Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

New Publications: Elevating the conversation about GE crops

A Kenyan man holds a harvest of a genetically engineered (GE) maize at the Kari research station in Kiboko, Makueni County. Photo: Nation Media Group Kenya
A Kenyan man holds a harvest of a genetically engineered (GE) maize at the KALRO research station in Kiboko, Makueni County. Photo: Nation Media Group Kenya

EL BATAN, Mexico (CIMMYT) — A committee was recently assembled by the US National Academies to assess the benefits and risks of genetically engineered (GE) crops and accompanying technologies.

GE crops – also popularly referred to as genetically modified organisms (GMOs) – have been a controversial issue since the public continues to perceive GE crops as unsafe, even though there is scientific consensus about their safety. Opponents of GE crops point to potential environmental concerns, food safety and intellectual property law issues.

The authors focused on individual varieties and traits within GE crops to form individual conclusions, rather than make a blanket conclusion about the safety and benefits of GE crops. The committee was composed of 20 experts from diverse fields and the report reflects over 900 studies on GE crops.

The US National Academies requires all reports to seek input from individuals directly involved in the problem under consideration. The committee on GE crops felt this was especially important given that the public views GE crops as such a controversial issue. The authors held public meetings and webinars, heard from 80 speakers ranging across perspectives and received over 700 comments from their website.

In their 584-page report, the authors answer the questions they determined to be most pressing based on public and scientific input. The report has received criticism from pro- and anti- GE advocates for not overtly backing or condemning GE crops.

The committee said they realize an almost 600-page report is a lot, so they organized the report based on answering questions, this way the public can easily find where their most pressing concerns are addressed. The authors said they hope that the evidence in the report will deepen the level of public conversation around GE crops.

Read the full study Elevating the conversation about GE crops” and check out other recent publications from CIMMYT staff below.

 

  • First Report of Hop stunt viroid Infecting Citrus Trees in Morocco. 2016. Afechtal, M., Jamai, H., Mokrini, F., Essarioui, A., Faddoul, Z., Sbaghi, M., Dababat, A.A. In: Plant Disease, v. 100, no. 7, p.1512.

 

  • First Report of Wheat Blast Caused by Magnaporthe oryzae Pathotype triticum in Bangladesh. 2016. Malaker, P.K., Barma, N.C.D., Tiwari, T.P., Collis, W.J., Duveiller, E., Singh, P.K., Joshi, A.K., Singh, R.P., Braun, H.J., Peterson, G.L., Pedley, K.F., Farman, M.L., Valent, O. In: Plant Disease, v. 100, no. 11, p. 2330.

 

  • Gender as a Cross-Cutting Issue in Food Security: The NuME Project and Quality Protein Maize in Ethiopia. 2016. O’Brien, C., Gunaratna, N.S., Gebreselassie, K., Gitonga, Z., Tsegaye, M., De Groote, H. In: World Medical & Health Policy, v. 8, no. 3, p. 263-286.

 

  • Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. 2016. Shamanin, V., Salina, E., Wanyera, R., Zelenskiy, Y., Olivera, P., Morgounov, A.I. In: Euphytica, v. 212, n. 2, p. 287-296.

 

  • Genome-wide association study and qtl mapping reveal genomic loci associated with fusarium ear rot resistance in tropical maize germplasm. 2016. Jiafa Chen, Shrestha, R., Junqiang Ding Hongjian, Zheng Mu, C., Jianyu Wu, Mahuku, G. In: G3: genes – genomes – genetics, v. 6, no. 12, p. 3803-3815.

 

  • Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa. 2017. Dil Bahadur Rahut, Behera, B., Ali, A. In: Renewable and Sustainable Energy Reviews, vol. 73, p. 661-672.

 

  • Gains in maize genetic improvement in Eastern and Southern Africa: II. CIMMYT open-pollinated variety breeding pipeline. 2017. Masuka, B., Magorokosho, C., Olsen, M., Atlin, G.N., Banziger, M., Pixley, K.V., Vivek, B., Labuschagne, M., Matemba-Mutasa, R., Burgueño, J., MacRobert, J.F., Prasanna, B.M., Das, B., Makumbi, D., Amsal Tesfaye Tarekegne, Crossa, J., Zaman-Allah, M. Biljon, A. von, Cairns, J.E. In: Crop Science, v. 57, p. 180-191.

 

  • Gender and inorganic nitrogen: what are the implications of moving towards a more balanced use of nitrogen fertilizer in the tropics? 2017. Farnworth, C.R., Stirling, C., Sapkota, T.B., Jat, M.L., Misiko, M., Attwood, S. In: International Journal of Agricultural Sustainability, v. 15, no. 2, p. 196-152.

 

  • Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. 2017. Bedoya-Salazar, C.A., Dreisigacker, S., Hearne, S., Franco, J., Mir, C., Prasanna, B.M., Suketoshi Taba, Charcosset, A., Warburton, M.L. In: PLoS One, V. 12, no. 4: e0173488.

New online portal offers information to curb maize lethal necrosis in Africa

Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)
Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)

The new maize lethal necrosis (MLN) online portal provides up-to-date information and surveillance tools to help researchers control and stop the spread of the deadly disease.

MLN was first reported in Kenya in 2011 and has since then been reported in several countries in eastern Africa, especially the Democratic Republic of the Congo, Ethiopia, Kenya, Rwanda, Tanzania and Uganda. The disease kills plants before they can grow, and the pathogens are transmitted by insects or contaminated seed. Serious damage to the region’s maize production from MLN has impacted household food security.

The online portal, found at mln.cimmyt.org, details the spread of MLN, where the disease has been managed and controlled, and how to identify it in the field. It also provides key MLN publications, surveillance software, MLN incidence maps, information on the MLN Screening Facility, and MLN-tolerant hybrids that are either released or in pipeline.

One tool on the portal is the MLN surveillance and monitoring system that provides real-time data to identify the presence and spread of the disease across five endemic countries in eastern Africa, and three selected non-endemic countries in southern Africa. The system was developed by scientists collaborating with the International Maize and Wheat Improvement Center (CIMMYT), with support from the United States Agency for International Development (USAID).

In 2016, MLN surveillance was successfully conducted in Malawi, Zambia and Zimbabwe – three major seed producing countries in Africa – and the data is presented in the portal, detailing MLN’s status across 652 surveyed maize fields. Future data gathered in other affected countries will also be uploaded to the portal as surveillance teams conduct fieldwork using Global Positioning System online survey tools, to assess the spread and severity of the disease in these countries. Ongoing surveillance in endemic countries allows stakeholders to see real-time updates on the spread of MLN.

MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT
MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT

Since the disease was first reported, collaborative efforts have resulted in the establishment of a MLN Screening Facility at the Kenya Agricultural & Livestock Research Organization (KALRO) center at Naivasha in 2013. The facility, managed by CIMMYT, has so far screened nearly 100,000 maize germplasm entries — 56 percent from CIMMYT — against MLN under artificial inoculation over the last four years.

Nine CIMMYT-derived MLN-tolerant hybrids have been already released in three countries – seven in Kenya, one in Uganda and one in Tanzania. Eleven second generation hybrids are currently in national performance trials in these countries. Intensive efforts are currently being made by seed companies in Kenya, Tanzania and Uganda to expand the delivery of MLN-tolerant maize seed to the smallholders.

The MLN portal enables researchers to comprehensively assess the situation with regard to MLN, helps strengthen the national disease monitoring and diagnostic systems by providing faster and accurate data, and offers access to CIMMYT-offered MLN phenotyping services.

Zero till climate-smart wheat-rice-bean crop rotations in India curb emissions

A farmer walks through his rice field in Taraori village in Karnal, Haryana, India. CIMMYT/M.L. Jat
A farmer walks through his rice field in Taraori village in Karnal, Haryana, India. Photo: M.L. Jat/ CIMMYT

EL BATAN, Mexico (CIMMYT) — Conservation agriculture techniques can help boost yields and profits for smallholder farmers in an intensively cultivated region of India while helping reduce the impact of agriculture on global warming, according to a new research report.

Hardy, high-yielding crop varieties can be resilient to erratic weather patterns caused by climate change, but agricultural intensification must be balanced with sustainable techniques to offset the effects of emissions caused by greenhouse gases.

As part of efforts to achieve agriculture-climate equilibrium, researchers at the International Maize and Wheat Improvement Center (CIMMYT) studied basmati (scented) rice-wheat crop rotation systems in India’s Northwestern Indo-Gangetic Plains, seeking an optimal planting strategy to lower impact on global warming while increasing farm profits.

Overall, they evaluated six different combinations of tillage, residue management and green gram (mung bean) integration into rice-wheat rotations, comparing conventional tillage techniques with conservation agriculture techniques in a village in the northern state of Haryana, known as the basmati rice heartland of India.

Green gram (mung beans) growing in Taraori village in Karnal, Haryana in India. CIMMYT/M.L. Jat
Green gram (mung beans) growing in Taraori village in Karnal, Haryana in India. Photo: M.L. Jat/ CIMMYT

“Through research we aimed to identify cropping systems in which greater yields could be achieved at lower production costs leading to higher profitability while minimizing soil and environmental trade-offs,” said M.L. Jat, a systems agronomist based in New Delhi with CIMMYT who worked on the project for more than five years.

“Our study concludes that two ways of managing crop rotation systems: zero tillage rice and zero tillage wheat planted in residue; and zero tillage rice, zero tillage wheat and green gram planted in residue in the rice-wheat systems of this region of India are agronomically productive, economically viable and beneficial for the environment in terms of soil health and greenhouse emissions,” Jat added, referring to the research paper in “Sustainability Journal” titled “Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India.”

Specifically, scientists examined the best way to sustainably intensify crop production rotation systems to limit greenhouse gas emissions from soil, which include methane, nitrous oxide and carbon dioxide, while adding a third crop to the rotation.

Scientists wanted to help increase production by making use of a normally fallow season from May to July, which marks a pause between growing rice (July to November) and wheat (November to April). Rather than extending the rice and wheat growing seasons, to keep the soil healthy in such a continuous cereal-cereal rotation, they added green gram (mung beans).

By planting basmati rice using a direct seeding method instead of the conventional tillage (puddling) and transplanted method, methane emissions can be reduced by as much as 50 percent, scientists learned. However, reducing methane emissions in a conservation agriculture rice-wheat system is counterbalanced by increased nitrous oxide emissions. Their research concluded that by combining zero tillage and residue retention in the crop growing system, carbon is sequestered in the soil, helping to prevent greenhouse gas emissions.

“Given the dynamics and interdependence of the three greenhouse gases under different management systems, it’s important that all three are measured to determine overall global warming potential of the production system to quantify the mitigation co-benefits of conservation agriculture-based sustainable intensification in basmati rice-wheat systems,” Jat said.

Sowing seeds without tilling or removing residue from the fields contrasted with general practice in the region where farmers typically use conventional agriculture techniques by tilling the soil and removing crop residue from field surfaces before planting.

Scientists determined that using zero tillage with residue retention techniques resulted in the lowest global warming potential. The percentage of Greenhouse gases (CO2-equivalent) released into the atmosphere (on a life cycle analysis basis that includes global warming potential from inputs, operations, emissions and soil organic carbon) was lower by approximately 8 tonnes per hectare per year.

Additional environmental benefits included improved soil health, eliminating residue burning and more efficient water use in fields planted with rice-wheat rotations where conservation agriculture techniques were used. The water use footprint was reduced by almost 30 percent in comparison with farms using conventional tillage systems.

Agriculture and climate change pose complex challenges for scientists trying to improve crop yields on smallholder farms in developing countries. Sustainable intensification based on conservation agriculture principles, including minimal soil disturbance, permanent soil cover, economical and diversified crop rotations, is an important strategy to combat the negative impact of agriculture on the climate and other natural resources while improving the income of smallholder farmers.

Agriculture is the second biggest emitter of greenhouse gases after the energy sector. About 65 percent of farm-related emissions come from methane caused by cattle belching and soil treated with natural or synthetic nitrogen fertilizers, according to the World Resources Institute.

International development targets established by the U.N. climate change agreement aim to curb warming by keeping global temperature increases well below 2 degrees Celsius above pre-industrial levels.

“If sustainable intensification practices are deployed on 26 million hectares of rice-wheat rotations in Asia, we have the opportunity to make a significant contribution to reducing global warming potential and mitigating the impact on the environment,” Jat said.

The study was co-funded by the CGIAR Research Program on Climate Change (CCAFS) and Bayer CropScience.

Breaking Ground: Mainassara Zaman-Allah uses remote sensing to expedite phenotyping

TwitterBGMZMEXICO CITY (CIMMYT) – Remote sensing technology is on track to make crop breeding faster and more efficient, ensuring smallholder farmers get the improved maize varieties they need.

Field phenotyping – the comprehensive physical assessment of plants for desired traits – is an integral part of the crop breeding process but can create a costly and time-consuming bottleneck, according to Mainassara Zaman-Allah, abiotic stress phenotyping specialist at the International Maize and Wheat Improvement Center (CIMMYT).

Now, technological advances such as proximal or aerial sensing allow scientists to quickly collect information from plants to develop improved varieties.

“Previously, we used to measure maize height with a stick, and manually capture the data” he said. “Now we use proximal sensing—a laser distance meter connected to your phone or tablet that automatically captures data —to measure plant height 2 to 3 times faster for half of the labor. We also use digital ear imaging to analyze maize ear and kernel attributes including grain yields  without having to shell the cobs, saving time and money on labor. This will be helpful particularly to most of our partners who do not own the machinery required for shelling after harvest”

Zaman-Allah also works with aerial sensing, using unmanned aerial vehicles equipped with sensors to fly over crop fields and collect images that are later processed to extract crop phenotypic data. “Aerial phenotyping platforms enable us to collect data from 1,000 plots in 10 minutes or less, a task that might take eight hours to do manually,” he said.

This means that developing improved maize varieties with tolerance to heat and drought, as well as devastating diseases such as maize lethal necrosis (MLN), could become faster and more cost-effective than ever before. Application of aerial and proximal sensing technology for high-throughput phenotyping, in which large amounts of data are processed simultaneously, provides high-resolution measurements for research plots that can enable the rapid identification of stress tolerant varieties, speeding up the breeding process.

The time and money saved by using these technologies allow researchers to develop and deploy improved varieties more quickly to the smallholder farmers that need them most, which is especially important as climate change begins to change growing environments faster than traditional varieties can adapt.

For Zaman-Allah, this interest in improving agriculture for all is “in the blood,” he said. While growing up in Niger, his family had to move to a different city every three years due to his father’s job. “Everywhere we moved; my father made sure that we rented or bought a small farm, where I would be involved in crop production every year during the long vacations over the rainy season. That was a wonderful experience as I learned a lot regarding crop production, drought and soil fertility management.”

He would take this first-hand experience in agriculture to the next level while earning undergraduate and postgraduate degrees at the University of Carthage in Tunisia and conducting research for his Ph.D. in plant eco-physiology at the French National Institute for Agricultural Research (INRA) through a grant from the French Agency for International Cooperation.

Zaman-Allah joined CIMMYT in late 2012 as a scientist with a specialization in heat and stress resilient maize, based in Harare, Zimbabwe. He has been working as an abiotic stress phenotyping specialist since late 2015, and is considered a pioneer in remote sensing work in CIMMYT maize breeding. In addition to his work as a scientist, he also writes codes for the programs used in proximal sensing.

“As part of my current job, I develop, test and validate low-cost and high-throughput field-based phenotyping tools and methods for different desired traits in crops, including drought, heat and low-nitrogen stress,” he said.

“My team is working to provide opportunities toward next-generation phenotyping that is more compatible with maize breeders needs and that will significantly minimize selection cost while maximizing selection efficiency, accelerating the process to deliver maize varieties with better genetic traits to farmers.”

Zaman-Allah’s commitment to food security extends beyond his job. On his own time, he shares knowledge gained at CIMMYT to inform his contacts at universities and national agricultural research centers in Niger and help increase his home country’s capacity to produce healthy crops.

“Maize and wheat are not usually grown in Niger due to heat, drought and low soil fertility, but due to recent advances in CIMMYT technologies and improved varieties, they are now a possibility,” he said. “People were doubtful at first, but when improved varieties from CIMMYT Mexico and CIMMYT-Zimbabwe were planted side by side with locally released varieties, there was no comparison—the CIMMYT varieties performed far better.”

Working at CIMMYT has given Zaman-Allah a unique opportunity to help farmers while also working with a top-notch international team.

“I really enjoy the teamwork, the innovation and the challenge to make a difference,” he said. “It’s immensely satisfying to be able to contribute in helping smallholder farmers through my work. Whenever I take vacation, I always go back to the village in Niger where my family is from, and I love to talk with local farmers about the latest agricultural technologies that could help them.”

CSIRO and CIMMYT link on wheat phenomics, physiology and data

CSIRO Workshop-GroupCroppedBuilding on a more than 40-year-old partnership in crop modelling and physiology, a two-day workshop organized by CIMMYT and Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) achieved critical steps towards a common framework for field phenotyping techniques, data interoperability and sharing experience.

Involving 23 scientists from both organizations and held at El Batán from 12 to 13 June 2017, the event emerged partly from a 2016 visit to CIMMYT by CSIRO Agriculture and Food executives and focused on wheat, according to Matthew Reynolds, CIMMYT wheat physiologist and distinguished scientist.

“Capitalizing on our respective strengths, we developed basic concepts for several collaborations in physiology and breeding, and will follow up within ongoing projects and through pursuit of new funding,” Reynolds said, signaling the following:

  • Comparison of technologies to estimate key crop traits, including GreenSeeker and hyperspectral images, IR thermometry, digital imagery and LiDAR approaches, while testing and validating prediction of phenotypic traits using UAV (drone) imagery.
  • Study of major differences between spike and leaf photosynthesis, and attempts to standardize gas exchange between field and controlled environments.
  • Work with breeders to screen advanced lines for photosynthetic traits in breeding nurseries, including proof of concept to link higher photosynthetic efficiency / performance to biomass accumulation.
  • Validation/testing of wheat simulation model for efficient use of radiation.
  • Evaluation of opportunities to provide environment characterization of phenotyping platforms, including systematic field/soil mapping to help design plot and treatment layouts, considering bioassays from aerial images as well as soil characteristics such as pH, salinity, and others.
  • Testing the heritability of phenotypic expression from parents to their higher-yielding progeny in both Mexico and Australia.
  • Extraction of new remote sensed traits (e.g., number of heads per plot) from aerial images by machine learning (ML) of scored traits by breeders and use of ML to teach those to the algorithm.
  • Demonstrating a semantic data framework’s use in identifying specific genotypes for strategic crossing, based on phenotypes.
  • Exchanging suitable data sets to test the interoperability of available data management tools, focusing on the suitability of the Phenomics Ontology Driven Data (PODD) platform for phenotypic data exchanges, integration, and retrieval.

The shared history of the two organizations in wheat physiology goes back to the hiring by Dr. Norman E. Borlaug, former CIMMYT wheat scientist and Nobel Prize laureate, of post-doctoral fellow Tony Fischer in 1970. Now an Honorary Research Fellow at CSIRO, Fischer served as director of CIMMYT’s global wheat program from 1989 to 1996 and developed important publications on wheat physiology earlier in his career, based on data from research at CIMMYT. In the early 1990s, Lloyd Evans, who established the Canberra Phytotron at CSIRO in the 1970s, served on CIMMYT’s Board of Trustees. Former CIMMYT maize post-doc Scott Chapman left for CSIRO in the mid-1990s but has partnered continuously with the Center on crop modelling and remote sensing. With funding from the Australian Centre for International Agricultural Research (ACIAR) in the late 1990s, CSIRO scientists Richard Richards, Tony Condon, Greg Rebetzke and Graham Farquhar began shared research with Reynolds and Martin van Ginkel, a CIMMYT wheat breeder, on stomatal aperture traits. Following work at CSIRO with Lynne McIntyre and Chapman, scientist Ky Matthews led the CIMMYT Biometrics Group from 2011 to 2012, collaborating with CIMMYT wheat physiologists on a landmark project to map complex physiological traits using the purpose-designed population, Seri/Babax. Reflecting the recent focus on climate resilience traits, Fernanda Dreccer of CSIRO is helping CIMMYT to establish the Heat and Drought Wheat Improvement Consortium (HeDWIC), among other important collaborations.

New planters promote environmentally-friendly farming in Pakistan

Direct seeding of rice with a multicrop direct-seeding rice planter in Sheikhupura, Punjab. Photo: Abdul Khaliq
Direct seeding of rice with a multicrop direct-seeded rice planter in Sheikhupura, Punjab. Photo: Abdul Khaliq

ISLAMABAD (CIMMYT) – Farmers and research partners are praising innovative, locally manufactured farm implements that support conservation agriculture, with costs savings and soil and water conservation benefits, in rice-wheat farming rotation that cover more than 2.2 million hectares in Pakistan.

In a meeting in May 2017 at the Rice Research Institute Kala Shah Kaku, Punjab Province, Pakistan, farmers expressed satisfaction with the performance of nearly 200 locally-produced implements they received to test during 2016-2017, which allow seed of rice, wheat and other crops to be sown directly into unplowed and unflooded fields, including the stubble and other residues from preceding crops.

In traditional practices, rice plantlets are transplanted by hand into puddled fields, after 4 to 6 weeks of being grown in nurseries on the borders of the paddies.

“This requires enormous amounts of water and labor, both of which are expensive and in short supply,” said Muhammad Akhter, Director of Pakistan’s Rice Research Institute. “Moreover, puddling every season degrades the soil structure and depletes fertility, and flooded rice fields emit significant amounts of methane, a major greenhouse gas.”

After rice harvest, farmers typically burn rice residues, generating large noxious clouds, and drive tractor-drawn plows repeated over fields to prepare seed bed. They then sow wheat through broadcasting of the seed.

Since the 1990s, public research programs in South Asia have been working with the International Maize and Wheat Improvement Center (CIMMYT) and advanced research institutes to test and promote a suite of innovative practices, including reduced or zero tillage, which allow rice-wheat farmers to save money, better steward soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

Locally manufactures direct-seeded rice planter and zero-till Happy Seeder. Photo: Abdul Khaliq
Locally manufactures direct-seeded rice planter and zero-till Happy Seeder. Photo: Abdul Khaliq

Direct seeding of rice in unplowed, unpuddled fields can provide improved plant density and productivity of irrigation water, saving in the end a quarter of the water used in flooding rice crops.

In 2014, the CIMMYT-led Agricultural Innovation Program (AIP), supported by the United States Agency for Development (USAID), imported a multicrop zero tillage planter for rice and several zero tillage “Happy Seeders” to Pakistan from India for wheat, to be tested on farmers’ fields in five districts of Punjab by experts from the Punjab Agriculture Research and Extension Department, Engro Fertilizer and machinery manufacturers.

All tests were successful, and the following year CIMMYT worked with private machinery manufactures who produced the first locally-modified versions of both seeding implements.

Greenland Engineering Daska, a leading zero tillage drill manufacturer in Pakistan, collaborated with CIMMYT to adapt the rice planter’s inclined plate seeding system, offering an optimum planting density and thereby providing 10 percent higher rice yields than with the previous design.

Sharif Engineering, a zero tillage seed drill manufacturer of the Faisalabad region, modified the Happy Seeder so that farmers were able to sow wheat directly into heavy rice residue field and thus avoid burning the residues.

Sharif Engineering manufactured 13 Happy Seeders with AIP support; these were sold to farmers on 52:48 cost sharing basis in 2016, according to Mirza Ghazanfar, country representative for the company. Irfan Iqbal of Greenland Engineering said that company had produced and marketed 185 rice planters to farmers during 2016-17.

Akhter praised the efforts of USAID and CIMMYT to spread environmentally-friendly rice-wheat farming technologies to farmers of rice-wheat region.

Farmer in Malawi defines true project success

Esnath Shaibu (left) on his farm in Malawi discussing resource allocation on his plots. Photo: C. Thierfelder/CIMMYT
Esnath Shaibu (left) on his farm in Malawi discussing resource allocation on his plots. Photo: C. Thierfelder/CIMMYT

LIWONDE, Malawi (CIMMYT) — Esnath Shaibu, a smallholder farmer from Matandika, southern Malawi was a host farmer with the International Maize and Wheat Improvement Center (CIMMYT) for seven years who helped the organization conduct research trials on sustainable agriculture intensification with support from the International Fund for Agricultural Development (IFAD).

Shaibu’s farm in Matandika, like most other farms in this area, is small and restricted to less than one hectare (ha) per household. Matandika is highly affected by the effects of climate change and a growing population is putting more pressure on dwindling land resources. Farmers have experienced more droughts in recent years which has affected food and nutritional security. Investment into soil conservation and maintaining soil fertility has therefore become critical.

A good proportion of Shaibu’s livelihood is generated from the land of his .3 ha research plot, which evaluates conservation agriculture (CA) systems in the environments and circumstances of Matandika.

The fields in Matandika are on hillsides and need to be seeded with as little disturbance as possible to avoid soil erosion and run-off. Farmers have also understood the value of crop residues and integrate legumes as intercrops in their fields to intensify their farming systems and increase diversification. Optimal plant spacing, early planting and precision application of fertilizers have been other good agriculture practices that farmers perfected in this area.

During the trials, Shaibu practiced a direct seeded CA method, intercropping maize and pigeonpea, and compared the results with conventional tillage practices just planting maize. Yields from Shaibu’s plots were increasingly stable under the CA system, as they proved to be more resilient against in-season dry-spells, drought and unevenly disturbed rainfalls which often fell at great intensity.

Shaibu graduated from the CA program in 2014, but continued to implement the same principles and practices on his own without CIMMYT’s interference or support.

When questioned about his rationale during a field visit in 2017, Shaibu said “we saw something good in it,” and his healthy looking crop spoke for itself.

Shibu’s case demonstrates that technology adoption is only successful if we as development practitioners work ourselves out of a job. He is a true adopter who has continued investing his own resources to produce a good maize crop on a significant proportion of his land by applying CA principles at highest standards. Shaibu has also converted other fields he owns to CA and continues to be an influential advocate in the community for the benefits of CA.

New Publications: Study shows improved maize decreases malnutrition

Village headman Boyd Jimba and his family harvest maize on their farm in Mwalimo village, Lundazi district, Zambia. Photo: P. Lowe/CIMMYT
Village headman Boyd Jimba and his family harvest maize on their farm in Mwalimo village, Lundazi district, Zambia. Photo: P. Lowe/CIMMYT

MEXICO CITY (CIMMY) – New evidence shows that not only do improved maize varieties increase crop productivity and farmer income, they can also decrease child malnutrition.

Malnutrition is the largest single factor contributing to the global disease and accounts for about 30 percent of infant deaths. Malnutrition is particularly widespread among children in Zambia, and is one of the leading contributors to the high burden of disease in the country. Around half of all Zambian children under the age of five are stunted, or too short for their age, indicating chronic malnutrition.

A recent Food Security study published by scientists at the International Maize and Wheat Improvement Center (CIMMYT) found that adoption of improved maize varieties significantly reduces the probability of stunting by an average of 26 percent in Zambian children.

The paper evaluated the impact of improved maize varieties with traits such as higher yields, early maturation and resistance to disease, on stunting in more than 800 households across eastern Zambia using an endogenous switching probit model to identify the determinants of child nutritional status and impact of improved maize varieties.

Researchers found that adoption of improved maize varieties held a key role in improving the income earning opportunities for rural households through increased maize yields. More maize – a staple of the Zambian diet – coupled with more money to spend on high calorie and protein foods led to a decline in malnutrition.

However, realizing the full benefits new technologies like improved maize can have on communities requires increased investment and policy support aimed at enhancing adoption by farmers, according to the study. Social dynamics and increasing education, especially among women, are particularly critical for promoting nutrition-enhancing child care practices, given that the probability of stunting was reduced by 16 percent with each additional year of schooling for the most educated female household member among adopters in the study.

Read the full study “Determinants of child nutritional status in the eastern province of Zambia: the role of improved maize varieties,” and check out more new publications from CIMMYT scientists below.

  • Determinants of child nutritional status in the eastern province of Zambia: the role of improved maize varieties. 2016. Manda, J., Gardebroek, C., Khonje, M. G., Alene, A.D., Mutenje, M., Kassie, M. In: Food Security, vol. 8, no. 1, p. 239–253.
  • Determinants of Crop Residue use along an intensification gradient in West Africa’s Savannah zones. 2016. Akinola, A. A., Abdoulaye, T., Valbuena, D.,  Erenstein, O., Amare Haileslassie, Germaine, I., Shehu, M., Ayedun, B. In: Tropicultura, vol. 34, no. 4, p. 396-410.
  • Development and deployment of a portable field phenotyping platform. 2016. Crain, J.L., Yong Wei, Barker, J., Thompson, S.M., Alderman, P.D., Reynolds, M.P., Naiqian Zhang, Poland, J. In: Crop Science, vol. 56, p. 1-11.
  • Development and Feasibility of innovative relay seeders for seeding wheat into standing cotton using a high clearance tractor in cotton-wheat system. 2016. Singh, M., Mahal, J.S., Sidhu, H.S., Manes, G.S., Jat, M.L., Singh, Y. In: Applied Engineering in Agriculture, vol. 32, no. 4, p. 341-352.
  • Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. 2016. Rasheed, A., Weie Wen, Fengmei Gao, Shengnan Zhai, Hui Jin, Jindong Liu, Qi Guo, Yingjun Zhang, Dreisigacker, S., Xianchun Xia, He Zhonghu. In: Theoretical and Applied Genetics, vol. 129, p. 1843-1860.
  • The role of Hyalomma Truncatum on the dynamics of Rift Valley fever: insights from a mathematical epidemic model. 2017. Pedro, S.A., Abelman, S., Fisher, M., Tonnang, H., Mmbando, F., Friesen, D. In: Acta biotheoretica, vol.65, no.1, p.1-36.
  • Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. 2017. Vivek, B., Krishna, G., Vengadessan, V., Babu, R., Zaidi, P.H., Le Quy Kha, Mandal, S.S., Grudloyma, P., Takalkar, S., Krothapalli, K., Singh, I.S., Ocampo, E.T.M., Fan Xingming, Burgueño, J., Azrai, M., Singh, R.P., Crossa, J. In: The Plant Genome, vol. 10, no. 1, p. 1-8.
  • Response to climate risks among smallholder farmers in Malawi: a multivariate probit assessment of the role of information, household demographics, and farm characteristics. 2017. Mulwa, C., Marenya, P.. Dil Bahadur Rahut. Kassie, M. In: Climate Risk Management, vol. 16, p. 208-221.

Breaking Ground: Crop simulation models help Balwinder Singh predict future challenges

TwitterBGBalwinder3Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Balwinder Singh uses crop simulation models to help smallholder farmers in South Asia prepare for future climates and unexpected challenges.

Despite improvements in agricultural technology in the past few decades, crop yield gaps persist globally. As climate patterns change, farmers are at risk of crop loss and reduced yields due to unforeseen weather events such as drought, heat or extreme rains.

Singh, a cropping system simulation modeler at the International Maize and Wheat Improvement Center (CIMMYT) based in New Delhi, India, uses crop simulation models—software that can estimate crop yield as a function of weather conditions, soil conditions, and choice of crop management practices—to develop future climate predictions that can help farmers reduce risk, overcome labor and resource constraints, intensify productivity and boost profitability.

“Using future climate data, simulation modelling allows researchers to develop hypotheses about future agricultural systems,” said Singh. “This can help predict and proactively mitigate potentially catastrophic scenarios from challenges such as shrinking natural resources, climate change and the increasing cost of agricultural production.”

A specific focus is on how to best quantify, map and diagnose the causes of the gap between potential yields and actual yields achieved by cereal farmers in the Indo-Gangetic Plain. “My research combines field experimentation, participatory engagement, and cropping systems modelling and spatial data to identify promising technologies for increasing crop productivity and appropriate geographical areas for out scaling,” he said.

For example, Singh and a team of scientists have used simulation tools to find out why wheat productivity is low in the Eastern Gangetic Plains, for example, late sowing, suboptimal crop mangement and terminal heat stress. This process identified various potential techniques to raise wheat productivity, such as early sowing, zero tillage, or short duration rice varieties to facilitate early harvest and field vacation. Geospatial data and tools were used to identify the potential target zones for deployment of these promising technologies.

“The research is helping farmers increase agricultural productivity and to manage climate-related crop production risk and increase the use of agricultural decision support systems,” Singh said. “My research towards improving cereal production systems in South Asia contributes to the knowledge, process understanding and modelling tools needed to underpin recommendations for more productive and sustainable production systems.”

Growing up in rural India in a farming family, Singh viewed firsthand the uncertainty that smallholder farmers can face.

“I was brought up and studied in northwestern India – the region where the green revolution occurred known as the food basket of India,” Singh said.

“I grew up playing in wheat and cotton fields, watching the sowing, growing and harvesting of crops, so an interest in agricultural science came naturally to me and I have never regretted choosing agriculture as a career.”

While studying for his bachelor’s and master’s degrees in agronomy at Punjab Agricultural University (PAU) in Ludhiana, India, a chance encounter helped shape his career.

“Dr. Norman Borlaug came to PAU in 2005 and he happened to visit my field experiment on bed planting wheat. I had a very inspiring conversation with him which made me decide to pursue a career in agricultural research and work for the farming community.”

Singh went on to earn a Ph.D. from Charles Sturt University in Australia through the John Allwright Fellowship funded by the Australian Center for International Agriculture Research (ACIAR). He started work for CIMMYT in 2013 as associate scientist based in New Delhi working with the Cereal Systems Initiative for South Asia (CSISA) project, which aims to improve food security and the livelihoods of more than 8 million farmers in South Asia by 2020.

Since 2014, Singh has led the CIMMYT participation in the  Agricultural Model Intercomparison and Improvement Project (AgMIP) as part of the Indo-Gangetic Basin team, conducting integrated assessments of the effects of climate change on global and regional food production and security, analyzing adaptation and mitigation measures.

Apart from collaborating with CIMMYT colleagues and other advanced research institutes from across the world to build weather and soil databases or working on simulation models, Singh enjoys interacting with farmers in their own fields and collecting data for crop simulation models to generate useable information for research and extension.

He also holds training sessions to aid in developing the capacity of CIMMYT’s national agricultural partners in system simulation modelling to create awareness of the proper use of simulation tools for research and extension.

“The most rewarding aspect of my work is to see my simulation results working in farmers’ fields,” Singh said. “There’s a proverb that says: ‘When a person is full they have a thousand wishes, but a hungry person has only one.’ There is no nobler task than that of being able to feed people. Some of us are not even aware of how many people are starving every day,” he said.

“It gives me great satisfaction to be a part of CIMMYT, an organization that works beyond political boundaries to safeguard future food security, improve livelihoods and carry on the legacy of Dr. Borlaug who fed billions.”

DuPont Pioneer explores support for CGIAR Excellence in Breeding Platform

Photo: CIMMYT
Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – A DuPont Pioneer leadership delegation visited CIMMYT HQ on May 12 to explore public-private collaboration approaches within the new CGIAR Excellence in Breeding Platform (EiB). The high level delegation, included Geoff Graham, Vice President of Plant Breeding, and other members of management from Global Breeding & Marker Technology Field Technology Innovation & Operations, and Africa, and Latin America regional operations. The team got acquainted with the EiB through interactions with CGIAR scientists and a tour of the CIMMYT scientific facilities.

The visit focused on mutually beneficial collaboration that would enable CGIAR and DuPont Pioneer breeding programs to better capitalize on each other’s experiences, and strengthen knowledge sharing in the pre-competitive domain. The ultimate aim is to improve public and private breeding programs targeting the developing world, including for crops with lower private sector investments.

This visit is the latest in a series of new public-private collaborations with DuPont Pioneer. During CIMMYT’s 50th anniversary celebrations DuPont Pioneer and CIMMYT entered a Master Alliance Agreement to jointly develop improved crops using CRISPR-Cas advanced plant breeding technology for characteristics that address the needs of smallholder farmers around the world.

“Public and private sector breeding programs may target different farming communities and agricultural commodities,” said Marianne Banziger, CIMMYT Deputy Director General for Research and Partnerships. “Nonetheless there are many areas where we can learn from each other and thereby accelerate benefits reaching farming communities, both in poorer and wealthier countries.”

The Excellence in Breeding Platform is one of three new platforms within the new CGIAR portfolio. Drawing from innovations in the public and private sector, the Platform will provide access to cutting-edge tools, services and best practices, application-oriented training and practical advice with the intention to modernize breeding programs targeting the developing world.

Breaking Ground: Vijay Chaikam develops doubled haploid lines to accelerate maize breeding

TwitterBGvc2Breaking Ground is a regular series featuring staff at CIMMYT

MEXICO CITY (CIMMYT) – As a child helping out on his family’s farm in rural India, Vijay Chaikam dreamed of helping farmers increase the hard won returns of their agricultural labor to improve their livelihoods. Today, he works as a scientist and manager at the International Maize and Wheat Improvement Center (CIMMYT) doubled haploid (DH) facility in Kiboko, Kenya.

He produces DH maize lines, which are highly uniform, genetically pure and stable, making the maize breeding process more intuitive and efficient by simplifying logistics. The outcome of this work is that breeders can develop improved maize varieties faster than ever before so that they can be delivered to the smallholder farmers that need them the most.

“I grew up in a rural village in the state of Andhra Pradesh, India, where my family depended on agriculture for their livelihood,” Chaikam said. “During my childhood, I used to work in the fields, planting, weeding and harvesting alongside my family members to save labor costs. I realized that despite their backbreaking work, most farming families suffer economically. This inspired me to pursue a career in agriculture that would allow me to contribute to reduce the efforts of the farmers and increase their farm income.”

After receiving his doctorate in genetics at West Virginia University in the United States, Chaikam worked at Purdue University and then moved to CIMMYT headquarters in Mexico in 2011 as an associate scientist. His work involved conducting research on developing and implementing maize DH production technology for tropical breeding programs.

In 2016, he moved to CIMMYT’s office in Kenya to manage the Maize DH Facility at KALRO-Kiboko Center, where he assists maize scientists from CIMMYT and partner organizations in the development of DH lines. The efficiency of the DH procedure in maize cuts the time it takes to develop parental lines from six to eight seasons to just two or three seasons.

“My work allows farmers to receive improved maize varieties much quicker,” Chaikam said. “Time is of the essence for farmers planting improved maize varieties in regions affected by stresses such as drought or maize lethal necrosis (MLN). DH technology can drastically cut short the time it takes to derive parental lines in a hybrid maize breeding program.”

CIMMYT’s work on DH has greatly expanded in the past few years. Between 2012 and 2016, CIMMYT scientists produced over 100,000 DH lines, up from less than 5,000 in 2011. However, adoption of the technology is lagging behind in tropical maize breeding programs due to the lack of adapted haploid inducers with high haploid induction rates. The haploid inducers enable generations of haploids – maize varieties containing only one set of chromosomes instead of the usual two sets of chromosomes found in normal diploid maize – at a high frequency. These haploids are then detected using a color marker on the kernel, and the chromosome complement is doubled artificially using treatment with a chromosome doubling agent to derive doubled haploid plants, and consequently seed from those plants.

Chaikam’s current research is aimed at improving the adoption of DH technology in tropical maize breeding programs by developing improved haploid inducers for tropical maize breeding programs, developing novel methods of haploid identification and efficient protocols for chromosomal doubling, and optimizing the agronomic management for deriving doubled haploids. He works closely with breeders to develop ways of using DH lines more efficiently in maize breeding programs. This research could be valuable in the development and deployment of improved maize varieties that benefit smallholder farmers in the developing world. In addition to his work in the DH facility, Chaikam has published several journal articles and book chapters. He has also coordinated scientific training courses.

“I always wanted my work to be relevant to the needs of farmers,” he said, explaining the factors that drew him to work at CIMMYT. “CIMMYT offered such an incredible opportunity, where my day-to-day activities have a direct impact on the development and deployment of improved maize varieties needed by farming communities. I also enjoy working with, talking to and listening to my passionate colleagues who love the work they do to improve the livelihoods of smallholder farmers.”

New Publications: Common platform improves collaboration for research on genetic resources

Select maize varieties from CIMMYT's genebank. Photo: CIMMYT
Select maize varieties from CIMMYT’s genebank. Photo: CIMMYT

MEXICO CITY (CIMMYT) — A common platform through which data on genetic resources can be disseminated to both crop researchers and breeders can strengthen research communities, according to authors of a soon to be published Crop Science study.

Conservation and exploitation of crop wild relative species is a key component in ensuring food security and improving current agricultural output. By identifying traits that express resistance or tolerance to stresses like pests or drought, breeders can incorporate this genetic material into genetic background stocks, which could help mitigate problems imposed by climate change, land degradation and population pressure. This is particularly important in countries that will be more severely affected by the threat of reduced yields.

The researchers of the study “Germinate 3: Development of a Common Platform to Support the Distribution of Experimental Data on Crop Wild Relatives” used the Germinate platform to build web-based information resources on wild barley and potato collections, along with wheat, maize and their wild relatives in a way that could better meet the demands of researchers by developing new data visualization tools and integration with current software.

While the underlying species differ, the approach taken ensured that tools were compatible across all database instances. The researchers found that Germinate offers a common platform that can improve the exploration and wider use of genetic resources in breeding programs globally.

Read the advanced copy of “Germinate 3: Development of a Common Platform to Support the Distribution of Experimental Data on Crop Wild Relatives” and check out other new publications from CIMMYT scientists below.

  • Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements. 2016. Piñera Chavez, F.J., Berry, P.M., Foulkes, M.J., Jesson, M.A., Reynolds, M.P. In: Field Crops Research. Vol.196, p.325-336.
  • Avoiding lodging in irrigated spring wheat. II. Genetic variation ofstem and root structural properties. 2016. Piñera Chavez, F.J., Berry, P.M., Foulkes, M.J., Molero, G., Reynolds, M.P. In: Field Crops Research. vol.196, p.64-74.
  • Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. 2016. Rebetzke, G.J., Bonnett, D.G., Reynolds, M.P., In: Journal of Experimental Botany. vol. 67, no.9, p.2537-2586.
  • Breeding value of primary synthetic wheat genotypes for grain yield. 2016. Jafarzadeh, J., Bonnett, D.G., Jannink, J.L., Akdemir, D., Dreisigacker, S., Sorrells, M.E. In: PLoS One. vol.11, no.9: e0162860.
  • Bulked sample analysis in genetics, genomics and crop improvement. 2016. Cheng Zou, Pingxi Wang, Yunbi Xu. In: Plant biotechnology journal. Vol.14, no.10, p.1941-1955.
  • Forward genetics by sequencing EMS variation induced inbred lines. 2017. Addo-Quaye, C., Buescher, E., Best, N., Chaikam, V., Baxter, I., Dilkes, B.P. In: G3. vol. 7, no. 2, p. 413-425.
  • From stakeholders narratives to modelling plausible future agricultural systems. Integrated assessment of scenarios for Camargue, Southern France. 2017. Delmotte, S., Couderc, V., Mouret, J.C., Lopez-Ridaura, S., Barbier, J.M., Hossard, L. In: European Journal of Agronomy. vol. 82, p. 292-307.
  • Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. 2017. Caixia Lan, Basnet, B.R., Singh, R.P., Huerta-Espino, J., Herrera-Foessel, S., Yong Ren Randhawa, M.S., In: Theoretical and Applied Genetics. vol. 130, no. 3, p. 609–619.
  • Genetic loci conditioning adult plant resistance to the Ug99 Race group and seedling resistance to races TRTTF and TTTTF of the stem rust pathogen in wheat landrace CItr 15026. 2017. Babiker, E.M., Gordon, T., Bonman, J.M., Shiaoman Chao Rouse, M.N., Yue Jin, Newcomb, M., Wanyera, R., Bhavani, S. In: Plant Disease. vol. 101, no. 3, p. 496-501.
  • Genotype by trait biplot analysis to study associations and profiles of Ethiopian white lupin (Lupinus albus) landraces. 2017. Atnaf, M., Kassahun Tesfaye, Kifle Dagne, Dagne Wegary Gissa. In: Australian Journal of Crop Science. vol. 11, No. 1, p. 55-62.

USAID delegation tours sustainable agriculture activities in Bangladesh

Inside Ayla Traders, an agricultural input dealer who now advises farmers on integrated weed management. Photo: CIMMYT
Inside Ayla Traders, an agricultural input dealer who now advises farmers on integrated weed management. Photo: CIMMYT

DHAKA, Bangladesh (CIMMYT) – A delegation of USAID representatives recently visited southern Bangladesh to learn about sustainable agriculture activities in the area and emerging challenges to wheat production.

Agriculture employs nearly two-thirds of Bangladesh’s population, with a majority of farmers owning land of less than half an acre, putting intense pressure on farmland while having to adapt to various environmental challenges from flooding and rising temperatures due to climate change, to increasing labor scarcity and production costs.

Despite these challenges, Bangladesh has successfully adopted sustainable technologies that conserve natural resources, improve productivity and increase profits, particularly with the two-wheeled tractor that is used by around 80 percent of farmers due to its versatility and ability to be fitted with a variety of additional equipment for planting, threshing and irrigation.

Challenges to widespread adoption of these innovations, however, remain a challenge.

USAID delegation learns about the symptoms and effect of wheat blast disease. Photo: CIMMYT
USAID delegation learns about the symptoms and effect of wheat blast disease. Photo: CIMMYT

“Much of this innovation has not reached farmers at scale because commercialization has been impeded by the lack of standardization,” according to Andrew McDonald, cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and project leader of the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA). “Most workshops create a unique machine every time a new piece is fabricated, which drives up costs to both manufacture and repair the machinery. Quality control is also an issue.”

From March 16-19, the USAID delegation visited farmers and agricultural machinery service providers in the Barisal, Jessore and Jhenaidah districts of Bangladesh, seeing firsthand how CIMMYT is working with NGOs, public and private sector partners to ensure that machinery is scaled, available and affordable to the most marginalized farmers.

The delegation, comprising USAID Senior Program Analyst Charisse Adamson, Water and Irrigation Advisor Biniam Iyob and Food Security Advisor Christopher Chibwana, also learned about various sustainable technologies from axial flow pumps that irrigate crops at reduced cost, to two-wheeled tractors developed by Janata Engineering; a small-scale but rapidly growing agricultural machinery manufacturer, importer and dealer that has been working closely with CSISA over the past seven years.

CIMMYT through CSISA partners with local manufacturing companies to put . Photo: CIMMYT
CIMMYT through CSISA partners with local manufacturing companies to ensure more farmers have access to sustainable machinery. Photo: CIMMYT

The visitors also observed how farmers are growing healthy rice seedlings for higher yields in community based seedbeds. Farmer-friendly learning videos are jointly produced by the project with the Bangladesh Rice Research Institute and shown by the  Agricultural Advisory Society, with over 35,000 farmers learning about healthy rice seedlings between November 2016 and January this year.

The USAID team then visited the Bangladesh Agricultural Research Institute in Jessore to learn about wheat blast mitigation efforts in the region, which emerged in early 2016. The spread of wheat blast could be devastating to South Asia, which is home to 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.

“I have learned so much…I think you are doing a great job in making research outputs sustainable through strategic value chain pathways,” said Iyob at the end of the visit.

CIMMYT launched the CSISA in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems. CIMMYT operates rural “innovation hubs” in Bangladesh, India and Nepal to increase the adoption of various resource-conserving and climate-resilient technologies, and to improve farmer access to market information and enterprise development. Learn more about CSISA’s impact here.

Scaling up research for impact

By scaling up, development practitioners take successful interventions and expand, adapt and sustain them in different ways over time for greater development impact. Photo: CIMMYT/P. Lowe
Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve. Photo: CIMMYT/P. Lowe

EL BATAN, Mexico (CIMMYT) – Agricultural innovations, like climate-resilient crops, sustainable land use practices and farm mechanization options, can go a long way toward achieving several U.N. Sustainable Development Goals.

But ensuring research reaches a significant amount of farmers to have widespread impact is challenging.

Projects, programs and policies can often be like small pebbles thrown into a big pond. They are limited in scope, time bound and therefore might fail to have long lasting impact. Through well thought scaling up strategies, development practitioners expect to implement successful interventions and expand, adapt and sustain them in different ways over time for greater developmental impact.

“To have our knowledge and technologies positively impact the livelihoods of large numbers of farmers in maize and wheat based systems is what matters most,” said Bruno Gérard, director of the Sustainable Intensification Program at the International Maize and Wheat Improvement Center (CIMMYT).

Understanding the needs and demands of our stakeholders is crucial in the design and implementation of a research portfolio, he added.

As part of a German Development Cooperation (GIZ) effort to aid the scaling up of agricultural innovations, Lennart Woltering recently joined CIMMYT’s Sustainable Intensification Program. With previous experience working in development in Africa and South Asia, Woltering will play a key role in linking CIMMYT’s research to specific development needs, increasing its relevance and impact.

There is no blue-print for scaling, it depends on the institutional and socio-economic environments, which are very diverse in the various regions where CIMMYT works, said Gérard. He hopes Woltering’s experience with both development and research organizations will further contribute to link the right technical innovations with the people who need them.

Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve, Woltering said. Understanding what the drivers are that make widespread adoption happen is critical.

“We do this by making sure scaling processes are an integral part of innovation systems. It is important to understand how conducive environments for scaling can be facilitated and how far we can realistically go,” he added.

Woltering will work to provide a coherent approach to scaling that can be used across the program’s projects, said Gérard.

To see real impact from research, initiatives must move beyond the boundaries of a single organization, Woltering said. New forms of collaboration across different sectors and the opening of new communication channels to share lessons of success when scaling should emerge.

Woltering will develop scaling strategies to facilitate the adoption of sustainable intensification options such as conservation agriculture and water/nutrient efficient practices, and contribute to enhance CIMMYT’s partnerships with public and private sectors.

Previously, Woltering worked as a civil engineer focusing on water management with the International Crops Research Institute for the Semi-Arid Tropics in Africa (ICRISAT), then later moved on to work for a consulting development firm in Germany.  His experience will allow him to better articulate development needs with CIMMYT’s research, increasing the relevance and impact of the organization’s work.

Woltering is one of five experts working at CIMMYT as part of the GIZ sponsored CIM Integrated Experts program. The CIM program aims to strategically place managers and technical experts in public and private organizations in the developing world to pass on their professional knowledge and contribute to capacity building.

 

 

Q+A: Agricultural mechanization fuels opportunity for youth in rural Africa

Farmers test out agricultural mechanization tools in Zimbabwe as part of CIMMYT's
Farmers test out agricultural mechanization tools in Zimbabwe as part of CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification project. Photo: CIMMYT/ Frédéric Baudron

EL BATAN, Mexico (CIMMYT) – Small-scale agricultural mechanization is showing signs it has the potential to fuel rural employment for youth in sub-Saharan Africa, according to researchers at the International Maize and Wheat Improvement Center (CIMMYT).

Across Africa, youth are struggling with high unemployment and working poverty, the International Labor Organization records. However, increased adoption of agricultural mechanization –  especially machines that are small, affordable and easy to maintain such as two-wheel tractors – is stimulating jobs and entrepreneurial opportunities for African youth, said Frédéric Baudron, senior systems agronomist at CIMMYT.

“Small-scale mechanization is more equitable than other forms of mechanization as even the poorest and most vulnerable have access to it,” he said.

Youth, along with women, are typically subject to labor intensive farm activities causing them to shun agriculture. But with mechanization improving productivity while reducing drudgery, youth are seeing economic opportunity in agribusiness, on rural farms and as service providers, said Rabe Yahaya, a CIM/GIZ integrated expert specialized in mechanization for sustainable agriculture intensification.

As a result, new jobs along the value chain from mechanics to spare parts providers have been created, he added.

Relatively cheap and easy to operate two-wheel tractors can be used for many different applications. On-farm, the tractors are used to speed up crop establishment while conserving soils through reduced tillage and precision fertilizer application. They allow farmers to tap into surface water for irrigation as well as aid shelling grain to reduce the time taken to get to market. The machinery has also been used to start rural commercial hire and transport services.

Beyene Abebe from Ethiopia, is one youth gaining economic opportunity as a mechanization service provider. Photo: CIMMYT/
Beyene Abebe from Ethiopia, is one youth gaining economic opportunity as a mechanization service provider. Photo: CIMMYT/ Frédéric Baudron

24-year-old Beyene Abebe from Ethiopia is one youth benefiting from mechanization. Through CIMMYT managed training, Abebe has developed the skills needed to become a mechanization service provider. He now provides transportation services for an average of 200 households annually and ploughing services for 40 farmers in his village using two-wheel tractors. With the income from his service, Abebe can cover his family’s expenses and he bought farmland with his savings.

National government support for training and innovation is key to bolster agricultural mechanization throughout Africa, said Baudron. By creating a conductive business environment to attract private sector actors, governments can grease the wheels to scale out success.

Both Yahaya and Baudron shared some insights on the opportunities agricultural mechanization can provide rural communities in the following interview.

Q: Why is it important that agricultural research for development targets youth in rural areas?

RY: A growing population and diet change is increasing food demand in Africa, however, the amount of arable land is decreasing. This affects rural areas, where agriculture remains the main source of income and livelihood. Agriculture in the way it is currently practiced in rural areas is no longer attractive to the new generation of youth as it is labor intensive, rudimentary, risky, unproductive and does not support a good livelihood.

In addition, only 2 percent of Africa’s youth are undertaking agricultural curriculum at the university level. Despite young Africans being more literate than their parents, they suffer from increased unemployment. Agriculture could be the solution in tackling youth unemployment in rural areas, therefore providing peace, stability and food security.

FB: Youth unemployment is growing. Agriculture is perceived as a sector that can absorb much of this unemployment, particularly when combined with entrepreneurship.

In my view, an important issue when tackling issues of sustainable development as opposed to simply ‘development,’ is the issue of equity. We must ensure that the largest amount of people benefit from our interventions. Rural youth represent a large proportion of the vulnerable households in the areas where we work, because they lack capital and other resources, similar to women-headed households.

Q: How is mechanization creating new rural opportunities for youth and women?

RY: In many societies, youth and women are unequally disadvantaged and perform the most labor intensive agricultural activities such as plowing, sowing, weeding, harvesting, shelling, water pumping, threshing and transportation with very rudimentary implements using human and animal power. Therefore, increasing the use of engine power in agriculture will free youth and women from production drudgery discrepancies and most importantly increase farm productivity and consequently improve income generation if an organized value chain exists with a strong private sector involvement.

FB: Mechanization creates rural employment. It creates work for service provider jobs and it also stimulates other businesses along the mechanization value chains. Once demand for mechanization is established, employment opportunities grow for mechanics, fuel providers, savings and loans associations, spare part dealers, etc.

Q: What lessons are there to aid youth to be successful mechanization service providers?

RY: Training in mechanical, agronomic and business skills. Again training and constant follow up is key in order not only to produce successful youth mechanization service provider, but to ensure their continued success. In addition, infrastructure, aftersales — service and spare parts dealerships and financial schemes, promote the adoption of mechanization and support the development of value chain markets are crucial to success.

And remember whatever the technology may be, the farmer has to be able to earn money from it, otherwise they will not use it!

FB: Youth also tend to be better at managing modern technologies. We found consistently, in all countries where we work, that being a successful service provider is highly correlated to be a member of the youth. However, other factors are also important such as being entrepreneurial, educated, able to contribute to the cost of the machinery, and preferably having an experience in similar businesses and particularly in mechanics

Working with CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, researchers have sought to promote the delivery and adoption of small-scale machines to make farming practices – including planting, harvesting, water pumping, shelling and transporting – more productive and sustainable in eastern and southern Africa. Funded by the Australian Center for International Agricultural Research, FACASI offers support throughout the supply chain, from importers to manufacturers, service providers and extension workers to ensure mechanization reaches farmers.

CIMMYT’s mechanization team has ongoing collaboration with GIZ/BMZ green innovation center in Ethiopia and works in Namibia with GIZ to provide knowledge, expertise and capacity building on conservation agriculture.

Further information:

Rural21 features CIMMYT mechanization experts

Mechanization for smallholder farmers fact sheet