Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

To feed the world, take the science to the farmer

DES MOINES (Iowa) — Hundreds of food and agriculture leaders from around the world gathered last week in Iowa, USA, for the 2018 edition of the Borlaug Dialogue. Much of the conversation this year was centered on how to “take it to the farmer,” as Norman Borlaug famously said. Experts discussed how to build sustainable seed systems, grounded on solid science, so improved varieties reach smallholder farmers.

General view of the 2018 Borlaug Dialogue venue. (Photo: World Food Prize)
General view of the 2018 Borlaug Dialogue venue. (Photo: World Food Prize)

Louise Sperling, senior technical advisor at Catholic Relief Services, presented a study on the sources of seed for smallholder farmers in Africa. She explained that 52.2 percent of households receive new varieties, but only 2.8 percent of the seed comes through agro-dealers. The biggest source is local markets and own stock, the so-called informal channels.

Quality and variety of seed should be the focus, emphasized Jean Claude Rubyogo, seed systems specialist at CIAT. In his view, we need to integrate formal and informal seed distribution channels, using the competitive advantages of each.

“When we take good seed, we address all African soil,” said Ruth Oniang’o, board chair at the Sasakawa Africa Foundation. Oniang’o explained access to financing is a major hurdle for smallholders to access better seed and other innovations. In her view, current financial products are inadequate. “Why should we get a farmer to pay 20 percent interest rates on a small loan?”

B.J. Marttin, member of the managing board of Rabobank Group, recommended financial institutions to partner with farmers through every stage, from production to sale, so they better understand risk and the whole value chain. Simon Winter, executive director of the Syngenta Foundation for Sustainable Agriculture, captured the main points from the session on financing for agricultural entrepreneurs. “We have to have the farmer at the center. The farmer is the ultimate customer,” Winter said. “If we are not serving farmer needs, we are not really solving the problems.”

Research to feed the world

The 2018 Global Agricultural Productivity (GAP) Report, presented at the Borlaug Dialogue, shows the growing gap between future food supply needs and agricultural production, particularly in low-income countries. To meet the projected food needs of nearly 10 billion people in 2050, global agricultural productivity must increase by 1.75 percent annually, the report states, but has only increased 1.51 percent annually since 2010.

A plenary session led by CGIAR explored the role of research in tackling this and other complex challenges. “We have to talk about food and agriculture research,” said former U.S. Secretary of Agriculture Dan Glickman. People need to understand research is not abstract academic knowledge, but rather useful innovation that goes “from the farm, to the table and to the stomach,” he explained.

“Innovation, no matter where you are in the world, is key to moving forward,” said Patience Koku, a farmer from Nigeria part of the Global Farmer Network. “I don’t think the farmers in Africa or in Nigeria need a lot of convincing” to adopt innovation, Koku noted. If someone is able to explain what a new technology can do, “farmers see that science can make their life better and embrace it.”

Rising to the challenge

Agricultural research is also crucial to confront global threats like pests, conflict and climate change.

A session led by CIMMYT presented the latest research and actions against fall armyworm. (Photo: Rodrigo Ordóñez/CIMMYT)
A session led by CIMMYT presented the latest research and actions against fall armyworm. (Photo: Rodrigo Ordóñez/CIMMYT)

Two separate sessions, hosted by Corteva Agriscience and CIMMYT, shared the latest approaches in the fight against fall armyworm and other pests and diseases. The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, explained how organizations are working together to respond to the rapid spread of fall armyworm in Africa and Asia. “We have to solve the problem based on science, and then develop, validate and deploy integrated pest management approaches,” Kropff said.

As part of the World Food Prize outreach program, Bram Govaerts, director of innovative business strategies at CIMMYT, gave a lecture to students at Brody Middle School about the importance of agriculture and food. “When people can’t grow crops or pay for food to feed their families, desperation turns to conflict.”

At a side event, the Economist Intelligence Unit presented the Global Food Security Index 2018, which ranks food systems in 113 countries based on affordability, availability, and quality and safety. Senior consultant Robert Powell explained that the index now includes an adjustment factor based on each country’s natural resource risks and resilience to the impacts of a changing climate. “All countries will experience the impact of climate change,” Powell said.

The pernicious effects of climate change were also evident to the 2018 World Food Prize winners, David Nabarro and Lawrence Haddad, who have led global efforts to curb child malnutrition. “There is no evidence to me that [this] crisis is going to stop, because climate change is here,” Nabarro declared. “The foods we choose to grow and eat have a large impact on emissions,” Haddad said. “Food has a lot to offer” on climate mitigation and “diversity is the secret sauce” for climate adaptation. “We need food systems that are diverse: in crops, locations, organizations involved in them…”

Less biodiversity translates into “less resilience and worse nutrition,” according to the Vice President of Peru, Mercedes Aráoz. Through improved health and nutrition services, the country more than halved malnutrition among children under five, from 28 percent in 2008 to 13.1 percent in 2016.

2018 World Food Prize winners Lawrence Haddad (left) and David Nabarro speak during the award ceremony. (Photo: World Food Prize)
2018 World Food Prize winners Lawrence Haddad (left) and David Nabarro speak during the award ceremony. (Photo: World Food Prize)

A rallying cry for nutrition

The impact of nutrition on the first 1,000 days of life lasts a lifetime, explained Haddad. “For young kids, these are permanent shocks.”

“If a person is not nourished in those very important weeks and months of life, the long-term consequences are likely to be irreversible,” Nabarro added. According to him, nutrition needs to be the target in the 2030 agenda, not only hunger.

“Nutrition-based interventions present us a new lens through which to create and assess impact as agricultural researchers,” said Elwyn Grainger-Jones, the executive director of the CGIAR System Organization. “Our future success must come not only from ensuring an adequate supply of calories for the global population, but also the right quality and diversity of foods to tackle hidden hunger as well.”

“We are not going to resolve the challenges of undernutrition without the ag sector stepping up in a big way and differently,” argued Shawn Baker, director of nutrition at the Bill & Melinda Gates Foundation. “Nutrition needs you,” Baker told other participants. “Welcome to the nutrition family.”

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Scaling up mechanization in Bangladesh through partnerships

Over the last two decades, a significant number of rural Bangladeshis – especially youth – have migrated to urban centers, looking for higher paying jobs and an escape from agricultural labor. Reaper-DemoConor Riggs is the Global Director of Markets and Entrepreneurship at iDE. He says smallholder farmers in Southern Bangladesh are increasingly struggling to find and afford farm labor to help harvest crops and perform a variety of other on-farm activities.

Riggs says small-scale mechanization, such as two-wheeled tractors fitted with intensification machinery and surface irrigation pumps, can help farmers make up for this labor gap and increase productivity, while boosting the local economy by supporting micro- and small enterprises.

But as Riggs discussed at the recent Scale Up Conference at Purdue University, designing the perfect machine or technology is not enough to create sustainable, far-reaching impact. On the International Day for the Eradication of Poverty, we’re following up with him to learn more about the role of markets and partnerships in bringing small-scale mechanization to rural Bangladesh.

Q: Five years ago, CIMMYT and iDE co-designed and began implementing the USAID Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project. What were the goals when you began?

Our goal was to establish a new industry for attachments in two-wheel tractors in agricultural mechanization, technologies like seeders, reapers and high-volume irrigation pumps for surface water. We wanted to help farmers access services through a fee-for-service model – small entrepreneurs buy machines and rent out those machines to farmers or directly provide that service themselves. There wasn’t really a market naturally growing for these machines in ways that included smallholders while being commercially viable, so we aimed to build it as best we could.

The results of this effort to date have been strong: 191,000 farmers can now access machinery services from a growing network of nearly 3,000 local microenterprise service providers, representing improved cultivation across 92,000 hectares in Southern Bangladesh. And we see abundant evidence that this market is scaling organically now that it’s established a model that works for both firms and farms.

Q: How did you create a market?

We incentivized several large conglomerates in the agri-business space to co-invest with us on several container-loads of these machines, which we imported from Thailand and China. We helped them find some early adopter dealers and local service providers who would actually buy them. Then we developed short-term smart subsidies to drive down the costs of supply chain development, accelerated customer adoption of the machines, and overall market growth.

An important aspect of our strategy is that we did not present these accelerating investments as typical subsidies; rather, we worked with our private partners to offer commercial discounts so that service providers and farmers Md Lalchan Shardar is a farmer and local service provider. The axial flow pump cuts the amount of irrigation time in halfwould recognize the true value of the product and the short-term opportunity to adopt the technology in its initial commercialization phase.

We first implemented this strategy with two leading firms in the market who concurrently launched a very proactive marketing campaign. Then we started pulling back those discounts overtime, year by year, as the initial partner firms found the market opportunity, and redirected this acceleration process with an additional group of interested companies that also wanted to enter the market in an inclusive manner.

Q: So the companies were benefiting from the discount?

Yes, but we created a lot of conditions. Essentially, the more project investment that was committed by the project to discount the cost of the machinery, the more we expected to see both cash and in-kind investment from those companies. In the end, about a dozen companies come into the game with about five that have really driven a lot of heavy investment.

Partnerships have been key throughout this project. What were the different strengths iDE and CIMMYT brought to the table?

iDE is a market development organization. We focus on market-based solutions, technology commercialization, last mile distribution, and market access. Fundamentally, we see our job as de-risking the market for companies to invest in lower income areas and empower the farmer and their family as both consumers and suppliers in the formal economy. To do this, we employ a lot of supply chain development, product re-design and most importantly, we develop networks of micro-entrepreneurs to serve the ‘missing middle’ between the formal and informal economies.

CIMMYT brings leading capabilities in linking science and practice, with an un-paralleled strength in understanding the agronomic rationale and the agronomic and economic combinations of the technologies as they’re applied on the ground.

CIMMYT knew what technologies were needed on the ground in Southern Bangladesh to genuinely improve productivity and efficiency in the face of changing economic circumstances, and understood how to apply them to real world conditions in alignment with market-based diffusion mechanisms. CIMMYT was also instrumental in working closely with the Bangladesh Agriculture Research Institute (BARI) and extension services, key government partners that helped us ensure market development was in alignment with public and social policy.

It can be difficult finding a synergy between two different organizations. Did you run into any challenges?  

CIMMYT and iDE have different specializations, and at the beginning, we had natural, friendly debates about how to best integrate them and achieve highly ambitious project objectives. But relatively quickly, we figured out how to learn from each other and synthesize our approaches for the best results. Both CIMMYT and iDE approached the partnership with a mission driven focus and a sense of constant, mutual respect for the value each partner brought to the table.

What do you see for the future? 

As for iDE, we’re excited to expand this successful partnership with CIMMYT to figure out how we can further replicate this success in other countries where we both work. While some of the market conditions in Bangladesh have provided us with unique opportunities for technology scaling in mechanization, we’re highly optimistic that the underlying partnership principles and management systems of CSISA-MI can be replicated in other programs and country contexts – even in ostensibly more challenging market environments.

The CSISA-MI project is funded by USAID.

Avoiding the next Aral Sea: Scaling responsibly

The Aral Sea was once the world’s fourth largest inland body of water. But in 1959, Soviet premier Nikita Khruschev unfurled a plan for industrialized agriculture across Central Asia. The government constructed irrigation canals to divert water from the Amu Syr and Amu Darya rivers, the two primary feeders for the Aral Sea, to thirsty cotton fields in Uzbekistan. Today, only about two-fifths of the sea remain. Evaporation exasperated by climate change and pesticide runoff have left the remaining body of water salty and polluted.

MSI's founder and president Larry Cooley presents at the Purdue Scale Up Conference 2018. (Photo: Rachel Cramer/CIMMYT)
MSI’s founder and president Larry Cooley presents at the Purdue Scale Up Conference 2018. (Photo: Rachel Cramer/CIMMYT)

The disappearance of the Aral Sea is a tragic story about scaling gone wrong. Larry Cooley, one of the top scaling experts in the world, describes scaling as the attempt to overcome a gap between the need for something and the extent to which that need is being met. In the case of the Aral Sea, the Soviet Union saw a need for more robust cotton production and decided to overcome the gap through large-scale irrigation.

They were successful in reaching their scaling ambition but at a high and unsustainable cost. Would Kruschev still go ahead with his development scheme if he knew it would cause irreversible ecological damage in the future? Would he still prioritize high cotton yields if he knew it would decimate the local fishing industry and leave thousands unemployed?

At the recent Scale Up Conference at Purdue University, over 200 researchers and practitioners gathered to discuss effective approaches to scaling up agricultural technologies and innovations in the developing world. The tagline read “Innovations in agriculture: Scaling up to reach millions.” Several of the presenters, however, argued development organizations should think about potential tradeoffs before trying to reach the biggest impact.

Finding the optimal scale

CIMMYT’s scaling advisor Lennart Woltering (left) and mechanization specialist Jelle van Loon led a session. (Photo: Rachel Cramer/CIMMYT)
CIMMYT’s scaling advisor Lennart Woltering (left) and mechanization specialist Jelle van Loon led a session. (Photo: Rachel Cramer/CIMMYT)

CIMMYT’s scaling advisor Lennart Woltering and mechanization specialist Jelle van Loon led a session on the opportunities and challenges to scaling two-wheeled tractors in Africa, Asia and Latin America. Van Loon explained how mechanization can decrease labor costs, improve livelihoods and help farmers stay locally and internationally competitive, but he acknowledged a few potential downsides. Small tractors of this kind require fossil fuels and maintenance, and introducing mechanization to a rural community has the potential to displace jobs and shift gender roles.

Woltering explained a new tool can help researchers and development organizations think through these tradeoffs in a systematic way. The Scaling Scan, which he developed in a collaboration with The PPPLab, guides users through a series of questions and prompts them to reflect on what scaling means, what it takes to take a project to scale and what the unintended consequences could be in a particular context.

Lennart Woltering (second from left) presents the "ingredients" of the Scaling Scan tools during one of the sessions of the Purdue Scale Up Conference. (Photo: Rachel Cramer/CIMMYT)
Lennart Woltering (second from left) presents the “ingredients” of the Scaling Scan tools during one of the sessions of the Purdue Scale Up Conference. (Photo: Rachel Cramer/CIMMYT)

The first step of the Scaling Scan is “Defining a realistic scaling ambition.” It contains a responsibility check, prompting users to consider how an intervention could affect power equity and natural resources if that scaling ambition is indeed reached. “We tried to make this check as simple as possible, but still have people anticipate what unintended consequences their scaling effort might have ten years down the line,” said Woltering.

The responsibility check includes questions like: Who are the winners and who are the losers when the innovation is adopted at a large scale? Will the scaling of the innovation affect the availability of important natural resources, such as water and land?

Woltering emphasized that development organizations should try to identify the scale that optimizes tradeoffs. “We want people to be aware that bigger is not always better,” he said.

“You might think you’re benefitting the irrigation farmers, but at the same time, the fishermen or other people might be paying the price for that,” Woltering explained. “If you’re only focused on those irrigation farmers and not the whole system, it’s easy to think, ‘Oh, we’re doing a fantastic job,’ when you’re not.”

The reasons to scale up responsibly

At the conference, Tricia Wind and Robert McLean of the International Development Research Center (IDRC) presented some of their lessons learned about responsible scaling.

“If you’re working on the problem at different scales, you need to think about the problem differently and think about the solutions differently,” said Wind. “The first principle is thinking about what scale you are starting with and what the optimal scale would be for the problems that you’re focused on solving.”

The second principle is the justification for scaling. “So stepping back from the how and thinking about the why,” she explained. “What difference would this make?” Similar to the responsibility check in the Scaling Scan, the second principle explores the issue of equity. Who would be reached by this solution, and who would be left out or even negatively affected by it?

The third principle is about coordination. McLean said, “This is about accepting that all scaling happens in a system. Are the alternative solutions? How do you displace solutions that might already exist if you try to scale something? What about the cultural norms and the institutions that exist in the area where you’re scaling, and how do you coordinate to scale responsibly?”

The fourth principle is dynamic evaluation. Maclean said an organization should learn as it scales. “It’s never going to be a 1-2-3 step process that’s going to get you from innovation to impact at scale,” he explained. “Scaling itself is also an intervention. So you have your intervention you’re trying to scale, and as you scale, systems change.”

Participants and panelists of the Scale Up Conference pose for a group photograph. (Photo: Courtesy of Purdue University)
Participants and panelists of the Scale Up Conference pose for a group photograph. (Photo: Courtesy of Purdue University)

Johannes Linn, Nonresident Senior Fellow with the Brookings Institute and another one of the world’s top scaling experts, emphasized, “Scaling is not a linear process. It is iterative with feedback loops to learn and adapt.”

During the opening reception, Woltering and van Loon congratulated Seerp Wigboldus, a senior advisor and researcher with Wageningen University, on his recently completed PhD thesis, published as a book: To scale, or not to scale – that is not the only question.

Someone asked, “What do you do if 40 people are going to be harmed by an intervention while 50 people benefit?” Wigboldus replied, “Well, unfortunately, there’s no formula for this kind of thing. There will always be tradeoffs, but hopefully we can get people to slow down a bit. We need to be transparent and justify our decisions.”

Nearly all of humanity’s greatest challenges originate from the scaling of innovations. The depletion of the Aral Sea in order to scale cotton production is just one example. Climate change and industrialization is another. By adopting a responsible scaling approach, the agricultural development sector can minimize negative impacts and side effects and seek optimal solutions.

The full version of the Scaling Scan contains detailed practical information on how and when to use this tool. A condensed, two-page version is also available. We also recommend the companion Excel sheet, which generates average scores and results automatically.

This work is supported by the German Development Cooperation (GIZ) and led by the International Maize and Wheat Improvement Center (CIMMYT).

CIMMYT launches new podcast, Cobs & Spikes

Cobs & Spikes is a new podcast from the International Maize and Wheat Improvement Center (CIMMYT). This is a space where we’re going to break down complex science into bite-sized, audio-rich explainers, and listen to stories that link CIMMYT’s research with real-world applications and farmers. We’re also going to have real conversations with experts from around the world who are innovating in the fields of agriculture, food security and nutrition.

Stay tuned for the first episode. We will be talking to Matthew Rouse, a researcher with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), who has been named the winner of the 2018 Norman Borlaug Award for Field Research and Application.

You can subscribe to Cobs & Spikes on SoundCloud, iTunes, Stitcher and other podcast platforms.

In your seeds I trust: African seed companies test the SeedAssure application

NAIROBI (Kenya) — More than 20 representatives of eastern and southern African seed companies and regulatory agencies recently took part in the demonstration of a new seed certification application that can help get quality seed to market more quickly and curb sales of counterfeit seed.

As part of an event organized by the International Maize and Wheat Improvement Program (CIMMYT) at the Kiboko research station of the Kenya Agricultural & Livestock Research Organization (KALRO) on September 17, 2018, participants field-tested a beta version of SeedAssure, a digital platform that gives automatic feedback on compliance and seed production management, along with remedy options.

SeedAssure was developed by Cellsoft, a supply chain management software company, with input from the Alliance for a Green Revolution in Africa (AGRA), the Qualibasic Seed Company, the Kenya Plant Health Inspectorate Service (KEPHIS) and CIMMYT.

“This is very useful for companies like ours, spread as we are over different countries, to manage at a distance our seed growers,” said Andy Watt of QualiBasic Seed Company, who has been testing SeedAssure on the company’s farms. “The application’s dashboard will point out which farms to visit quickly for corrections.”

Mobile innovations enhance quality and speed

For over a decade, the region’s seed sector has sought fast, cost-effective and transparent seed quality control and certification approaches for use across the value chain and the region. Seed companies often rely on under-staffed national certification agencies that may miss critical inspections or give inaccurate reports. Registration of new varieties can take many years, discouraging investment in improved seed and impeding regional trade.

Worse, by some estimates as much as 40 percent of the seed sold in eastern and southern Africa is falsely labelled or not what farmers are told they are buying. KEPHIS recently confiscated over 13 tons of “fake” seeds.

The seed sector has sought mobile innovations such as tablet-based field inspections whose data load to centralized, cloud-based dashboards.

With SeedAssure’s “traffic light” system, field inspection results for factors such as plant population will score green (complied – good quality), amber (needs improvement) or red (reject) and be readily visible to key actors in the seed certification and supply chain, according to David Laurence-Brown, SeedAssure co-developer.

“This quality assurance system can help seed companies get licenses faster, speeding product to market and greatly reducing the financial risk of getting new varieties to farmers,” said Laurence-Brown. “The vision is that all actors have access to timely and accurate data on products, licensing and trade movements, with quality control checks along the value chain.”

He said that SeedAssure features 260 critical questions in 13 seed production checklists. “Putting the right questions in the right order is crucial to determine how sustainable your seed production is,” Laurence-Brown explained.

Partners test the SeedAssure app on a tablet during a field visit in Kiboko, Kenya. (Photo: Jerome Bossuet/CIMMYT)
Partners test the SeedAssure app on a tablet during a field visit in Kiboko, Kenya. (Photo: Jerome Bossuet/CIMMYT)

Fixing the bugs

Participants emphasized that national and regional regulatory bodies needed to be on board.

“Advocacy has to be done at different levels, from COMESA, national plant protection organizations, big and small seed companies, and research institutes and donors,” said Kinyua Mbijjewe, a well-known figure in the African seed industry and co-creator of SeedAssure, adding that this has been underway for a year now with a positive response, and public engagement is now ramping up with partners like AGRA and USAID.

Participants also suggested simplifying SeedAssure by reducing the number of questions and the subjectivity of certain data fields. For example, they observed that a more objective method was needed for scoring pest infestations, rather than SeedAssure’s current approach of rating infestations as low, moderate or intense via visual estimation.

“This will not be adopted if it’s too complex,” said Nicolai Rodeyns, NASECO seed company, Uganda.

Developers are addressing these issues, as well as comments that the application should not mix compliance and seed production management features.

CIMMYT announced that it would offer members of the International Maize Improvement Consortium (IMIC) a one-year trial subscription to SeedAssure.

Finally, AFSTA, AGRA, CIMMYT, COMESA, USAID, and other partners are forming a SeedAssure Alliance to support testing and rollout with companies and public organizations in eastern and southern Africa.

CIMMYT shows partners in Kenya new breakthroughs in maize and wheat research

NAIROBI (Kenya) — Members of the International Maize Improvement Consortium (IMIC) and other partners had a chance to go on a field visit to the Kiboko and Naivasha research stations in Kenya on September 18 and 19, 2018. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to share the latest developments in maize and wheat research.

On the first day, CIMMYT invited IMIC researchers to evaluate Material Under Development at the Kiboko site. These maize lines are not publicly released yet but are available to IMIC partners, so they can select the most promising ones for their research and crop improvement work.

Each seed company was looking for certain traits to develop new hybrid varieties. For instance, Samit Fayek, from Fine Seeds Egypt was looking for ‘erect type’ maize, as he wants higher crop density and grains that look big. Christopher Volbrecht, from Lake Agriculture in South Africa, was looking for “cobs that stick out as this is what farmers want.” Josephine Okot, from Victoria Seeds in Uganda, said that “seed companies often look at drought tolerance only, but we need now to integrate resistance to Maize Lethal Necrosis.”

Using Doubled Haploid breeding in Kiboko

Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)
Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)

Next on the tour to Kiboko, partners visited various stress-tolerant breeding materials, sustainable intensification cropping demonstrations and the Doubled Haploid facility. Vijaya Chaikam, Maize Doubled Haploid Scientist, explained how CIMMYT uses this methodology to cut down breeding time from six to two cycles, which drastically reduces costs.

According to B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE, doubled haploid breeding is possibly the biggest innovation to speed up genetic gain since the inception of hybrid technology a century ago. “In the next 4 or 5 years, CIMMYT aims at 80 percent use of double haploid lines for new hybrid development; breeding will be faster and much cheaper that way,” Prasanna said. “For now, breeders and seed companies need to know how to use double haploid lines to cost-efficiently crossbreed with their varieties for high-quality hybrids.”

At the end of the visit to Kiboko, CIMMYT officially opened a new maize seed storage cold room. This facility will serve to keep seeds in good condition and to better manage inventory. At the opening were the director of KALRO’s Food Crops Research Institute, Joyce Malinga, CIMMYT’s Africa Regional Representative, Stephen Mugo, and CIMMYT’s Technical Lead for the Global Maize Program, Aparna Das.

Fighting Maize Lethal Necrosis and rust in Naivasha

A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)
A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)

On the second day, partners visited the Naivasha research station. There, CIMMYT presented the latest efforts to contain Maize Lethal Necrosis (MLN), a devastating maize viral disease first reported in Kenya in 2011 which caused severe crop losses across Eastern Africa, causing severe crop losses. The Naivasha research station is home to a world-class facility to screen for Maize Lethal Necrosis, jointly managed by CIMMYT and KALRO.

At the facility, maize lines are evaluated for MLN resistance. The best lines and varieties are nominated for further development and shared with partners. National Agriculture Research partners can request MLN screening at no cost, while private seed companies are charged for the service. In the last four years, more than 150,000 germplasm have been screened.

CIMMYT wheat scientist Mandeep Randhawa explained how to recognize the different types of wheat rust diseases: stem, stripe and leaf rusts. He emphasized the Ug99 black stem rust strain, which appeared in Uganda in 1998 and has since severely impacted wheat production in the region and globally. Randhawa explained how CIMMYT develops varieties resistant to stem rust using a phenotyping platform and marker-assisted selection.

These two field days were a great opportunity to showcase progress in developing more resilient maize varieties in a fast and cost-effective way. This responsiveness is crucial as pests and diseases continue to threaten the livelihoods of African smallholders. Such impact could not happen without the strong collaboration between CIMMYT and KALRO.

The director of KALRO's Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT's Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)
The director of KALRO’s Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT’s Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)

The Doubled Haploid Facility in Kiboko and the Maize Lethal Necrosis screening facilty in Naivasha were opened in 2013 with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation.

The International Maize Improvement Consortium (IMIC) is a public-private partnership initiative launched in May 2018 as part of CIMMYT’s mission to ramp up seed breeding and production innovations.

CIMMYT releases 26 new maize lines

The new lines are specifically adapted  to tropical/subtropical maize production environments in Africa, Asia and Latin America,  and are freely available to both public and private sector breeders worldwide.  

CML582, one of the 26 new CIMMYT maize lines released by the Center. Photo: CIMMYT.
CML582, one of the 26 new CIMMYT maize lines released by the Center. (Photo: CIMMYT)

CIMMYT is pleased to announce the release of a set of 26 new CIMMYT maize lines (CMLs). These CMLs were developed by the CIMMYT Global Maize Program’s multi-disciplinary teams of scientists at breeding locations in sub-Saharan Africa, Latin America and Asia. These lines are adapted to the tropical/subtropical maize production environments targeted by CIMMYT and partner institutions. CMLs are freely available to both public and private sector breeders worldwide under the standard material transfer agreement (SMTA).

CIMMYT seeks to develop improved maize inbred lines with superior performance and multiple stress tolerance to improve maize productivity for resource-constrained smallholder farmers.  To achieve this aim, CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses.  Suitability as either seed or pollen parent is also thoroughly evaluated.

Release of a CML does not guarantee high combining ability or per se performance in all environments; rather, it indicates that the line is promising or useful as a hybrid component or parent for pedigree breeding for one or more target mega-environments. The descriptions of the lines include heterotic group classification, along with information on their specific combining ability with widely-used CIMMYT lines.

For a summary of the 26 new CMLs, please click here.

Further details on all CMLs, including the pedigrees, are available here.

A limited quantity of seed of the CMLs can be obtained from the CIMMYT Germplasm Bank. To send a request, please contact Denise Costich, Head of the Maize Genetic Resources Center: d.costich@cgiar.org.

For further details, please contact B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Director of CIMMYT’s Global Maize Program: b.m.prasanna@cgiar.org.

Are advisory apps a solution for collecting Big Data?

Big Data is transforming the way scientists conduct agricultural research and helping smallholder farmers receive useful information in real time. Experts and partners of the CGIAR Platform for Big Data in Agriculture are meeting on October 3-5, 2018, in Nairobi, Kenya, to share their views on how to harness this data revolution for greater food and nutrition security.

Jordan Chamberlin, Spatial Economist at CIMMYT, will give his insights on best practices on electronic data capture on October 4, 2018.

NAIROBI (Kenya) — Agronomic researchers face several challenges and limitations related to data. To provide accurate predictions and useful advice to smallholder farmers, scientists need to collect many types of on-farm data; for example, field size, area devoted to each crop, inputs used, agronomic practices followed, incidence of pests and diseases, and yield.

These pieces of data are expensive to obtain by traditional survey methods, such as sending out enumerators to ask farmers a long list of questions. Available data is often restricted to a particular geographical area and may not capture key factors of production variability, like local soil characteristics, fertilizer timing or crop rotations.

As a result, such datasets cannot deliver yield predictions at scale, one of the main expectations of Big Data. Digital advisory apps may be part of the solution, as they use crowdsourcing to routinize data collection on key agronomic variables.

The Taking Maize Agronomy to Scale in Africa (TAMASA) project has been researching the use of mobile apps to provide site-specific agronomic advice to farmers through agro-dealers, extension workers and other service providers.

At CIMMYT, one of the research questions we were interested in was “Why are plant population densities in farmers fields usually well below recommended rates?” From surveys and yield estimates based on crop-cut samples at harvest in Ethiopia, Nigeria and Tanzania, we observed that yields were correlated with plant density.

What was making some farmers not use enough seeds for their fields? One possible reason could be that farmers may not know the size of their maize field. In other cases, farmers and agro-dealers may not know how many seeds are in one packet, as companies rarely indicate it and the weight of each seed variety is different. Or perhaps farmers may not know what plant population density is best to use. Seed packets sometimes suggest a sowing rate but this advice is rather generic and assumes that farmers apply recommended fertilizer rates. However, farmers’ field conditions differ, as does their capacity to invest in expensive fertilizers.

To help farmers overcome these challenges, we developed a simple app, Maize-Seed-Area. It enables farmers, agro-dealers and extension workers to measure the size of a maize field and to identify its key characteristics. Then, using that data, the app can generate advice on plant spacing and density, calculate how much seed to buy, and provide information on seed varieties available at markets nearby.

View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)
View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)

Maize-Seed-Area is developed using the Open Data Kit (ODK) format, which allows to collect data offline and to submit it when internet connection becomes available. In this case, the app is also used to deliver information to the end users.

Advisory apps usually require some input data from farmers, so advice can be tailored to their particular circumstances. For example, they might need to provide data on the slope of their field, previous crops or fertilizer use. Some additional information may be collected through the app, such as previous seed variety use. All this data entered by the user, which should be kept to a minimum, is routinely captured by the app and retrieved later.

Hello, Big Data!

As the app user community grows, datasets on farmer practices and outcomes grow as well. In this case, we can observe trends in real time, for instance on the popularity of different maize varieties.

In a pilot in western Kenya, in collaboration with Precision Agriculture for Development (PAD), some 100 agro-dealers and extension workers used the app to give advice to about 2,900 farmers. Most of the advice was on the amount of seed to buy for a given area and on the characteristics of different varieties.

Data showed that the previous year farmers grew a wide range of varieties, but that three of them were dominant: DK8031, Duma43 and WH505.

Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.
Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.

A phone survey among some 300 of the farmers who received advice found that most of them anticipated to do things differently in the future, ranging from asking for advice again (37 percent), growing a different maize variety (31 percent), buying a different quantity of seed (19 percent), using different plant spacing (18 percent) or using more fertilizer (16 percent).

Most of the agro-dealers and extension workers have kept the app for future use.

The dataset was collected in a short period of time, just two months, and was available as soon as app users got online.

The Maize-Seed-Area pilot shows that advisory apps, when used widely, are a major source of new Big Data on agronomic practices and farmer preferences. They also help to make data collection easier and cheaper.

TAMASA is supported by the Bill and Melinda Gates Foundation and is implemented by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), the International Plant Nutrition Institute (IPNI) and Africa Soil Information Service (AfSIS).

Winners of the 2018 MAIZE Youth Innovators Awards – Asia announced

The 2018 MAIZE Youth Innovators Awards – Asia recognize the contributions of young women and men who can inspire fellow young people to get involved in maize-based research, social change and farming. The awards are sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).

The awardees have been invited to attend the 13th Asian Maize Conference in Ludhiana, India, where they will present their work and receive their awards.

The winners in the two categories are:

RESEARCHER

Dinesh Panday, Nepal

Focus: Soil fertility and nutrient management

Dinesh Panday.

Dinesh Panday’s family has a long history in agriculture, which strongly rooted his passions in the field of soil science. He is a Doctorate Graduate Research Assistant in Soil Fertility and Nutrient Management at the University of Nebraska-Lincoln under the supervision of Bijesh Maharjan and Richard Ferguson.

His research aims to determine the effectiveness of high carbon char in reducing environmental nitrogen loss and improving nitrogen fertilizer use efficiency in fertilized soils in semi-arid regions. Using active and passive sensors to detect maize nitrogen stress, predict grain yield and determine in-season and additional side-dress applications of nitrogen fertilizer it is possible to reduce environmental impacts.

Jie Xu, China

Focus: Drought stress in maize root systems

Jie Xu.

An associate researcher at Sichuan Agricultural University, China, Jie Xu is interested in how maize roots influence performance under drought stress. By studying maize inbred lines that exhibit different drought tolerance, her research explores their genome and transcriptome variations to understand the genetic basis of plant adaptation to drought. The findings can then be used in breeding drought-tolerant maize.

Jie Xu and her team have developed methods to dissect the genetic and epigenetic mechanisms underlying maize drought stress response. This work involves the identification of non-synonymous SNPs and corresponding candidate genes for drought tolerance using analyses such as common variant and clustering techniques. Her team also revealed the impact smRNAs and histone modifications have in the regulation of maize drought stress response.

Vignesh Muthusamy, India

Focus: Development of biofortified provitamin-A rich QPM maize hybrids

Vignesh Muthusamy.

Vignesh Muthusamy is from a farming community in the Namakkal district in Tamil Nadu. A Senior Scientist at the Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, he specializes in maize genetics and breeding. His research demonstrates the use of modern biotechnological tools in crop improvement. He was associated with the development of India’s first provitamin A enriched maize hybrid ‘Pusa Vivek QPM 9 Improved’ and with the development of three quality protein maize hybrids that possess high lysine and tryptophan in protein. These biofortified maize hybrids offer tremendous scope to address widespread human malnutrition. Further research work includes the development of a high-yielding sweet corn hybrid and several novel maize genetic resources for nutritional quality traits.

Muthusamy has received many prestigious awards from different societies and scientific organizations, including Jawaharlal Nehru Award for Outstanding Doctoral Thesis Research in Agricultural and Allied Sciences from Indian Council of Agricultural Research. As Principal Investigator, he is handling projects funded by Department of Biotechnology and Department of Science & Technology, Government of India for development of nutritionally rich maize and specialty corn genotypes. Besides research, he is also actively involved in teaching and guidance of post graduate students of the institute.

CHANGE AGENT

Samjhana Khanal, Nepal

Focus: Social inclusion of young people and site-specific nutrient management (SSNM) using Nutrient Expert®

Samjhana Khanal.

Samjhana Khanal, an agricultural graduate, has founded and co-founded various social organizations at a local level in Nepal to involve young minds in the development of innovative strategies to work towards sustainable agriculture and zero hunger.

Besides taking part in agricultural trainings, workshops and conferences during her undergraduate degree, Samjhana worked as a R&D Research Assistant at the Eastern Regional Agricultural Directorate in Nepal and has published a number of research papers. Her most recent research involves the productivity and profitability of hybrid maize using the Nutrient Expert® Maize model in eastern Terai, Nepal. Using Nutrient Expert®, a dynamic nutrient management tool based on site-specific nutrient management (SSNM) principles, farm-specific fertilizer recommendations for maize are possible, resulting in higher grain yield and improved productivity and profits for farmers.

What is green manure? And how is it helping maize farmers?

Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)
Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)

Honest Musafari, a fifty-year-old farmer from rural Zimbabwe, eagerly picks up a clump of soil from his recently harvested field to show how dark and fertile it is. A farmer all his life, Musafari explains the soil has not always been like this. For years, he and his neighbors had to deal with poor eroding soil that increasingly dampened maize yields.

“My soil was getting poorer each time I plowed my field, but since I stopped plowing, left the crop residues and planted maize together with legumes the soil is much healthier,” says Musafari. His 1.6-hectare maize-based farm, in the Murehwa district, supports his family of six.

For over two years, Musafari has been one of the ten farmers in this hot and dry area of Zimbabwe to trial intercropping legumes and green manure cover crops alongside their maize, to assess their impact on soil fertility.

The on-farm trials are part of efforts led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with Catholic Relief Services (CRS) and government extension services to promote climate-resilient cropping systems in sub-Saharan Africa.

Increasing land degradation at the farm and landscape level is the major limitation to food security and livelihoods for smallholder farmers in sub-Saharan Africa, says CIMMYT senior cropping systems agronomist Christian Thierfelder.

Over 65 percent of soils in Africa are degraded. They lack the nutrients needed for productive crops. This is a major part of the reason why the region’s maize yields are not increasing,” he explains. “The failure to address poor soil health will have a disastrous effect on feeding the region’s growing population.”

The area where Musafari lives was chosen to test intercropping, along with others in Malawi and Zambia, for their infamous poor soils.

Mixing it up

When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)
When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)

Planted in proximity to maize, legumes — like pigeon pea, lablab and jack beans — add nitrogen to the soil, acting as green manure as they grow, says Thierfelder. Essentially, they replace the nutrients being used by the cereal plant and are an accessible form of fertilizer for farmers who cannot afford mineral fertilizers to improve soil fertility.

“Our trials show legumes are a win for resource poor family farmers. Providing potentially 5 to 50 tons per hectare of extra organic matter besides ground cover and fodder,” he notes. “They leave 50 to 350 kg per hectare of residual nitrogen in the soil and do not need extra fertilizer to grow.”

Added to the principles of conservation agriculture — defined by minimal soil disturbance, crop residue retention and diversification through crop rotation and intercropping — farmers are well on their way to building a resilient farm system, says Geoffrey Heinrich, a senior technical advisor for agriculture with CRS working to promote farmer adoption of green manure cover crops.

For years Musafari, as many other smallholder farmers in Africa, tilled the land to prepare it for planting, using plows to mix weeds and crop residues back into the soil. However, this intensive digging has damaged soil structure, destroyed most of the organic matter, reduced its ability to hold moisture and caused wind and water erosion.

Letting the plants do the work

Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)
Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)

Musafari says the high price of mineral fertilizer puts it out of reach for farmers in his community. They only buy little amounts when they have spare cash, which is never enough to get its full benefit.

He was at first skeptical green manure cover crops could improve the quality of his soil or maize yields, he explains. However, he thought it was worth a try, considering growing different crops on the same plot would provide his family with more food and the opportunity to make some extra cash.

“I’m glad I tried intercropping. Every legume I intercropped with my maize improved the soil structure, its ability to capture rain water and also improved the health of my maize,” he says.

Thierfelder describes how this happens. Nitrogen fixation, which is unique to leguminous crops, is a very important process for improving soil fertility. This process involves bacteria in the soil and nitrogen in the air. The bacteria form small growths on the plant roots, called nodules, and capture the atmospheric nitrogen as it enters the soil. The nodules change the nitrogen into ammonia, a form of nitrogen plants use to produce protein.

In addition, legumes grown as a cover crop keep soil protected from heavy rains and strong winds and their roots hold the soil in place, the agronomist explains. They conserve soil moisture, suppress weeds and provide fodder for animals and new sources of food for consumption or sale.

Farmers embrace intercropping

Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)
Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)

Working with CIMMYT, Musafari and his wife divided a part of their farm into eight 20 by 10 meter plots. On each plot, they intercropped maize with a different legume: cowpea, jack bean, lablab, pigeon pea, sugar bean and velvet bean. They also tried intercropping with two legumes on one of the plots. Then they compared all those options to growing maize alone.

“Season by season the soil on each of the trial plots has got darker and my maize healthier,” describes Musafari. “Rains used to come and wash away the soil, but now we don’t plow or dig holes, so the soil is not being washed away; it holds the water.”

“I really like how the legumes have reduced the weeds. Before we had a major problem with witchweed, which is common in poor soils, but now it’s gone,” he adds.

Since the first season of the trial, Musafari’s maize yields have almost tripled. The first season his maize harvested 11 bags, or half a ton, and two seasons later it has increased to 32 bags, or 1.5 tons.

Musafari’s wife Eveline has also been convinced about the benefits of intercropping, expressing the family now wants to extend it to the whole farm. “Intercropping has more advantages than just growing maize. We get different types of food on the same space. We have more to eat and more to sell,” she says.

The family prefers intercropping with jack bean and lablab. Even though they were among the hardest legumes to sell, they improved the soil the most. They also mature at the same time as their maize, so they save labor as they only have to harvest once.

The benefits gained during intercropping have influenced farmers to adopt it as part of their farming practices at most of our trial sites across southern Africa, CRS’s Heinrich says.

“Immediate benefits, such as reduced weeding labor and legume cash crops that farmers can sell off quick, provide a good incentive for adoption,” he adds.

Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)
Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)

Climate-resilient farming systems for Africa

Food security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the continent by 2025. Temperatures are increasing: the past three decades have been the warmest on record, according to the International Panel on Climate Change.

Hotter climates, more dry spells and erratic rainfall are a major concern to farmers in sub-Saharan Africa, where over half of maize is grown in rain-fed farming without irrigation.

The majority of African farmers are smallholders who cultivate less than 2 hectares, explains Thierfelder. If they are to meet the food demand of a population set to almost double by 2050, bringing it to over 2 billion people while overcoming multiple challenges, they need much more productive and climate-resilient cropping systems.

New research identifies that the defining principles of conservation agriculture alone are not enough to shield farmers from the impacts of climate change. Complementary practices are required to make climate-resilient farming systems more functional for smallholder farmers in the short and long term, he warns.

“Intercropping with legumes is one complementary practice which can help building healthy soils that stand up to erratic weather,” says Thierfelder. “CIMMYT promotes climate-resilient cropping systems that are tailored to farmers’ needs,” he emphasizes.

“To sustainably intensify farms, growers need to implement a variety of options including intercropping, using improved crop varieties resistant to heat and drought and efficient planting using mechanization along with the principles of conservation agriculture to obtain the best results.”

Planting the seed of agricultural innovation in Africa

Service provider Bedilu Desta and his helper Fekadu Assefa drive a two-wheel tractor and thresher in the village of Gudoberet, Basona district, Ethiopia, in 2015. (Photo: Peter Lowe/CIMMYT)
Service provider Bedilu Desta and his helper Fekadu Assefa drive a two-wheel tractor and thresher in the village of Gudoberet, Basona district, Ethiopia, in 2015. (Photo: Peter Lowe/CIMMYT)

In the last two decades, Africa has taken a leap forward in the development and adoption of agricultural innovations. We have seen an increased use of improved seed, appropriate technologies and agricultural machinery, all adapted to the specific needs of African farmers.

As leaders gather at the African Green Revolution Forum this month, it is time to discuss the best way to take this progress even further, so small farmers across the continent can reap the benefits of sustainable intensification practices and produce more food.

How can we spread access to these technologies and resources and put them into the hands of Africa’s half a billion farmers? How can we best align the efforts of governments, agribusiness and academia? How can we unlock Africa’s agricultural potential and achieve the Malabo Declaration to end hunger by 2025?

It all starts with a seed. Access to quality seed – that stands up to drought, resists diseases and pests, and has nutritional value – helps family farmers adapt to climate change. Bundled with sustainable agronomic practices and technologies, these seeds have the power to unleash an economic shift that could lift millions of Africans out of poverty.

To make this happen, a strong seed system is imperative. Local seed companies need adequate and reliable foundation seed, as well as access to elite germplasm they can include in their own breeding programs. They also want to use new hybrid varieties and improve their certified seed production. Only then they will be able to sell low-cost improved seed to smallholders with low purchasing power and limited market access.

Climate-resilient seeds

The negative effects of climate change have been felt throughout Africa, particularly for maize farmers. The staple for more than 200 million resource-poor people, maize crops have increasingly been affected by changing climate conditions.

To address this challenge, the International Maize and Wheat Improvement Center (CIMMYT) is developing a breeding pipeline of maize varieties, which are deployed by small and medium-sized local agribusinesses. Working in partnership with national governments, private companies and nonprofits, CIMMYT has so far released nearly 300 climate-resilient maize varieties, adapted to the different agroecologies in Africa.

Despite severe El Nino-induced droughts, farmers growing new maize varieties that withstand heat and drought have yielded twice as much as those with common commercial varieties, helping them ensure household food security. In Ethiopia, the estimated economic value of increased maize production due to climate-resilient varieties reached almost $30 million.

In other cases, biofortified food crops are helping to improve nutrition and fight ‘hidden hunger’, by adding micronutrients to people’s diets. For example, nutritious orange maize containing higher amounts of vitamin A is already growing in several southern African countries, preventing children from stunting and losing eyesight.

Modern seed production technologyis providing African seed companies with efficient and affordable ways to develop quality seed and get it to farmers.

Through strong public-private partnerships, the amount of climate-resilient maize grown by African farmers has more than doubled over the last eight years, benefiting an estimated 53 million people. The increased volumes of improved seed reaching farmers now is encouraging, but far from adequate.

When innovation meets collaboration

Traditionally, new varieties can take up to 20 years to reach farmers, but new technologies are helping to speed up the breeding process. Data from flying drones loaded with cameras and other sensors can cut the time to monitor crop health from days to minutes.

The establishment of the region’s first double haploid facility in Kenya reduces the cost and time for breeding work – it enables rapid development of homozygous maize lines and fast-tracks the release of new varieties. It was essential in the emergency response to the deadly Maize Lethal Necrosis, as breeders could release new varieties in just three years, instead of seven. The facility, open to public and private breeders, is currently being used to develop maize varieties that could resist the fall armyworm pest.

New types of small agricultural machines are helping to increase productivity, save time and reduce farmers’ workload. For example, two-wheel tractors allow smallholders to farm with more precision, conserve valuable resources and, ultimately, produce more. Renting agricultural equipment and providing mechanization services is also becoming a way for young entrepreneurs in rural areas to earn a living while giving access to powerful farming tools to family farmers who could not afford them otherwise.

Last June, representatives from dozens of African seed companies and national agricultural research institutions convened in Zimbabwe to establish the International Maize Improvement Consortium (IMIC) in Africa, similar to those already operating in Asia and Latin America. The consortium offers a systematic way to identify and share pre-release maize germplasm, which partners can use in their own breeding.

To address all these issues and democratize access to agricultural innovation, collaboration is crucial. Through past experience, we have learned that partnerships need to be more ambitious and that knowledge needs to be shared across borders. Any new solution must incorporate the expertise and action of national extension systems, private sector companies and other relevant stakeholders.

Donors need to consider long-term funding mechanisms that can operate at a regional and global scale.

Let’s build on the existing success and take it even further. Together, we can build robust seed systems and equip African farmers with the technology they need to envision a safe and sustainable future.

Martin Kropff is the director general of CIMMYT and Stephen Mugo is CIMMYT’s regional representative in Africa.

This article was originally published by Thomson Reuters.

Suitcase-sized lab speeds up wheat rust diagnosis

A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)
A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)

Despite her unassuming nature, the literary character Miss Marple solves murder mysteries with her keen sense of perception and attention to detail. But there’s another sleuth that goes by the same name. MARPLE (Mobile And Real-time PLant disEase) is a portable testing lab which could help speed-up the identification of devastating wheat rust diseases in Africa.

Rust diseases are one of the greatest threats to wheat production around the world. Over the last decade, more aggressive variants that are adapted to warmer temperatures have emerged. By quickly being able to identify the strain of rust disease, researchers and farmers can figure out the best course of action before it is too late.

The Saunders lab of the John Innes Centre created MARPLE. In collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT), researchers are testing the mobile diagnostic kit in Holeta, central Ethiopia.

“These new pathogen diagnostic technologies … offer the potential to revolutionize the speed at which new wheat rust strains can be identified,” says Dave Hodson, a CIMMYT rust pathologist in Ethiopia. “This is critical information that can be incorporated into early warning systems and result in more effective control of disease outbreaks in farmers’ fields.”

Hodson and his colleagues will be presenting their research at the CGIAR Big Data in Agriculture Convention in Nairobi, on October 3-5, 2018.

Read more about the field testing of the MARPLE diagnostic kit on the ACACIA website.

Over 100,000 genes

After 13 years of research, an international team of more than 200 scientists recently cracked the full genome of bread wheat. Considering that wheat has five times more DNA than humans, this is a significant scientific breakthrough. The complete sequencing provides researchers with a map for the location of more than 100,000 genes which, experts say, will help accelerate the development of new wheat varieties.

Philomin Juliana, a Post-Doctoral Fellow in wheat breeding at the International Maize and Wheat Improvement Center (CIMMYT) talks about the relevance of the new map for the center, whose genetics figures in the pedigrees of wheat varieties grown on more than 100 million hectares worldwide.

Are you already using this resource, and how?

We have anchored the genotyping-by-sequencing marker data for about 46,000 lines from CIMMYT’s first-year wheat yield trials (2013-2018) to the new, International Wheat Genome Sequencing Consortium (IWGSC) reference sequence (RefSeq v1.0) assembly of the bread wheat genome, with an overall alignment rate of 64%. This has provided valuable information on the location of key genome regions associated with grain yield, disease resistance, agronomic traits and quality in CIMMYT’s wheat germplasm, identified from genome-wide association mapping studies.

We have also used the new reference sequence to understand the impact of marker densities and genomic coverage on the genomic predictability of traits and have gained a better understanding of the contributions of diverse chromosome regions (distal, proximal, and interstitial) towards different phenotypes.

How will use of the new wheat reference sequence help CIMMYT and partners to develop improved wheat for traits of interest?

There are so many ways we can use this new tool! It provides valuable insights into trait genetics and genomics in bread wheat and will help us to more quickly identify candidate genes associated with traits of interest and to clone those genes. We will also be able to design molecular breeding strategies and precisely select and introgress target regions of the genome.

More generally, the reference sequence already has a range of markers — among them, simple sequence repeats (SSR), diversity array technologies (DArT) markers, and single nucleotide polymorphisms (SNPs) — anchored to it, which will facilitate comparisons between mapping studies and the quick development and validation of useful new markers.

It will also help to apply tools like gene-editing to obtain desired phenotypes and will allow us to better characterize the genetic diversity in CIMMYT’s wheat, to identify useful genes in key CIMMYT parent lines and rapidly introgress them into breeding lines.

With the annotated whole genome information, breeders can design crosses focused directly on desired combinations of genomic regions or predict the outcome of crosses involving gene combinations.

It will definitely speed varietal testing in partner countries through quick and accurate molecular screens for the presence of desired genes, instead of having to perform multiple generations of field testing.

Finally, it will help us to detect molecular-level differences between CIMMYT varieties released in different countries.

Which traits are being targeted by CIMMYT and partners?

We are using the new reference sequence to understand better the molecular bases of grain yield, heat and drought tolerance, rust resistance, flowering time, maturity, plant height, grain and flour protein, and various other quality traits.

Philomin Juliana

A recipient of Monsanto’s Beachell-Borlaug International Scholars Program Award, Juliana completed a Ph.D. in Plant Breeding and Genetics at Cornell University in 2016. Her work at CIMMYT seeks to identify the genetic bases of key traits in CIMMYT wheat germplasm and to assess high-throughput genotyping and phenotyping to increase the rate of genetic gain for yield in the center’s bread wheat breeding. In this work, she partners with the Cornell-led Delivering Genetic Gain in Wheat (DGGW) project and Jesse Poland of the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) and Kansas State University. Her research also forms part of USAID’s Feed the Future projects.

New publications: Toxin-producing fungal strains can now be detected in maize field soils with a new technique

A novel approach allows the detection of aflatoxin-producing fungi in maize fields. A new study explains the technique and how it was tested. “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method” was developed in collaboration between scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Japanese National Agriculture and Food Organization (NARO) and Fukui University of Technology, funded in part by the CGIAR Research Program on Maize (MAIZE).

Aflatoxins are harmful compounds produced by the fungi Aspergillus flavus, which can be found in the soil, plants and grain of a variety of cereals and commodities including maize, nuts, cottonseed, spices and dried fruit. The toxic carcinogenic qualities of aflatoxins pose serious health hazards to humans and animals when contaminated crops are ingested. These health risks include cancers of the liver and gallbladder, stunted development in children, premature births and abnormal fetal development.

Not all strains of A. flavus produce aflatoxins however, so it is important to be able to detect and distinguish between A. flavus strains that are benign (atoxigenic) and those that produce dangerous toxins (aflatoxigenic). Current methods of detection are often complicated by the fact that the fungal strains display very similar physiological and molecular traits, thus a new approach is required.

In the study, a novel approach to detect and distinguish A. flavus strains was tested. Using soil samples from a CIMMYT experimental maize field in Mexico, fungal isolates were chemically treated in-line with a method recently developed in Japan, resulting in a color change indicative of toxicity. The method was found to be effective and accurate in the detection of the aflatoxigenic strains of the fungus.

This study is foundational work in the development of a simple, cost-effective and efficient method of detecting aflatoxigenic strains of A. flavus, which will help inform growers about the potential aflatoxin contamination of their crops. This is of particular importance in the developing world, where the resources for effective control of the fungus are often lacking.

To read the original study, “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method”, please click here.

Original citation: Kushiro, M.; Hatabayashi, H.; Yabe, K.; Loladze, A. Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method. Toxins 2018, 10, 263.

This article was originally published on the website of the CGIAR Research Program on Maize.

Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)
Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)

Check out other recent publications by CIMMYT researchers below:

  1. Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions. 2018. Makumbi, D., Assanga, S., Diallo, A., Magorokosho, C., Asea, G., Regasa, M.W., Bänziger, M. In: Crop Science v. 58, no. 4, p. 1492-1507.
  2. Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line ‘Arula’. 2018.  Randhawa, M.S., Caixia Lan, Basnet, B.R., Bhavani, S., Huerta-Espino, J., Forrest, K.L., Hayden, M., Singh, R.P. In: Australian Journal of Crop Science v. 12, no. 6, p. 1023-1033.
  3. Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. 2018. Tabib Ghaffary, S.M., Chawade, A., Singh, P.K. In: Euphytica v. 214, art. 122.
  4. Sashaydiall : A SAS program for hayman’s diallel analysis. 2018. Makumbi, D., Alvarado Beltrán, G., Crossa, J., Burgueño, J. In: Crop Science v. 58, no. 4, p. 1605-1615.
  5. Soil bacterial diversity under conservation agriculture-based cereal systems in indo-gangetic plains. 2018. Choudhary, M., Sharma, P.C., Jat, H. S., Dash, A., Rajashekar, B., McDonald, A., Jat, M.L.  In: 3 Biotech v. 8, art. 304.

New publications: Adopting new agricultural technologies in Bangladesh

New technologies are at the core of sustainable agricultural growth and rural poverty alleviation, says Khondoker Mottaleb, an Agricultural Economist working within CIMMYT’s Socioeconomic Program. However, he explains, despite the visible benefits of using new agricultural machinery or farm management practices, overall uptake remains low as a range of factors continue to limit farmers’ ability to invest.

In a bid to enhance irrigation efficiency, Bangladesh has tried to introduce and popularize the use of axial-flow pumps (AFPs) for surface water irrigation. These pumps can lift up to 55 percent more water than a conventional centrifugal pump, but despite the obvious benefits, there has been limited uptake in targeted areas of the country. From 2012-13, a CIMMYT initiative made AFPs available for purchase for farmers in the southern regions of Bangladesh, but as of September 2017 only 888 had been purchased by lead farmers and irrigation service providers.

A recent study by CIMMYT in Bangladesh used primary data collected from 70 irrigation service providers – each of whom was given a free AFP for one season under a demonstration program – to examine user perception of AFPs and the major constraints to their adoption. It found that even though the use of AFPs can significantly reduce irrigation and overall crop production costs, more demonstrations and awareness-raising programs are needed if uptake is to be increased in target areas.

The study also highlighted the need for continuous modification of new technologies based on farmers’ requirements, with Mottaleb emphasizing that these must be adapted to local demand specifications, and that prices must be competitive with those of alternative technologies in order to ensure rapid uptake.

This study was supported by USAID through the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project. It was also supported by USAID and the Bill and Melinda Gates Foundation through the Cereal Systems Initiative for South Asia (CSISA) Phase II project. 

Read the full article in Science Direct: “Perception and adoption of a new agricultural technology: Evidence from a developing country.”

A farmer in Bangladesh irrigates his land using an axial-flow pump. (Photo: Ranak Martin)
A farmer in Bangladesh irrigates his land using an axial-flow pump. (Photo: Ranak Martin)

Check out other recent publications by CIMMYT researchers below:

  1. Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. 2018. Montesinos-López, A., Montesinos-Lopez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vazquez, F.J. In: Plant Methods v. 14, art. 46.
  2. Exploring the physiological information of sun-induced chlorophyll fluorescence through radiative transfer model inversion. 2018. Celesti, M., van der‏ Tol, C., Cogliati, S., Panigada, C., Peiqi Yang, Pinto Espinosa, F., Rascher | Miglietta, F., Colombo, R., Rossini, M. In: Remote Sensing of Environment v. 215, p. 97-108.
  3. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. 2018. Juliana, P., Singh, R.P., Singh, P.K., Poland, J.A., Bergstrom, G.C., Huerta-Espino, J., Bhavani, S., Crossa, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 131, no. 7, p. 1405-1422.
  4. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. 2018. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J., Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant Methods v. 14, art. 49.
  5. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. 2018. Parihar, C.M., Parihar M.D., Sapkota, T.B., Nanwal, R.K., Singh, A.K., Jat, S.L., Nayak, H.S., Mahala, D.M., Singh, L.K., Kakraliya, S.K., Stirling, C., Jat, M.L. In: Science of the Total Environment v. 640-641, p. 1382-1392.
  6. Major biotic maize production stresses in Ethiopia and their management through host resistance. 2018. Keno, T., Azmach, G., Dagne Wegary Gissa, Regasa, M.W., Tadesse, B., Wolde, L., Deressa, T., Abebe, B., Chibsa, T., Mahabaleswara, S. In: African Journal of Agricultural Research v. 13, no. 21, p. 1042-1052.
  7. Detection of aflatoxigenic and atoxigenic mexican aspergillus strains by the dichlorvos–ammonia (DV–AM) method. 2018. Masayo Kushiro, Hidemi Hatabayashi, Kimiko Yabe, Loladze, A. In: Toxins v. 10, no. 7, art. 263.
  8. Excessive pruning and limited regeneration: Are Faidherbia albida parklands heading for extinction in the Central Rift Valley of Ethiopia? 2018. Tesfaye Shiferaw Sida, Baudron, F., Dejene Adugna Deme, Motuma Tolera, Giller, K.E. In: Land Degradation and Development v. 29, no. 6, p. 1623-1633.
  9. Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content. 2018. Rodrigues, F., Blasch, G., Defourny, P., Ortiz-Monasterio, I., Schulthess, U., Zarco-Tejada, P.J., Taylor, J.A., Gerard, B. In: Remote Sensing v. 10, no. 6, art 930.
  10. Screening and validation of fertility restoration genes (Rf) in wild abortive CMS system of rice (Oryza sativa L.) using microsatellite markers. 2018. Bhati, P.K., Singh, S.K., Kumar, U. In: Indian Journal of Genetics and Plant Breeding v. 78, no. 2, p. 270-274.
  11. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. 2018. Hassan, M.A., Mengjiao Yang, Rasheed, A., Xiuliang Jin, Xianchun Xia, Yonggui Xiao, He Zhonghu. In: Remote Sensing v. 10, no. 6, art. 809.
  12. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). 2018. Sharma, S., Ranabir Sahu, Sudhir Navathe, Vinod Kumar Mishra, Chand, R., Singh, P.K., Joshi, A.K., Pandey, S.P. In: Frontiers in Plant Science v. 9, art. 636.
  13. Population structure of leaf pathogens of common spring wheat in the West Asian regions of Russia and North Kazakhstan in 2017. 2018. Gultyaeva, E.I., Kovalenko, N.M., Shamanin, V.P., Tyunin, V.A., Shreyder, E.R., Shaydayuk, E.L., Morgunov, A.I. In: Vavilovskii Zhurnal Genetiki i Selektsii v. 22, no. 3, p. 363-369.
  14. The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based case–control study from Mexico City. 2018. Totomoch-Serra, A., Muñoz, M. de L., Burgueño, J., Revilla-Monsalve, M.C., Perez-Muñoz, A., Diaz-Badillo, A. In: Gene v. 669, p. 28-34.