our work and can inadvertently end up alienating men, when they could be supporters if we explained what we’re doing and that, in the end, the aim is for everyone to progress and benefit.”

Funded by Germany’s Federal Ministry for Economic Cooperation and Development, the new project will include 14 village case studies across the three countries. It is part of a global initiative involving 13 CGIAR research programs (CRPs), including the CIMMYT-led WHEAT and MAIZE.

Participants in the global project will carry out 140 case studies in 29 countries; WHEAT and MAIZE together will conduct 70 studies in 13 countries.

Kantor and Lone Badstue, strategic leader for gender research at the International Maize and Wheat Improvement Center, are members of the executive committee coordinating the global initiative, along with Gordon Prain of CIP-led Roots, Tubers and Bananas Program, and Amare Tegbaru of the IITA-led Program on Integrated Systems for the Humid Tropics.

“The cross-CRP gender research initiative is of unprecedented scope,” said Kantor. “For WHEAT, CIMMYT, and partners, understanding more clearly how gendered expectations affect agricultural innovation outcomes and opportunities can give all of our research more ‘ooomph’, helping social and biophysical scientists to work together better to design and conduct socially and technically robust agricultural R4D, and in the end achieve greater adoption and impact.”

To that end, outcomes will include joint interpretation of results with CRP colleagues and national stakeholders, scientific papers, policy engagement and guidelines for integrating gender in wheat research-for-development, according to Kantor.

Another, longer-term goal is to question and unlock gender constraints to agricultural innovation, in partnership with communities. Kantor said that male migration and urbanization are driving fundamental, global changes in gender dynamics, but institutional structures and policies must keep pace.

“The increase in de facto female-headed households in South Asia, for example, would imply that there are more opportunities for women in agriculture,” she explained, “but there is resistance, and particularly from institutions like extension services and banks which have not evolved in ways that support and foster the empowerment of those women.”

Kantor has more than 15 years of experience in research on gender relations and empowerment in economic development, microcredit, rural and urban livelihoods, and informal labor markets, often in challenging settings. She served four years as Director and Manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU) in Kabul.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center.

SUPER WOMAN: Diane Holdorf promotes sustainability to support smallholders

SUPPORTING THE CONNECTIVITY OF RESEARCH, EDUCATION AND OPPORTUNITIES

Diane-HoldorfInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, Amy Braun writes about her Super Woman of maize and wheat, Kellogg Company’s Diane Holdorf.

Diane Holdorf is a super woman and an inspiration to all of us at Kellogg Company. As Chief Sustainability Officer and Vice President of Environmental Stewardship, Health and Safety at Kellogg, Diane has been the inspiration and force behind the expansion of the company’s global sustainability commitments to include specific goals supporting smallholders around the world as part of new public commitments for 2020.

She has also been an ambassador for responsible sourcing and sustainable agriculture within the company, and has done a tremendous job raising awareness with Kellogg employees and leaders on the important role that smallholders, and women in particular, play in food security within their communities.

Under her leadership, Kellogg also commissioned a study in 2014 to assess how the company’s supply chain could improve the productivity and livelihoods of some smallholders around the globe. Soon afterwards, she traveled with Kellogg’s CEO, to attend the U.N. Secretary General’s Climate Summit in New York City to make a public statement committing to support 15,000 smallholders adopt climate-smart agriculture practices by 2020.

Climate-smart agriculture can help improve livelihoods and boost climate resiliency.

Kellogg currently supports 65,000 smallholder farmer livelihoods across their 10 priority ingredients through the market. Statistics show that women represent an average of 41 percent of workers on smallholder farms and 11 percent of farm managers or owners, according to a 2015 report.

Diane is a passionate leader for sustainability. With her muddy boots, she spreads her passion to inspire an entire company. Her drive, communication skills and leadership has caused Kellogg not only to meet overall objectives, but she has also infected leaders and employees with a clear understanding that sustainability matters.

Diane has gone beyond the call of duty, demonstrating that a sound sustainability strategy is a tool that adds value to the company and consumers. Specifically, Diane has broadened Kellogg Company’s engagement on agricultural supply chains, with exceptional leadership related to wheat, maize and rice smallholders.

She has brought cross-functional teams to Thailand, Ghana, India and Mexico to learn about how these growers work – and to inspire us to find ways to work with research teams like the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI) and others to share our knowledge and technologies.

In fact, she led the team that brought quinoa growers from Bolivia to the United States to represent the only indigenous voice at the International Year of Quinoa Research Symposium.

As a member of the University of Michigan Graham Sustainability Institute‘s advisory board, she supports the connectivity of sustainability research, education and real-world opportunities.

Through various partnerships with CIMMYT, IRRI, Field to Market and industry associations, as well as with the United Nations, she fosters the collaboration needed to bring agriculture to the forefront of science and policy.

Well-respected by her peers in industry and non-governmental organizations, she is and will continue to be a super woman due to her dedication to sustainability and food.

Without her leadership, we would not be able to do the work we do with the thousands and thousands of smallholders around the world.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center.

Harnessing Mexico’s Sun: CIMMYT Installs 920 Solar Panels in Green Initiative

Mexico’s solar thermal and photovoltaic resources are among the world’s best. Just one square of 25 kilometers in the State of Chihuahua or the Sonoran desert would be sufficient to supply electricity to the entire country.1 Mexico’s Secretariat of Energy (SENER) predicts the country will have 6 gigawatts (GW) of solar energy installed by 2020, although less than 1% of that is currently installed. The Mexican Government offers no direct subsidy to solar energy.

Demand for electricity in Mexico is increasing, and 22 GW will be needed by 2025. Energy costs are rising 8-10% annually. Despite little government intervention, the private solar sector in Mexico has been booming, experiencing triple-digit growth rates every three years over the past ten years and becoming one of the fastest growing solar energy markets globally.

CIMMYT is actively taking advantage of solar energy’s potential in Mexico.

“The project started a year and a half ago, when the German Corporation for International Cooperation (GIZ) offered to fund self-efficient energy projects,” said Francisco J. Peñafort Olivas, Facilities Manager at CIMMYT-El Batan. “They gave us €750,000 EUR this January to install 920 solar panels that produce 275 kilowatts (KW) of energy. This produces about 12% of the total amount of energy CIMMYT demands per month, saving us around US $35,000/year.”

Photo: Francisco Peñafort/CIMMYT

Peñafort pointed out that, unlike most organizations taking advantage of Mexico’s solar resources, CIMMYT requires energy 24/7 to power the genebank and other biosciences chambers. “We are planning to implement two more phases in this solar panel project and reach 495 KW of power, which would supply around 22% of CIMMYT’s energy and save nearly US $63,000 per year,” he said.

At least another €4 million EUR are needed for CIMMYT to achieve self-efficiency, but this is a step in the right direction. The solar panels have a 25-year warranty, and if a panel fails or falls below 80% efficiency, it is immediately replaced. “We also installed equipment to measure the energy we’re expending and monitor how each panel is working, and we’re sharing these data with CIMMYT’s genebank and the German Government,” said Peñafort.

CIMMYT is investing in other green initiatives as well. For example, it is replacing all the lights in the genebank with light-emitting diode lights, which will save around US $400 per year in energy. According to Peñafort, new energy-saving air conditioning systems are being installed throughout the campus. The solar panels are a long-term investment in CIMMYT going green and, in pursuit of self-sufficiency, the Center will continue to expand its solar program with other renewable initiatives.

 

1    Assuming a net system efficiency of 15%, based on the SENER and the German Technical Cooperation Agency 2009 study “Renewable Energy for Sustainable Development in México

New report highlights need for groundwater management solutions in Bangladesh

The recent report “Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities,” published by the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project, reveals that water resource policy in Bangladesh has focused largely on development and not enough on management, draining aquifers in intensively irrigated areas and sustaining expensive subsidies for dry-season irrigation pumping.
Groundwater1

Unless water-use-efficient practices and policies are adapted and adopted, these challenges will become a serious threat to sustained agricultural growth in Bangladesh, according to Timothy Krupnik, CIMMYT agronomist and co-author in the study.

“Dry season rice production using irrigation helped Bangladesh to increase its total rice production from 18 million tons in 1991 to 33.8 million tons in 2013,” said Krupnik. “But this dramatic increase in rice production comes with costs – namely the high energy requirements to pump groundwater.”

Diesel pumps consume about 4.6 billion liters of diesel every year to lift groundwater for dry season rice production in Bangladesh, costing US $4 billion, in addition to U.S. $1.4 billion yearly of government energy subsidies for groundwater irrigation. These expenditures are unsustainable in the long-term, the report concludes, and counter to government policies to reduce energy subsidies and shift to cheaper, more energy-wise surface water irrigation.

The report highlights supply- and demand-side options for sustainable groundwater management. “Improving water-use efficiency through resource- conserving crop management practices such as direct-seeded rice and bed planting could help reduce groundwater demand from agriculture,” Krupnik said. “In surface water irrigated areas, farmers can use fuel-efficient axial flow pumps.” The CSISA-MI project is working with the private sector to help promote use of these pumps.
Groundwater2

Water demand can also be reduced by rationalizing cropping patterns; for example, shifting from rice to more profitable crops like maize, according to Krupnik. Involvement of consumers, investment in improved water and agricultural technologies and support for farmers are needed.

Since the concept of “more water-more yield” is still prevalent among farmers, the report also emphasizes the need for policy and educational programs aimed at wise water use and volumetric water pricing. In addition to technical solutions, strong linkages and improved communications among organizations involved in groundwater management will be required.

Climate-smart agriculture achievements inspire support for BISA-CIMMYT in Bihar, India

The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT
The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT

The Borlaug Institute for South Asia (BISA), CIMMYT and stakeholders are developing, adapting and spreading climate-smart agriculture technologies throughout Bihar, India. During the 2014-2015 winter season, BISA hosted visits for national and international stakeholders to view the progress of participatory technology adaption modules and climate-smart villages throughout the region.

“It is very encouraging to see the [BISA-CIMMYT’s] trials of new upcoming technology…We will be ready to support this,” wrote Dharmendra Singh, Bihar’s Director of Agriculture, in the visitor book during a state agriculture department visit to one of BISA’s research farms and climate-smart villages in Pusa. BISA, CIMMYT and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), in collaboration with local stakeholders and farmer groups, established 15 Borlaug climate-smart villages in Samastipur district and 20 in Vaishali district, as part of a 2012 research initiative to test various climate-smart tools, approaches and techniques.

Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT
Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT

“I could understand conservation agriculture better than ever after seeing the crop and crop geometry in the field today,” wrote Mangla Rai, former Director General of the Indian Council of Agricultural Research (ICAR) & Agriculture Advisor to the Chief Minister of Bihar. Raj Kumar Jat and M.L. Jat, CIMMYT cropping system agronomist and senior cropping system agronomist, respectively, showcased research trials on zero-tillage potato and maize, early-planted dual-purpose wheat, precision nutrient management in maize-wheat systems under conservation agriculture, genotype -by- environment interaction in wheat and crop intensification in rice-wheat systems through introduction of inter-cropping practices. Raj Kumar Jat also gave a presentation on how to increase cropping intensity in Bihar by 300% through timely planting and direct seeding techniques.

“Technologies like direct-seeded rice and zero-till wheat, which save both time and labor, should be adapted and transferred to Bihar’s farmers,” said Thomas A. Lumpkin, CIMMYT director general, at a meeting of the CIMMYT Board of Trustees with the Chief Minister of Bihar and other government representatives. “BISA is a key partner in building farmer and extension worker capacity, in addition to testing and promoting innovative agriculture technologies.”

The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT
The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT

“State agriculture officials should support BISA to hold trainings on direct-seeded rice for fast dissemination across Bihar,” agreed Vijay Chaudhary, Agriculture Minister of Bihar, at a BISA field day. Chaudhary along with 600 farmers and officials visited a climate-smart village where farmers plant wheat using zero tillage. Zero-till wheat is sown directly into soil and residues from previous crops, allowing farmers to plant seed early and to avoid losing yields due to pre-monsoon heat later in the season. Direct-seeded rice is sown and sprouted directly in the field, eliminating labor- and water-intensive seedling nurseries.

During the Bihar Festival, 22-24 March, BISA-CIMMYT showcased conservation agriculture practices and live demonstrations of quality protein maize-based food products, with over 10,000 famers and visitors participating. Vijoy Prakash, Agriculture Production Commissioner of Bihar, and other Bihar government officials discussed with farmers about new BISA-CIMMYT agriculture practices and emphasized the need to “introduce conservation agriculture in the state government’s agricultural technology dissemination program.” Prakash, along with government representatives, has approved two BISA proposals for a training hostel and research.

Two-wheeled tractors key to smallholder mechanization in Africa

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project held its second review and planning meeting, as well as mid-term review, during a five-day event in Hawassa, Ethiopia. This was followed by country site visits by the review team.

“The goal of FACASI is to improve farm power balance, reduce labor drudgery and minimize biomass trade-offs in eastern and southern Africa through accelerated delivery and adoption by smallholders of two-wheeled tractor (2WT)-based technologies,” said J.C. Achora, Knowledge and Information Manager, African Conservation Tillage Network. The meeting highlighted the importance of 2WT technologies to smallholders through five field visits, consisting of a youth community project, a vocational youth training institution, government research centers and manufacturing plants.

“Opportunities for use of two-wheeled tractors exist,” said Achora. “New projects coming up will ignite the demand for the two-wheeled tractors, and could trigger an increase in imports and manufacturing in Africa. Perhaps not too far in the future two-wheeled tractors could be the stepping stone to smallholder farm mechanization in Africa.”

FACASI participants learned and shared experiences on small-scale agricultural machinery, specifically the two-wheeled tractor, in diverse environments. Participants observed and drew lessons from services that support small-farm mechanization and associated business models.

Other places visited included the Hawassa research station for demonstrations of seeders and multi-use shellers and threshers, the Ato Tibebe Selemon Metal works, and the Selam Hawassa Business and Vocational College, which provides disadvantaged youth with practical training in metal fabrication and assembly and electrical installations. The last visit was to the Metals and Engineering Corporation (METEC), which integrates engineering into machines and installs industrial facilities.

Poor soils a huge limitation for Africa’s food security

TEXCOCO, MEXICO, April 19, 2015 – Sustainable Development Goals being addressed at the Global Soil Week cannot ignore dependence on maize as a staple food for millions in Africa, and the need to help smallholder farmers maximize yields in African soils.

Today, Berlin, Germany, hosts soil scientists from across the world who have converged for the Global Soil Week (GSW) to find solutions for sustainable land governance and soil management. Farmers and other stakeholders in agriculture are keen to see outcomes that will translate into healthier soils for sustainable development in Africa and elsewhere.

For Africa’s smallholder farmers, low-fertility soils with poor nitrogen-supplying capacity are only second to drought as a limiting factor. Consequently, farmers suffer low yields and crop failure, a situation that has crippled food security for more than half (60 percent) of the population in this region who depend on smallscale farm produce.

To improve productivity, farmers apply nitrogen fertilizers, which provide necessary nutrients the soil needs to feed plants. However, most farmers cannot afford to apply the required amount of fertilizers because the costs are too high for them. It is estimated that nitrogen fertilizer costs as much as six times more in Africa that in any other part of the world.  “For my one-acre farm, I use a 50-kilogram bag that costs KES 4,000 [USD 42]. This is a lot of money, so I have to use very little to save for the next planting season,” says Ms. Lucy Wawera, a farmer in Embu County, Kenya.

Maize is the most important cereal crop in sub-Saharan Africa consumed by more than 650 million people. This dependence therefore dictates that solutions to Africa’s fragile food security also focus on improving maize production. The International Maize and Wheat Improvement Center (CIMMYT) and its partners are working through the Improved Maize for African Soils (IMAS) Project to address -nitrogen depleted soils. They are exploiting naturally occurring genetic variation in maize to develop new varieties that are nitrogen-use-efficient or better at utilizing the limited amounts of fertilizer that smallholders can afford in sub-Saharan Africa—typically less than 30 kilograms. These new varieties yield up to 50 percent more than current commercial varieties in nitrogen-poor soils. IMAS draws on strong collaboration between the public and private sectors involving the Kenya Agricultural and Livestock Research Organization, South Africa’s Agricultural Research Council and DuPont Pioneer.

“Matching appropriate crop varieties to specific soil systems and ecologies can play a major role in improving productivity of fragile smallholder farming systems in Africa,” says Dr. Biswanath Das, a maize breeder at CIMMYT. “Increasing productivity on existing farmland will prevent encroachment into marginal or virgin lands which leads to further soil degradation.” Helping farmers deal with the challenge of low-fertility soils will remain a key focus for international and national actors in Africa throughout 2015, the UN International Year of Soils. Open discussion platforms should therefore be encouraged to facilitate comprehensive and inclusive dialogue on soil matters. A recent tweet-chat forum titled ‘#TalkSoil’ initiated by the International Center for Tropical Agriculture and Shamba Shape Up (a Kenyan television program on smallholder agriculture) brought together scientists, farmers, regulators and other actors to discuss  a single topic – soil.

It is therefore important that GSW deliberations formulate sustainable solutions for farmers to build healthier soils, and to nurture and maintain them. This will not only arrest soil deterioration but also protect a critical livelihood for billions, and a source and ‘sustainer’ of life for us all – agriculture, deeply rooted and inseparable from soil.

Links for more information

·         IMAS Project: Overview |Update | Videos—Maize for hungry soils | Maize that thrives in poor soils
·         Follow the IMAS conversation on Twitter during #GlobalSoilWeek via #IMASPro
·         Global Soil Week 2015
·         International Year of Soils 2015
·         CIMMYT’s research on maize

For information on the IMAS project, please contact: Biswanath Das: IMAS Project Leader| Brenda Wawa: media contact

 

Mapping agricultural opportunity: how GIS contributes to food security

Head of GIS Unit Kai Sonder demonstrating GPS
Photo credit: CIMMYT

Geography matters – 80% of all data has a spatial component, which is “why geographic information systems (GIS) are growing exponentially,” said Kai Sonder, head of CIMMYT’s GIS unit, during a presentation to CIMMYT Day attendees, explaining that GIS involves the mapping and analyzing of spatial and geographic data. “By 2050, 70% of all farmers living in maize and wheat growing areas in Latin America, Asia and Africa will experience yield losses of 15% and more,” said Sonder. The GIS unit is able to make this prediction by analyzing, mapping and modelling climate change implications, crop suitability, socioeconomic and other data sets affecting agricultural production across the globe. The GIS unit also uses spatial analysis for targeting or defining the potential for spreading technologies such as new maize or wheat varieties or conservation agriculture practices, or gauging the market potential for the small- and medium-scale seed companies working with CIMMYT. The unit curates and continuously updates a comprehensive collection of geospatial datasets and geographic databases for all maize- and wheat-producing countries in the developing world.

CIMMYT Day gives staff opportunity to explore colleagues’ work

Photo credit: CIMMYT
Photo credit: CIMMYT

Comprising interactive presentations in English and Spanish on diverse aspects of the Center’s work, CIMMYT Day at El Batán on 10 April allowed more than 250 staff members to learn more about the science and get a first-hand understanding of CIMMYT activities and impact.

Thomas Lumpkin, CIMMYT director general, and John Snape, Chair of the Board of Trustees, welcomed participants. Snape presented Lumpkin, who will leave CIMMYT in June, with a miniature statue of Dr. Norman Borlaug, in honor of his humanitarian spirit and commitment to developing world farmers.

Photo credit: CIMMYT
Photo credit: CIMMYT

The tours began with wheat physiologist Matthew Reynolds explaining how this specialty contributes to improve wheat, elucidating wheat production environments and how they affect wheat, sources of useful new traits and the challenges of measuring and working with these traits. At the conservation agriculture experiment, Nele Verhulst, strategic research coordinator for this discipline in Latin America, astounded visitors by describing the yield increases possible through proper application of conservation agriculture’s three principles: reduced tillage, keeping crop residues on the soil, and careful use of crop rotations. In particular, the removal vs the retention of residues under zero tillage provided dramatic differences of 5.7 vs 7.9 tons per hectare (t/ha), respectively, with good rainfall, and of 3.6 vs 7.4 t/ha in drought years, due to the superior capture and retention of moisture on untilled soils with residues.

Photo credit: CIMMYT
Photo credit: CIMMYT

Jelle Van Loon, leader of machinery innovation and smart mechanization, demonstrated implements specially adapted for conservation agriculture, explaining that all are multi-use and multi-crop, to be most useful to farmers. Biosciences Greenhouse Laboratory Manager Ulises Gaona Ramírez demonstrated how to “separate the wheat from the chaff” using various methods, and gave everyone the opportunity to plant their very own wheat plant, which they were allowed to take home as a living souvenir. From there, participants visited the wheat and maize quality laboratories. Carlos Guzmán, head of the wheat quality laboratory, and Hector González, principal research assistant, explained the characteristics of different types of wheat used to create different food products, while Natalia Palacios, maize nutrition quality specialist, discussed the use of different maize varieties to make tortillas, the staple food of Mexico.

Photo credit: CIMMYT
Photo credit: CIMMYT

The day finished with a visit to the CIMMYT Germplasm Bank, during with Denise Costich, head of the maize germplasm bank, and Thomas Payne, head of the wheat germplasm bank, talked about their respective areas and led tours of the actual seed collections inside the Bank chamber, with support for Spanish-speaking visitors from Bibiana Espinosa, Paulina González and Martín Rodríguez.

Canadian foodgrains bank highlights CIMMYT’s Christian Thierfelder’s work in conservation agriculture

Farmers admiring their maize-cowpea intercrop. Photo: Christian Thierfelder/CIMMYT
Farmers admiring their maize-cowpea intercrop. Photo: Christian Thierfelder/CIMMYT

Christian Thierfelder, CIMMYT senior agronomist stationed at Harare, Zimbabwe, was recently profiled by the Canadian Foodgrains Bank for his work promoting conservation agriculture techniques for smallholder farmers in Africa. Conservation agriculture systems are not only better for soils but help make agriculture more ‘climate-smart’, argues Thierfelder. “The conventional system can only make use of the water that is in the ridge and not further down in the soil,” he said. “In conservation agriculture systems, there is access to deeper layers and a lot of water has infiltrated. The maize can actually access the water much better because of an improved root system.”
In addition, the techniques can provide far-reaching food security benefits to smallholder farmers. As conservation agriculture diminishes the risk of crop failure, it also allows farmers to reduce the land devoted to maize and to diversify the crops they produce. “Then there is room for new crops, cash crops, rotational crops, nutritional crops that help them to improve their diets and reduce malnutrition,” Thierfelder said. “That’s a very good way to overcome all of these problems at once.”To read the full article, click here.

Green manures help Zambian and Malawian farmers feed crops and livestock

The Food and Agriculture Organization of the United Nations (FAO) has tasked CIMMYT with a new project to introduce green manure cover crops to smallholder farmers in eastern Zambia and central and southern Malawi.

Green manures can improve fertility, protect soils and provide fodder and grain for farm animals and humans. They also help substitute for mineral fertilizers, which are costly for landlocked African nations to produce or import. Most smallholder farmers cannot afford them and apply less than 10 kg per hectare of fertilizer to their crops, according to a 2013 study on profitable and sustainable nutrient management systems for eastern and southern African smallholder farming systems.

“This is less than one-tenth of average fertilizer rates in prosperous countries and a key reason why maize yields in southern Africa are around only one ton per hectare,” said Christian Thierfelder, CIMMYT conservation agriculture specialist based in southern Africa. “As a result, many farm families in the region remain food insecure and caught in a seemingly unbreakable cycle of poverty.”

Farmers admiring their maize-cowpea intercrop. Photo: Christian Thierfelder/CIMMYT
Farmers admiring their maize-cowpea intercrop. Photo: Christian Thierfelder/CIMMYT

With full participation of farmers, the project will test green manures in rotation with maize and as intercrops or relay crops in different farming systems, according to Thierfelder.

“Improved, high-yielding maize can show its potential only under good agronomic practices, such as optimal plant spacing, timely planting, good weed and pest control and adequate fertilization,” Thierfelder explained. “Farmers in Europe and the Americas have followed these basic principles for generations, and some of the ideas spread to Asia and Africa during the Green Revolution. But in Africa mineral fertilizers are most often used by rich farmers and for high-value crops.“

“Improved maize that tolerates drought and other stresses, coupled with conservation agriculture practices –minimum soil disturbance, crop residue retention and diversification through rotations and intercropping systems – are farmers’ best bet to escape the poverty trap,” Thierfelder said.

Keeping crop residues on the soil is a critical component of conservation agriculture, but the residues are traditionally fed to livestock, which also underpin smallholder farmers’ livelihoods. So the use of conservation agriculture hinges on the ability of a cropping system to produce enough biomass to feed farm animals while providing an adequate residue cover. This requires a source of fertilization to feed the cropping system.

The FAO-CIMMYT project will address this by allocating green manure cover crops for different uses. “Over the last five years, CIMMYT’s global conservation agriculture program has identified potential cover crop varieties that fit farmers’ needs,” Thierfelder said. “Velvet bean, lablab, cowpea, sunnhemp or jackbean can provide 10-50 tons per hectare of extra biomass for livestock. They can also leave 50-150 kilograms per hectare of nitrogen in the soil and do not need any additional fertilizer to grow. Finally, lablab and cowpea provide grain that humans can eat.”

One approach Thierfelder promotes is for a farmer to dedicate part of her land to grow maize under conservation agriculture practices, and other areas to sow green manures, nutritional and cash crops that increase soil fertility and household income. “In this way, a farmer can diversify and gradually have money to purchase mineral fertilizer, boost productivity and move out of poverty.”

Green manure cover crops are not new in Africa. Why should they work this time?

According to Thierfelder, there are examples of success in northern Mozambique with CIMMYT’s partner organization CARE International, using lablab and improved germplasm in cassava-based CA systems can increase cassava tuber yields from 4 to 13 tons per hectare, without using additional mineral fertilizer. “In Tanzania, lablab and other green manures are an important part of the cropping system,” he said. “In Zimbabwe, successful experiments with maize and green manures under an ACIAR-funded ZimCLIFFS project also provide hope. The FAO-CIMMYT project will guide the way on integrating green manures cover crops into these farming systems.”