Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

Cereal systems in South Asia show diverse benefits of conservation agriculture

Conservation agriculture (field at right) protects wheat from damage due to water stagnation experienced in a conventional field, visible in the blackening of the wheat (left field). Photo: CIMMYT/ Sapkota
Conservation agriculture (field at right) protects wheat from damage due to water stagnation experienced in a conventional field, visible in the blackening of the wheat (left field). CIMMYT/Tek Sapkota

Julianna White is program manager for low emissions agriculture at the CGIAR Research Program on Climate Change, Agriculture and Food Security. Tek Sapkota is a scientist with the International Maize and Wheat Improvment Center and lead author of the study. Any opinions expressed are their own.

Research shows conservation agriculture increases the income of farmers, moderates canopy temperatures, improves irrigation productivity and reduces greenhouse gas emissions in cereal systems in the Indo-Gangetic plains.

Conservation agriculture practices are also climate-smart, meaning they help farmers adapt to climate change while minimizing greenhouse gas emissions, found researchers from CIMMYT, the Borlaug Institute for South Asia and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

In an August 2015 article in the Journal of Integrative Agriculture, researchers report that a comprehensive literature review and evidence collected from on-farm trials showed that conservation agriculture – defined as minimal soil disturbance and permanent soil cover combined with appropriate rotations – improved farmers’ income, helped crops sustain or adapt to heat and water stresses, and reduced agriculture’s contribution to greenhouse gas emissions in cereal systems in South Asia.

Farmer Ram Shubagh Chaudhary in his wheat fields, in the village of Pokhar Binda, Maharajganj district, Uttar Pradesh, India. He alternates wheat and rice, and has achieved a bumper wheat crop by retaining crop residues and employing zero tillage. He is one of the farmers working in partnership with the Cereal Systems Initiative for South Asia (CSISA). CIMMYT is one of the many partners involved in CSISA, a collaborative project designed to decrease hunger and increase food and income security for resource-poor farm families in South Asia through development and deployment of new varieties, sustainable management technologies, and policies, led by the International Rice Research Institute (IRRI) and funded by the Bill & Melinda Gates Foundation and the USAID. Chaudhary carries out many different experiments, including comparisons of varieties, sowing dates, herbicides, and other variables, and gives demonstrations of his fields to other farmers. Photo credit: CIMMYT.
Farmer Ram Shubagh Chaudhary in his wheat fields, in the village of Pokhar Binda, Maharajganj district, Uttar Pradesh, India. He alternates wheat and rice, and has achieved a bumper wheat crop by retaining crop residues and employing zero tillage. CIMMYT/Petr Kosina

Farmers reap economic benefits

Conservation agriculture recommends minimal soil disturbance, most commonly tillage. Farmers who practiced zero tillage saved 23 percent in production costs by avoiding preparatory tillage and reducing the number of times fields were irrigated, while reaping the same or slightly higher yields.

Minimizing heat stress

High temperatures during the maturity stage cause wheat to decrease grain size, lowering overall yields, a phenomenon known as “terminal heat effect.” Farmers who practice conservation agriculture avoid this heat stress because residues left on the surface of the field conserve soil moisture, enhancing transpiration and creating a cooling effect – thus avoiding reduced yields caused by terminal heat effect.

Efficient use of water resources

Researchers found multiple examples that the zero tillage component of conservation agriculture led to significant water savings in both rice and wheat systems. Water savings accrued across systems. In rice-wheat systems, retention of wheat residues reduces water use in rice, and retention of rice residues causes reduced water use in wheat. Non-requirement of preparatory tillage advances the planting times thereby increasing rainwater-use efficiency and utilizing residual moisture from the previous crop.

Decrease in greenhouse gas emissions

Minimizing soil disturbance allows for soil carbon to accumulate, causing a net soil carbon gain. Although scientists are still debating the extent of soil carbon sequestered through conservation agriculture, indirect emissions reductions are numerous: less power and fuel consumption due to decreased tillage in conservation agriculture, decreased labor from machines and humans, and slower depreciation of equipment.

Business-as-usual production practices such as conventional tillage and farmers’ nutrient and irrigation management systems are greenhouse gas-intensive, while zero tillage reduces energy consumption in land preparation and crop establishment and efficient use of water resources reduces energy needs from pumping. Leaving residues in the field increases soil health and fertility, thereby reducing the need for chemical fertilizers.

Researchers found that, on average, farmers could save 36 liters of diesel per hectare, equivalent to a reduction in 93 kg CO2 emission per hectare per year by practicing zero tillage for land preparation and crop establishment in the rice-wheat system typical on the Indo-Gangetic Plain. Given that 13.5 million hectares are under rice-wheat system cultivation in the region, this represents a reduction of 12.6 megatons of CO2 equivalent.

New technologies increase uptake of conservation agriculture

Despite excellent productivity, economic gains and environmental benefits, adoption of conservation agriculture in South Asia is still relatively slow, most likely due to various technological and socio-economic factors. It takes years and ample evidence for farmers to change the entrenched habit of tillage with planting. And it is a process.

For example, some farmers have adopted zero-tillage in wheat production, primarily to facilitate early planting, lower production costs and increase yields (and therefore profitabilitiy). However, these same farmers still prefer to practice tillage and puddling (wet-tillage) in their rice crops for weed control and reduction in percolation loss of water/nutrient. Also, farmers tend to burn crop residues to facilitate planting with the zero-tillage drill. To realize the full potential of conservation agriculture, all crops in rotation have to be brought under zero tillage, and crop residues will have to be used as soil surface mulch.

Due to the recent development of the “Turbo Happy Seeder,” which can drill seed and fertilizer directly through loose and anchored crop residues, farmers are gradually moving towards zero tillage across the agriculture system.

Farmers who practice conservation agriculture also must adjust their nutrient management systems in order to maximize crop productivity decrease costs. Conventional fertilizer recommendations have been calibrated based on tillage-based systems are thus not necessarily appropriate for conservation agriculture systems, including nutrient stewardship (applying the right source of fertilizer at the right time in right place using right method).

Crop residue management is essential for continuous coil cover, an important component of conservation agriculture, but farmers are faced with competing uses of crop residue as livestock feed, fuel, mulch and compost. Local adaptive research is needed to address strategic residue and nutrient management, weed control and scale-appropriate machinery development.

Such a paradigm shift in crop management requires a mindset transition among farmers and other value chain actors, including researchers, extension agents, market players and other institutions. Though it is recognized that transition takes time, recent progress and development in weed control and nutrient management systems signal that practice of conservation agriculture is growing across the region, including among different socio-economic groups and farm typologies.

CCAFS and CIMMYT continue research and implementation of low emissions agriculture across the globe. See also the regional focus on conservation and climate-smart agriculture in South Asia.

Scientists aim to adapt wheat to a warmer climate with less water

MReynoldsEL BATAN, Mexico (CIMMYT) – Scientists battling to increase wheat production by more than 60 percent over the next 35 years to meet projected demand are optimistic that they have begun to unravel the genetic mysteries that will lead to a more productive plant.

A recent study conducted at 26 international sites with a new generation of improved wheat breeding lines crossed and selected for superior physiological traits, resulted in yields that were on average 10 percent higher than other wheat varieties.

In the study, scientists identified many useful traits in the wheat plant suited to heat and drought adaptation, including: cooler canopy temperature indicating the ability of the plant to access subsoil water under drought and root proliferation under hot irrigated conditions.

They also discovered the plants have the ability to store sugars in the stem when conditions are good and the capacity to remobilize them to the grain when needed for seed filling if conditions do not permit enough photosynthesis. Leaf wax also plays a role by reflecting excess radiation and reducing evaporation from the leaf surface, lowering the risk of photo-inhibition and dehydration.

Additionally, scientists discovered that total aboveground biomass, a trait, which indicates overall plant fitness and with the right crossing strategy can be converted to produce higher grain yield.

“What we have revealed is a proof of concept – namely that designing crosses on the basis of wheat’s physiology results in a range of novel genotypes with significant improvements in yield and adaptation,” said Matthew Reynolds, a distinguished scientist and wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT).

“We have a long road ahead, but we hope eventually this work will lead to the discovery of the best combinations of genes suited to specific heat and drought profiles.”

HEAT STRESS

Climate change poses considerable risks to food security and political stability. Wheat is a vital food staple providing 20 percent of the calories and protein consumed by people worldwide.

Projections indicate that it is very likely that rainfall will be more unpredictable and that heat waves will occur more often and last longer throughout the 21st century, according to a report from the Intergovernmental Panel on Climate Change (IPCC). Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, the report said.

A recent comprehensive modeling exercise, which incorporated data from international heat stress trials led by CIMMYT’s wheat physiology team in the 1990s, shows that for each degree increase in average temperature, there is a 6 percent reduction in wheat yield, so an increase of 5 degrees would lead to a 30 percent reduction or more.

“A 30 percent yield reduction would be very harmful to food security because we know that wheat production must increase by 60 percent just to keep up with population projections,” Reynolds said. “Combined with predicted climate risks, the challenge increases – if this happens, we’ll need to double the yield capacity of our current varieties.”

While demand for wheat is projected to increase at a rate of 1.7 percent a year until 2015, global productivity increases at only 1.1 percent. Conventional breeding approaches achieve less than 1 percent per year, a yield barrier that scientists aim to break.

“If the relative rate of improvement in yields continues at its current pace, there will be a large gap between the amount of available wheat and the amount we need to feed the global population,” Reynolds said.

LESS THIRSTY PLANT

Research findings will be developed under the International Wheat Yield Partnership (IWYP) and the Heat and Drought Wheat Improvement Consortium (HeDWIC), aiding the development of molecular breeding methodologies which will complement the trait-based approach.

Under IWYP and HeDWIC scientists will be redesigning the wheat plant for adaptive traits relating to temperature extremes, photoperiod, soil depth, and other environmental factors. Other goals will include attempting to drastically increase radiation-use efficiency, and to understand how plants use signaling to coordinate their activities and respond to environmental fluxes.

Such crops as rice and triticale can be used as potential models for wheat redesign. Rice is similar to wheat in terms of its basic metabolism, but tolerates much higher temperatures, Reynolds said. Triticale could also be used as a model, since it almost never lodges – or falls over – and its spikes have a very high grain number, he added.

Scientists also aim to increase their understanding of the role of roots and their potential to boost yield and ability to adapt to stress.

Because roots are hidden and messy to work with their physiology has been largely ignored in comparison to the parts of the plant above ground, but new technologies are helping to overcome these disadvantages, Reynolds said.

Such challenges are now more feasible to tackle due to a new generation of genomics tools and other biotechnologies which become more powerful each year.

“The revolution in phenomics – work that the Wheat Physiology Group helped pioneer – especially remote sensing for temperature and spectral indices, which indicate specific physiological properties of the plant-, means that we can now evaluate a much larger numbers of lines than in the past,” Reynolds said.

“We’ve already screened 70,000 accessions from the World Wheat Collection in the CIMMYT Genebank, and have identified a veritable powerhouse of novel material to support this work related to breeding and gene discovery for decades to come. So although the challenge is enormous, we remain optimistic.”

Follow @WheatPhysiology on Twitter

RELATED RESEARCH

International Wheat Yield Potential Proceedings

Physiological traits for improving heat tolerance in wheat 

Achieving yield gains in wheat

Translational research impacting on crop productivity in drought-prone environments

MasAgro named a project transforming Mexico by leading university

MasAgro named a project transforming Mexico. Photographer: MasAgro/CIMMYT
MasAgro named a project transforming Mexico. Photographer: MasAgro/CIMMYT


MONTERREY, Mexico – The Sustainable Modernization of Traditional Agriculture (MasAgro) project of Mexico’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food, in close collaboration with the International Maize and Wheat Improvement Center (CIMMYT), was recognized by Universidad Tecnológico y Estudios Superiores de Monterrey (ITESM) as being one of “10 projects that are transforming Mexico.”

“This project is transforming Mexico and, four years after its launch, it has benefited more than 200,000 farmers,” said Silverio García Lara, professor at ITESM’s School of Engineering and Science, Monterrey campus. “The project focuses on the base of the productive and economic pyramid,” explained the researcher, who favors “developing cutting-edge technologies to regenerate and renew Mexican farming.”

ITESM is involved in a project focusing on biotechnology for food security that applies cutting-edge technologies to analyze MasAgro’s new maize varieties and ensure they meet the nutrition and processing quality parameters of the Mexican market, explained Natalia Palacios, the person responsible for CIMMYT’s Maize Quality Laboratory, in an information bulletin that was broadcast when the winning project was presented at the 46th Research and Development Congress held on 20-22 January at ITESM’s Student Center, Monterrey campus.

“We are very proud of MasAgro because its results in the lab and especially in farmers’ fields have been widely recognized both nationally and internationally; today ITESM, a research partner that has collaborated with us since the beginning, also recognizes the project,” said Bram Govaerts, Leader of CIMMYT’s Sustainable Intensification Strategy for Latin America.

Among MasAgro’s main achievements, Govaerts highlighted the adoption of sustainable intensification of basic grain production on half a million hectares. He also emphasized the development of 20 high yielding maize hybrids which, combined with MasAgro’s sustainable agronomic practices, have increased rainfed maize farmers’ income by 9-31%. According to Govaerts, 16 precision machines for use in different production situations, from subsistence to intensive or commercial farming, and different postharvest storage solutions are among the technologies that MasAgro offers.

“Our farmers out in the fields are very interested in innovating and obtaining new technologies coming from the labs and from international research institutions such as CIMMYT,” stated García Lara when presenting ITESM’s award for the work done by MasAgro.

NAAS fellow M.L. Jat talks climate change, sustainable agriculture

M.L. Jat shows resilient cropping system options for eastern Indo-Gangetic plains at BISA farm
M.L. Jat shows resilient cropping system options for eastern Indo-Gangetic plains at BISA farm

CIMMYT Senior Scientist M.L. Jat has received India’s National Academy of Agricultural Sciences (NAAS) fellowship in Natural Resource Management for his “outstanding contributions in developing and scaling” conservation agriculture-based management technologies for predominant cereal-based cropping systems in South Asia.

M.L.’s research on conservation agriculture (CA) – sustainable and profitable agriculture that improves livelihoods of farmers via minimal soil disturbance, permanent soil cover, and crop rotations – has guided improvements in soil and environmental health throughout South Asia. His work has led to policy level impacts in implementing CA practices such as precision land leveling, zero tillage, direct seeding, and crop residue management, and he has played a key role in building the capacity of CA stakeholders throughout the region.

Research such as M.L.’s is more important every day, as we learn to do more with less on a planet with finite resources and changing climate. Sustainable innovation, including climate-smart agriculture, is a major theme at the ongoing COP21 climate talks where global leaders are gathered to decide the future of our planet. M.L. tells us below how CA can play a part in climate change mitigation and adaptation, and the future of CA in South Asia.

What are the major threats global climate change poses to South Asian agriculture?

South Asia is one of the most vulnerable regions in the world to climate change. With a growing population of 1.6 billion people, the region hosts 40% of the world’s poor and malnourished on just 2.4% of the world’s land. Agriculture makes up over half of the region’s livelihoods, so warmer winters and extreme, erratic weather events such as droughts and floods have an even greater impact. Higher global temperatures will continue to add extreme pressure to finite land and other natural resources, threatening food security and livelihoods of smallholder farmers and the urban poor.

How does CA mitigate and help farmers adapt to climate change?

In South Asia, climate change is likely to reduce agricultural production 10‐50% by 2050 and beyond, so adaptation measures are needed now. Climate change has complex and local impacts, requiring scalable solutions to likewise be locally-adapted.

Climate-smart agriculture (CSA) practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, according to numerous data on CA management practices throughout the region.

What future developments are needed to help South Asian farmers adapt to climate change?

Targeting and access to CA sustainable intensification technologies, knowledge, and training – such as precision water and nutrient management or mechanized CA solutions specific to a farmer’s unique landscape – will be critical to cope with emerging risks of climate variability. Participatory and community-based approaches will be critical for scaled impact as well. For example, the climate smart village concept allows rural youth and women to be empowered not only by becoming CA practitioners but also by serving as knowledge providers to the local community, making them important actors in generating employment and scaling CA and other climate-smart practices.

Where do you see your research heading in the next 10-15 years?

Now that there are clear benefits of CA and CSA across a diversity of farms at a regional level, as well as increased awareness by stakeholders of potential challenges of resource degradation and food security in the face of climate change, scaling up CA and CSA interventions will be a priority. For example, the Government of Haryana in India has already initiated a program to introduce CSA in 500 climate smart villages. Thanks to this initiative, CA and CSA will benefit 10 million farms across the region in the next 10-15 years.

 

Climate-Smart Villages

Climate-Smart Villages are a community-based approach to adaptation and mitigation of climate change for villages in high-risk areas, which will likely suffer most from a changing climate. The project began in 2011 with 15 climate-smart villages in West Africa, East Africa and South Asia, and is expanding to Latin America and Southeast Asia. CIMMYT is leading the CCAFS-CSV project in South Asia.

FAO has its finger on the ‘pulse’ when it comes to food security

The Food and Agriculture Organization of the United Nations (FAO) has declared 2016 the International Year of Pulses under the motto “Nutritious seeds for a sustainable future.” Pulses, an annual leguminous crop yielding from one to 12 seeds (dry beans, kidney beans, dry peas, lentils and others), have been named by the FAO as essential in the fight for food security for their nutrient value and their key role in crop rotations through the ability to fix nitrogen.

When we plant the same species on the same land every year, we are engaging in what is called monoculture. Monoculture has unfavorable consequences for production, since it increases the incidence of weeds, pests and diseases, which become resistant to control methods.

To counteract this, one of the principles of Conservation Agriculture (CA) is crop rotation, which involves planting different crops in the same field in a specific order. Crop rotation reduces the incidence of pests and diseases by interrupting their life cycles; it also maintains weed control and promotes more appropriate nutrient distribution in the soil profile (crops that have deeper roots extract nutrients at a greater depth) and helps reduce the economic risk when an unforeseen event affects one of the crops. It also enables farmers to balance residue production because crops that produce few residues can be rotated with crops that produce a large amount.

Crop rotation should include pulses (leguminous crops) that make efficient use of water and provide soil nutrients (such as nitrogen) that are extracted by grains.

The year will be a unique opportunity to foster connections all along the food chain in order to benefit more from proteins derived from pulses, increase pulse production worldwide, make better use of crop rotation and face the challenges of commercializing pulses.

Conservation agriculture expert at Oxford Farming Conference

BramGovaertsMEDIA ADVISORY

WHAT: Bram Govaerts, strategic leader for Sustainable Intensification in Latin America and Latin America representative at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), will make keynote speech entitled “Ending hunger: Can we achieve humanity’s elusive goal by 2050?” at the Oxford Farming Conference (OFC) at the University of Oxford, in Oxford, UK.

WHEN: Wednesday, January 6, 2016 at 10:30 a.m.

WHERE: South School, Examination Schools, University of Oxford, 75-81 High Street, Oxford, UK, OX1 4AS

ABOUT OFC: The Oxford Farming Conference has been held in Oxford for more than 70 years, attracting strong debate and exceptional speakers.

OTHER DETAILS: Bram Govaerts, who will be available for media interviews, will deliver the keynote Frank Parkinson Lecture sponsored by the Frank Parkinson Agricultural Trust, which aims to contribute to the improvement and welfare of British agriculture. The lecture will examine key challenges for achieving food security for a global population of 9.7 billion, which the U.N. projects will have grown 33 percent from a current 7.3 billion people by 2050. Demand for food, driven by population, demographic changes and increasing global wealth will rise more than 60 percent, according to a recent report from the Taskforce on Extreme Weather and Global Food System Resilience. Govaerts will discuss such risks to agricultural production as:

  • The need for funding and political will to support technological innovations to improve farming techniques for small landholders in the global south
  • How mobile technology could benefit agricultural research, development and relaying innovations to farmers
  • Machinery prototypes, which can help transform agricultural practices
  • How minimal soil disturbance, permanent soil cover and crop rotation can boost yields, increase profit and protect the environment
  • Climate change: carbon sequestration debate; soil does not sequester the carbon needed to mitigate the impact of climate change as some policy makers suggest
  • Climate change: How CIMMYT is working to produce drought and heat tolerant varieties of maize and wheat
  • Why women are less likely than men to uptake conservation agricultural practices in developing countries
  • How CIMMYT connects smallholder maize farmers in Mexico with top restaurants and chefs in New York City
  • The U.N. Sustainable Development Goals: A recipe for success in achieving food security
  • MasAgro: Mexico’s Sustainable Modernization of Traditional Agriculture project involving more than 100 organizations, offering training, technical support, seeds
  • Dangerous diseases: How CIMMYT is producing varieties resistant to Maize Lethal Necrosis and Tar Spot Complex

MORE INFORMATION:

Julie Mollins, CIMMYT communications, by email at j.mollins@cgiar.org or by mobile at +52 1 595 106 9307 or by Twitter @jmollins or by Skype at juliemollins

Genevieve Renard, head of CIMMYT communications, at g.renard@cgiar.org or  +52 1 595 114 9880 or @genevrenard

ABOUT CIMMYT:

CIMMYT, headquartered in El Batan, Mexico, is the global leader in research for development in wheat and maize and wheat- and maize-based farming systems. CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat systems to improve food security and livelihoods. CIMMYT is a member of the 15-member CGIAR Consortium and leads the Consortium Research Programs on Wheat and Maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.

CIMMYT website: http://staging.cimmyt.org

CGIAR website: http://www.cgiar.org

BACKGROUND:

Oxford Farming Conference

Frank Parkinson Agricultural Trust

United Nations population projections 

Taskforce on Extreme Weather and Global Food System Resilience

 Q+A: Young scientist wins award for “taking it to the farmer”

Gender bias may limit uptake of climate-smart farm practices, study shows

Race for food security can be won, Mexico agriculture secretary says

Global conference underscores complex socio-economic role of wheat

Click here to follow Bram Govaerts on Twitter

CIMMYT marks 50 years of innovation in agricultural science for development

logo50Mark your calendars! CIMMYT will celebrate its 50th anniversary during a three-day event from September 27 to 29, 2016.

We will be celebrating throughout the year, with the capstone event to be held in Mexico in September 2016.

We will showcase CIMMYT’s successes, impacts, and partnerships, and we will look toward the future: What will CIMMYT need to become in the next 50 years?

What do the complex challenges of the future mean for agricultural research-for-development at large?

The following themes will be in focus:

  • Maize and wheat science is fundamental for food security and sustainable development.
  • CIMMYT has made impacts well beyond the size of our institution, and is a key player in addressing research-for-development challenges of the future.
  • Our partnerships enable us to make impacts with our research, and we want to highlight and strengthen those partnerships.

We look forward to exploring these topics with CIMMYT50 participants, and to planning for a future with continued impact.

Information about the program and logistics will be available soon.

For any questions about the event, please contact the CIMMYT50 executive committee at cimmyt50@cgiar.org.

Follow us on Twitter @CIMMYT and follow the #CIMMYT50 hashtag for more information

Cross-regional efforts produce a toolbar for direct seeding of maize

Cheap, light, versatile… and locally manufactured

Direct seeding of maize using a two-wheel tractor has been made possible over the past decade or so by manufacturing companies in China, India, and Brazil (among others) that produce commercially available seeders. Several of these seeders have been tested for the past two or three years in Ethiopia, Kenya, Tanzania, and Ethiopia under the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project supported by the Australian International Food Security Research Center (AIFSRC).

One of the best performing commercially available seeders (in terms of field capacity, precision in seed rate and planting depth, crop emergence, etc.) is manufactured by the Brazilian company Fitarelli. However, this seeder is expensive (above US$ 4,000), difficult to maneuver (especially in small fields), and lacks versatility (minimum row spacing is 80 cm).

In response, several initiatives have aimed at producing toolbar-based seeders to be manufactured locally and cheaply, that could be used in different configurations (to seed one, two, or more rows) and could perform other operations (such as forming planting beds). One such toolbar is the Gongli seeder, which is well suited to sow small grain crops such as wheat and rice in Asian fields, but not maize under typical field conditions in Africa. Two years ago, Jeff Esdaile, inventor of the original Gongli, and Joseph Mutua, from the Kenya Network for Dissemination of Agricultural Technologies, produced a modified version of the Gongli – the Gongli Africa + ­ thanks to funding from CRP MAIZE (as reported in Informa No. 1862). In parallel, another toolbar using a different design was produced by Jelle Van Loon and his Smart Mechanization/Machinery and Equipment Innovation team at CIMMYT-Mexico.

Both the Gongli Africa + and the Mexican toolbar have their strengths and their weaknesses. Both have also been judged as too heavy by local service providers. Thus, CRP MAIZE and the Syngenta Foundation for Sustainable Agriculture co-funded a two-week session (8-27 October) in Zimbabwe to develop a “hybrid toolbar” having the strengths of both the Gongli Africa + and the Mexican toolbar but weighing under 100 kg. Jeff Esdaile, Joseph Mutua, and Jelle Van Loon spent the entire two weeks manufacturing three prototypes of the hybrid at the University of Zimbabwe. The two-week session also served as hands-on training for staff of three of Zimbabwe’s major manufacturing companies of agricultural equipment (Zimplow LTD, Bain LTD, and Grownet LTD) as well as representatives of the informal sector.

The hybrid toolbar is expected to sell for a quarter of the price of a Fitarelli seeder, although its performance (in terms in term of field capacity, fuel consumption, precision, and crop emergence) is expected to be equivalent. Its weight suits the needs of local service providers better and it is infinitely more versatile (several configurations are possible depending on the desired row spacing, soil conditions, the amount of mulch, etc.). The hybrid toolbar will be thoroughly tested in Zimbabwe during the coming months. A prototype will be shipped to Bangladesh and another to Mexico for further testing and to share the design.

 

A Fitarelli seeder is good at establishing a maize crop under no-till conditions, but expensive, difficult to operate in small fields, and heavy. Photo: Frédéric Baudron

The first hybrid toolbar being tested at CIMMYT-Harare. It is cheap, easy to maneuver, light, and versatile. Three local companies and informal sector representatives have been trained to manufacture it locally. Photo: Frédéric Baudron

 

Balancing economy and ecology: agriculture vs. nature

Natural enemies of stem borer – a major maize pest in southern Ethiopia – are more abundant in landscapes with more trees and forest patches. In this picture, Yodit Kebede, Ph.D. researcher co-supervised by Wageningen University and CIMMYT, checks insects in a yellow-pan trap. Photo: Frédéric Baudron

“The prosperous still have a strong carbon footprint. And, the world’s billions at the bottom of the development ladder are seeking space to grow,” said Indian Prime Minister Narendra Modi during his opening speech at the COP21 climate talks in Paris, where world leaders recently gathered to come to an agreement that will slow and eventually stop global emissions of greenhouse gases that threaten the survivability of our planet.

Modi and other leaders have called for climate solutions that reconcile the right of developing countries to grow and environmental protection. If implemented correctly, a solution exists in the Intended Nationally Determined Contributions (INDCs), essentially “blueprints” for what post-2020 climate actions each country intends to take based on past contributions, future development needs, and opportunities to exploit alternative energies to fossil fuels. This allows the developing world to balance the need to grow while moving to clean energy by soliciting support through climate finance and other measures from developed countries.

Reconciliation of the right to develop and environmental protection must move beyond global dialogue, and be put into practice in every community struggling with the effects of environmental degradation and poverty.

Seventy percent of the “billions at the bottom” Modi refers to live in rural areas. A majority of these people suffer from land degradation – the long-term loss of an ecosystem’s services – due to climate change in combination with unsustainable crop and livestock management practices.

“Agriculture undermines the very resources it depends on,” says Frédéric Baudron, CIMMYT Systems Agronomist. “A new paradigm is needed to sustainably achieve global food security.” Baudron is a lead author of the chapter “Response Options Across the Landscape” in the recently released global assessment report “Forests, Trees and Landscapes for Food Security and Nutrition.

Like the INDCs, landscape approaches may offer a compromise to achieve food production, natural resource conservation, and livelihood security goals, according to the report’s chapter. “Landscape configurations exist not only to minimize tradeoffs between conservation and food security and nutrition, but also to create synergies between these two goals,” argue Baudron and his fellow authors.

“Cultivated fields are not green deserts but may be part of the habitat of several species of importance for conservation,” says Baudron. “In many human-dominated ecosystems, some species can be dependent on agricultural practices such as extensive grazing in Europe or shifting cultivation in tropical forests. Conversely, biodiversity may contribute to crop and livestock productivity through the ecosystem services it provides, such as pollination or pest control.”

According to recent research conducted by CIMMYT and its partners in southern Ethiopia, diets of rural families living in diverse landscapes where trees are retained tend to be more diverse than diets of rural families living in simplified landscapes dominated by annual crops. Photo: Frédéric Baudron

“Ongoing research conducted by CIMMYT and its partners in southern Ethiopia’s maize- and wheat-based farming systems suggests that maintaining trees and forest patches in production landscapes is not only good for the environment and biodiversity, but contributes to the maintenance of farming system productivity and resilience,” according to Baudron. “Farms embedded in diverse landscape mosaics also produce much more diverse and nutritious food.”

Landscape approaches are also closely associated with the concept of food sovereignty, which promotes the right of people to define their own food production and consumption at the local, national, and global level. Community level engagement with local food and agricultural systems also creates an ideal setting to engage communities for more sustainable management of food and agricultural systems.

“Ultimately, this is about acknowledging diversity as a fundamental property in the design of more sustainable farming systems,” says Baudron. “The question is: what configurations are optimal in different contexts? Answering this question will require a much higher level of partnership between conservation organizations and agricultural agencies.”

African maize farmers get support to mitigate impact of poor soils

8291994814_d75e7ce9ca_o_d53b26d3743a026b6dc969f7e5efbc7d

NAIROBI, Kenya (CIMMYT) – As the global community marks World Soil Day, African smallholder farmers are contending with low yields due to low-fertility soils prevalent in most parts of sub-Saharan Africa. This situation has affected the food security of over 300 million people in the region who depend on maize as their staple food.

For the majority of these smallholder farmers, access to inputs like fertilizers to boost soil productivity has been restricted due to their high cost. The reality is that in Africa fertilizers cost up to six times more than in any other continent.

As a result, nearly three quarters (about 70 percent) of eastern and southern Africa’s maize is grown without fertilizers. As the International Maize and Wheat Improvement Center (CIMMYT) and partners work to give farmers a partial solution to this enor

mous challenge, efforts must be intensified to protect and maintain soil resources for sustainable development in Africa and the globe.

The Improved Maize for African Soils (IMAS) Project addresses the problem of low nitrogen in soils. Smallholder farmers can expect to harvest up to 25 percent more from new maize varieties developed by the IMAS project.

These varieties are nitrogen use efficient (NUE), which means they utilize more efficiently the small amount of fertilizer that farmers can afford to apply (typically less than 20 kilograms per hectare) compared to varieties currently on the market. The IMAS project is a public-private partnership involving CIMMYT, the Kenya Agricultural and Livestock Research Organization, South Africa’s Agricultural Research Council and DuPont Pioneer.

In two years – between 2014 and 2015 – 21 NUE hybrids were successfully released in Tanzania, Malawi, Mozambique, South Africa, Uganda and Zimbabwe. In addition, IMAS helped to increase seed production and distribution of three existing NUE varieties. According to Michael Olsen, IMAS Project Leader, these varieties are expected to reach approximately 84,000 farmers.

“Giving smallholder farmers practical solutions within their environmental conditions is a sustainable means to not only preserve soil resources but address key challenges in maize farming, which is a major livelihood for millions in Africa,” Olsen said.

Many of the released NUE hybrids carry additional traits that are important in the region, such as tolerance to drought and maize lethal necrosis, a devastating viral disease that is new in the region. Donasiana Limo, a farmer from Olkalili village in northern Tanzania, attests to the good performance of HB513, a drought-tolerant and NUE variety he planted during the main cropping season between January and March 2015.

“I did not do much to prepare my land because the rains came very late and ended early. With no fertilizer and failed rains, I did not expect to harvest the seven bags of 50 kilograms from eight kilograms of HB513 seed,” Donasiana said.

“If I had time to prepare my land and added fertilizer, the harvest would have been so much more.”

Many more farmers from this remote village have benefited immensely from HB513, including Valeria Pantaleo.

Sustainable solutions for African farmers need to be addressed during World Soil Day deliberations. Efforts to facilitate smallholders’ access to inputs like fertilizers are critical. In addition, to help arrest further soil deterioration emphasis must be placed on adopting correct agronomic practices and appropriate crop varieties available on the market that are well suited to different soil management systems.

Policymakers must formulate strategies for adopting universal practices that maintain soil resources and are adapted to farming environments across Africa. Kenya has already set the pace for maize breeding in Africa by including performance in low-nitrogen soils as a special prerequisite for maize variety release, a step that will help enhance healthy soils in Africa if adopted by other regulatory agencies.

Links for more information

For information, please contact: Michael Olsen: IMAS Project Leader| Brenda Wawa: Media Contact

Buena Milpa participates in the lamb and agrobiodiversity fairs in Guatemala

Social inclusion activities were conducted with Mayan children. Photo: Rachael Cox and Nadia Rivera/Buena Milpa.
Social inclusion activities were conducted with Mayan children. Photo: Rachael Cox and Nadia Rivera/Buena Milpa.

Buena Milpa is the Sustainable Intensification Strategy for Latin America promoted by CIMMYT in Guatemala. It aims to foster innovation to reduce poverty and malnutrition, and enhance the sustainability of maize systems in the Guatemalan highlands.

Recently the Buena Milpa Project took an active role in the XX Lamb and VII Agrobiodiversity Fairs held in the Cuchumatanes Sierra, Chiantla, Huehuetenango, Guatemala, which brought together different social organizations and inhabitants from several departments (states) in the country’s western region.

Each year, the Association of Cuchumatan Organizations (ASOCUCH), Buena Milpa’s social institution, holds agrobiodiversity fairs where farmers exhibit and exchange varieties of maize, potato, bean, yam, and other crops that they grow on their farms. The objective is to promote the protection and conservation of agricultural and livestock diversity (especially of native maize). During the event, there were tables with displays on themes such as agrobiodiversity to support food security, climate change, and the environment.

During the fair, Buena Milpa made presentations on the work being done in the western region, where the general objective is to foster innovation to reduce poverty and malnutrition, while enhancing the sustainability of maize systems. Maize fields there are diversified by sowing amaranth, which is an important component of the region’s human diet. Amaranth tastings were held to emphasize that it’s also important to consume it. Informative materials were distributed and the participants were made aware of the importance of conserving and protecting native maize, in the Mayas’ native tongues (mam and popti’).

Participants are happy that the diversity of their native maize is being conserved. Photo: Rachael Cox and Nadia Rivera/Buena Milpa.
Participants are happy that the diversity of their native maize is being conserved.
Photo: Rachael Cox and Nadia Rivera/Buena Milpa.

The Buena Milpa team also provided a space where girls and boys of different ages could take part in learning exercises with seeds of maize and other crops in order to teach them to protect and conserve nature and the native maize varieties. The reason for holding these activities for girls and boys was to allow the women to participate actively in the events. The social and economic reality of rural native women is complex, and they have no one to look after their children. For this reason, they are forced to take them along to these events, where they cannot pay full attention to the presentations because they are keeping an eye on their children.

These CIMMYT-led activities raised awareness among the region’s inhabitants of the importance of conserving and protecting native maize, adopting crop diversification, and conserving soil and water as a vital part of sustainable native farming in Guatemala’s highlands. The participants were also made aware of the value of women as agents of change, as well as the importance of fostering love for nature and protection of native seeds in young children.

New findings on gender gap in conservation agriculture

Belita Maleko, a farmer in Nkhotakota, central Malawi, sowed cowpea as an intercrop in one of her maize plots, grown under conservation agriculture principles. (Photo: T. Samson/CIMMYT)
Belita Maleko, a farmer in Nkhotakota, central Malawi, sowed cowpea as an intercrop in one of her maize plots, grown under conservation agriculture principles. (Photo: T. Samson/CIMMYT)

Despite wide-ranging, in-depth conservation agriculture studies conducted over many years, almost none consider gender and gender relations as a factor that may explain low adoption rates, according to the recently published paper “Gender and conservation agriculture in East and Southern Africa: towards a research agenda.

The paper examines research to date on the interactions between conservation agriculture interventions – meaning minimal soil disturbance, permanent soil cover and crop rotation that can simultaneously boost yields, increase profits and protect the environment – and gender in East and Southern Africa and sets out a research agenda based on gaps observed. Given the increasing interest in conservation agriculture due to climate change impacts in the region, the authors also argue that greater attention to gender is needed in order to ensure successful interventions. The following Q&A with one of the study’s authors, Clare Stirling, CIMMYT Senior Scientist with the Sustainable Intensification Program based in Wales, UK, details the study’s findings and what is needed to ensure gender is included in future conservation agriculture interventions.

Q: How do conservation agriculture practices interact with gender?

A: There are many known and unknown ways in which conservation agriculture interacts with gender and the purpose of this paper is to review the evidence and identify gaps that exist. conservation agriculture is knowledge-intensive and can also be labor-intensive and, along with many soil improvement technologies, involves long-term investment with delayed returns. This clearly has important implications for women, as their ability to invest will depend on many factors such as entitlements, access to information, and their ability to act upon it.

If we take labor requirements as an example – many studies highlight labor shortages as a constraint to the adoption of conservation agriculture, particularly when zero tillage is not complemented by the application of herbicides. Without herbicide use, conservation agriculture techniques for land preparation increase weeding over and above plowing and ridging by as much as three times in maize production. In East and Southern Africa, this burden falls largely on women as weeding is largely a woman’s task. Studies conducted in several countries show that where (frequently subsidized) herbicides have been used, the release of women and children from weeding tasks results in multiple benefits, including more children attending school and more time for women to engage in income-generation activities.

Q: Why has gender been left out of many conservation agriculture studies to date?

A: I am not sure that this is a question that should be posed specifically in relation to conservation agriculture but could be asked of agronomic research in general. Things are improving, but I would suggest that the reason has been that gender is a challenging and complex issue that takes many of us out of our comfort zone both professionally and perhaps personally. It requires an interdisciplinary approach and a set of skills that many agricultural research centers simply have too limited a supply of and I include in this a critical mass of female research staff of sufficient seniority. Without this critical mass of gender expertise, agronomic research will continue to be designed and implemented according to the “male agronomist” norm.

Q: What impact has this had on conservation agriculture adoption in East and Southern Africa?

A: lncreased feminization of labor in smallholder agriculture has resulted in major changes in the roles and responsibilities of women in rural Africa, but still agricultural service suppliers and the wider policy environment in general remain locked into the conceptual norm of the primary farmer being male. This inevitably results in inappropriate targeting of research, extension services, and policy, and logic would tell us that it has also contributed to low adoption rates of conservation agriculture.

As the paper explains, the new norm of the “female primary farmer” has not resulted in their widespread recognition as such by external agencies or indeed within their communities. The ability of women-led households, or male-headed households with women as primary farmers, to adopt conservation agriculture may be compromised if government policies, extension systems, and other actors continue to design interventions around the conceptual norm of the male-headed household. This needs to change.

The paper summarizes the gender-related questions that remain to be addressed with regard to conservation agriculture, and there are many. There are overarching questions relating to intra-household decisions making, access to services, and labor. In addition, there are many more questions relating to specific aspects of conservation agriculture, such as the impacts of minimum tillage and weeding on labor; opportunity costs and how increased requirements are met; opportunities, constraints, and trade-offs of conservation agriculture-based crop diversification; and the tailoring of conservation agriculture-based information and training to women farmers.

Q: Moving forward, how can researchers address the gender gaps in conservation agriculture in their studies?

A:  Gender-sensitive research needs to be mainstreamed into projects. In order to achieve this, we need more multidisciplinary teams including both male and female researchers of similar seniority. While there is a decent body of gender research on the socioeconomic aspects of agricultural technologies such as barriers to uptake and extension services, it seems that there is still a large gap in gender-sensitive agronomic research. What are the implications for gender of increased weeding, need for planting basins, crop diversification, and residue retention? All very basic questions that still need answering. So moving forward, we need more research that involves gender specialists working closely with agronomists on the design, implementation, evaluation, and scaling out of conservation agriculture-based practices.

Study reveals challenges in southern Africa’s soil carbon uptake

Cheesman in a direct-seeded maize-soybean rotation in Chavakadzi village, Shamva District, Zimbabwe. Photo: Christian Thierfelder
Cheesman in a direct-seeded maize-soybean rotation in Chavakadzi village, Shamva District, Zimbabwe. Photo: Christian Thierfelder

A new study led by ETH Zürich graduate Stephanie Cheesman, along with CIMMYT senior agronomist Christian Thierfelder, Neal S. Eash from the University of Tennessee, Girma Tesfahun Kassie, ICARDA, and Emmanuel Frossard, professor at ETH Zürich, found limited increase in carbon sequestration under conservation agriculture (CA) after up to seven years of practice. In this interview, Cheesman tells us why carbon sequestration is such a complex issue in Southern Africa and what this study reveals about how it can improve.

Q: Why is increasing soil carbon important?

A: Besides the hype about sequestering carbon to contribute to climate change mitigation, carbon is an integral part of soil organic matter (also referred to as “humus”), which is possibly the most well-known fertility component of a soil. Soil carbon has strong influence on soil structure, water infiltration, as well as the capacity of the soil to retain water and nutrients that are required for plant growth. Degraded soil has only a little soil carbon and, hence, low fertility and nutrient- (and water) holding capacity.

Q: What were you hoping this study would reveal?

A: Although the study trials had been running for only seven years, I was hoping to show a clearer trend towards an increase in soil carbon under CA as compared to conventional practices (CP) in Southern Africa. We were surprised that, in most cases, the carbon under CA was at the same level as the conventional control treatment, with a few exceptions. Nevertheless, this is one of a very few studies where soil carbon stocks in CA systems have been analyzed across a wide range of Southern African agroecologies. I am now very happy to share this data with the wider research community.

Q: What factors limit carbon sequestration in Southern Africa?

A: There are a range of factors that limit carbon sequestration. Our findings suggest low productivity to be one of the main bottlenecks. Farmers have to decide if they should feed the crop residues to the soil or to their livestock. The long dry season from May to November and high temperatures further increase the mineralization of soil carbon, which can be twice as much as in temperate regions. Another factor that may limit carbon sequestration is the limited use of other strategies such as the integration of legumes or agroforestry species as intercrops in maize-based systems.

CA practitioners and Cheesman conduct bulk density sampling in Zidyana, Malawi, August 2011. Photo: Sign Phiri
CA practitioners and Cheesman conduct bulk density sampling in Zidyana, Malawi, August 2011. Photo: Sign Phiri

Q: Given the findings of this study, how can we increase soil carbon in Southern Africa in the future? Is conservation agriculture necessarily the answer?

A: Unfortunately, our study lacks initial carbon stock measurements, as this was tested on a very large set of on-farm trials and we never had enough financial resources to continuously test this from the onset. We could compare the difference between CA and CP but not how carbon stocks changed over time in the respective systems. Although some of the trial sites were up to seven years old, this is a comparably short time to increase the level of carbon in such environments. From other long-term studies (mainly in the Americas), we know that tillage-based agricultural systems decrease carbon stocks. Thus, I would say that a system like CA where tillage is reduced and residues are “fed” to the soil will more likely maintain soil carbon and maybe gradually increase it in the longer term. Tillage-based agricultural systems also have much higher soil erosion loads which further decreases carbon, so CA is definitely an answer to reduce soil degradation.

CIMMYT’s mission is to “sustainably” increase the productivity of maize- and wheat-based systems to reduce poverty and hunger. By combining improved varieties with sustainable intensification practices, CIMMYT does its best to give smallholder farmers options to improve their productivity and livelihoods. Feeding the soil with residues is one strategy to maintain or gradually increase soil carbon but we should not forget the immediate needs of farmers.

SIMLESA review finds many successes and major challenges

Farmers selecting pigeon pea varieties at Msingisi village, Gairo district, through SIMLESA. Photo: CGIAR Research Program on Grain Legumes

On 16-31 October 2015, the Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project undertook a two-week long Mid-Term Review (MTR) of its agricultural research and development activities on station and on farm. SIMLESA undertook this review to assess project performance and recommend actions to refine activities. The last MTR was carried out in 2012.

To wrap up the review, a two-day meeting was held with the participation of 40 people, including representatives from the Australian Centre for International Agricultural Research (ACIAR), Queensland Alliance for Agriculture and Food Innovation, the International Center for Tropical Agriculture (CIAT), the International Livestock Research Institute (ILRI), the national agricultural research systems (NARS) of Ethiopia, Malawi, Mozambique, Kenya, and Tanzania, and CIMMYT scientists from Ethiopia, Kenya, and Zimbabwe.

Continue reading

Agriculture ministers support policies to achieve Africa’s growth potential

Participants in the SIMLESA high level policy forum in Entebbe, Uganda. Photo: Johnson Siamachira/CIMMYT
Participants in the SIMLESA high level policy forum in Entebbe, Uganda.
Photo: Johnson Siamachira/CIMMYT

East and Southern African countries need to formulate and implement appropriate policies to help smallholder farmers access technologies that will enable them to increase farm yields and improve crop resilience and nutrition to address poverty, food security, and economic growth, renowned Zimbabwean agricultural economist and academic Mandivamba Rukuni told a high-level policy forum.

Delivering the keynote address at the SIMLESA policy forum co-organized by CIMMYT and the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) in Entebbe, Uganda, on 27–28 October, Rukuni said this can only be achieved through a dramatic shift to help smallholder farmers produce sufficient food for themselves, plus generate income. “Such technologies include improved seed varieties and fertilizers, and better infrastructure, such as roads and small-scale irrigation,’’ said Rukuni. SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by CIMMYT.

Continue reading