Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

CIMMYT shows partners in Kenya new breakthroughs in maize and wheat research

NAIROBI (Kenya) — Members of the International Maize Improvement Consortium (IMIC) and other partners had a chance to go on a field visit to the Kiboko and Naivasha research stations in Kenya on September 18 and 19, 2018. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to share the latest developments in maize and wheat research.

On the first day, CIMMYT invited IMIC researchers to evaluate Material Under Development at the Kiboko site. These maize lines are not publicly released yet but are available to IMIC partners, so they can select the most promising ones for their research and crop improvement work.

Each seed company was looking for certain traits to develop new hybrid varieties. For instance, Samit Fayek, from Fine Seeds Egypt was looking for ‘erect type’ maize, as he wants higher crop density and grains that look big. Christopher Volbrecht, from Lake Agriculture in South Africa, was looking for “cobs that stick out as this is what farmers want.” Josephine Okot, from Victoria Seeds in Uganda, said that “seed companies often look at drought tolerance only, but we need now to integrate resistance to Maize Lethal Necrosis.”

Using Doubled Haploid breeding in Kiboko

Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)
Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)

Next on the tour to Kiboko, partners visited various stress-tolerant breeding materials, sustainable intensification cropping demonstrations and the Doubled Haploid facility. Vijaya Chaikam, Maize Doubled Haploid Scientist, explained how CIMMYT uses this methodology to cut down breeding time from six to two cycles, which drastically reduces costs.

According to B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE, doubled haploid breeding is possibly the biggest innovation to speed up genetic gain since the inception of hybrid technology a century ago. “In the next 4 or 5 years, CIMMYT aims at 80 percent use of double haploid lines for new hybrid development; breeding will be faster and much cheaper that way,” Prasanna said. “For now, breeders and seed companies need to know how to use double haploid lines to cost-efficiently crossbreed with their varieties for high-quality hybrids.”

At the end of the visit to Kiboko, CIMMYT officially opened a new maize seed storage cold room. This facility will serve to keep seeds in good condition and to better manage inventory. At the opening were the director of KALRO’s Food Crops Research Institute, Joyce Malinga, CIMMYT’s Africa Regional Representative, Stephen Mugo, and CIMMYT’s Technical Lead for the Global Maize Program, Aparna Das.

Fighting Maize Lethal Necrosis and rust in Naivasha

A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)
A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)

On the second day, partners visited the Naivasha research station. There, CIMMYT presented the latest efforts to contain Maize Lethal Necrosis (MLN), a devastating maize viral disease first reported in Kenya in 2011 which caused severe crop losses across Eastern Africa, causing severe crop losses. The Naivasha research station is home to a world-class facility to screen for Maize Lethal Necrosis, jointly managed by CIMMYT and KALRO.

At the facility, maize lines are evaluated for MLN resistance. The best lines and varieties are nominated for further development and shared with partners. National Agriculture Research partners can request MLN screening at no cost, while private seed companies are charged for the service. In the last four years, more than 150,000 germplasm have been screened.

CIMMYT wheat scientist Mandeep Randhawa explained how to recognize the different types of wheat rust diseases: stem, stripe and leaf rusts. He emphasized the Ug99 black stem rust strain, which appeared in Uganda in 1998 and has since severely impacted wheat production in the region and globally. Randhawa explained how CIMMYT develops varieties resistant to stem rust using a phenotyping platform and marker-assisted selection.

These two field days were a great opportunity to showcase progress in developing more resilient maize varieties in a fast and cost-effective way. This responsiveness is crucial as pests and diseases continue to threaten the livelihoods of African smallholders. Such impact could not happen without the strong collaboration between CIMMYT and KALRO.

The director of KALRO's Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT's Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)
The director of KALRO’s Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT’s Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)

The Doubled Haploid Facility in Kiboko and the Maize Lethal Necrosis screening facilty in Naivasha were opened in 2013 with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation.

The International Maize Improvement Consortium (IMIC) is a public-private partnership initiative launched in May 2018 as part of CIMMYT’s mission to ramp up seed breeding and production innovations.

CIMMYT releases 26 new maize lines

The new lines are specifically adapted  to tropical/subtropical maize production environments in Africa, Asia and Latin America,  and are freely available to both public and private sector breeders worldwide.  

CML582, one of the 26 new CIMMYT maize lines released by the Center. Photo: CIMMYT.
CML582, one of the 26 new CIMMYT maize lines released by the Center. (Photo: CIMMYT)

CIMMYT is pleased to announce the release of a set of 26 new CIMMYT maize lines (CMLs). These CMLs were developed by the CIMMYT Global Maize Program’s multi-disciplinary teams of scientists at breeding locations in sub-Saharan Africa, Latin America and Asia. These lines are adapted to the tropical/subtropical maize production environments targeted by CIMMYT and partner institutions. CMLs are freely available to both public and private sector breeders worldwide under the standard material transfer agreement (SMTA).

CIMMYT seeks to develop improved maize inbred lines with superior performance and multiple stress tolerance to improve maize productivity for resource-constrained smallholder farmers.  To achieve this aim, CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses.  Suitability as either seed or pollen parent is also thoroughly evaluated.

Release of a CML does not guarantee high combining ability or per se performance in all environments; rather, it indicates that the line is promising or useful as a hybrid component or parent for pedigree breeding for one or more target mega-environments. The descriptions of the lines include heterotic group classification, along with information on their specific combining ability with widely-used CIMMYT lines.

For a summary of the 26 new CMLs, please click here.

Further details on all CMLs, including the pedigrees, are available here.

A limited quantity of seed of the CMLs can be obtained from the CIMMYT Germplasm Bank. To send a request, please contact Denise Costich, Head of the Maize Genetic Resources Center: d.costich@cgiar.org.

For further details, please contact B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Director of CIMMYT’s Global Maize Program: b.m.prasanna@cgiar.org.

Are advisory apps a solution for collecting Big Data?

Big Data is transforming the way scientists conduct agricultural research and helping smallholder farmers receive useful information in real time. Experts and partners of the CGIAR Platform for Big Data in Agriculture are meeting on October 3-5, 2018, in Nairobi, Kenya, to share their views on how to harness this data revolution for greater food and nutrition security.

Jordan Chamberlin, Spatial Economist at CIMMYT, will give his insights on best practices on electronic data capture on October 4, 2018.

NAIROBI (Kenya) — Agronomic researchers face several challenges and limitations related to data. To provide accurate predictions and useful advice to smallholder farmers, scientists need to collect many types of on-farm data; for example, field size, area devoted to each crop, inputs used, agronomic practices followed, incidence of pests and diseases, and yield.

These pieces of data are expensive to obtain by traditional survey methods, such as sending out enumerators to ask farmers a long list of questions. Available data is often restricted to a particular geographical area and may not capture key factors of production variability, like local soil characteristics, fertilizer timing or crop rotations.

As a result, such datasets cannot deliver yield predictions at scale, one of the main expectations of Big Data. Digital advisory apps may be part of the solution, as they use crowdsourcing to routinize data collection on key agronomic variables.

The Taking Maize Agronomy to Scale in Africa (TAMASA) project has been researching the use of mobile apps to provide site-specific agronomic advice to farmers through agro-dealers, extension workers and other service providers.

At CIMMYT, one of the research questions we were interested in was “Why are plant population densities in farmers fields usually well below recommended rates?” From surveys and yield estimates based on crop-cut samples at harvest in Ethiopia, Nigeria and Tanzania, we observed that yields were correlated with plant density.

What was making some farmers not use enough seeds for their fields? One possible reason could be that farmers may not know the size of their maize field. In other cases, farmers and agro-dealers may not know how many seeds are in one packet, as companies rarely indicate it and the weight of each seed variety is different. Or perhaps farmers may not know what plant population density is best to use. Seed packets sometimes suggest a sowing rate but this advice is rather generic and assumes that farmers apply recommended fertilizer rates. However, farmers’ field conditions differ, as does their capacity to invest in expensive fertilizers.

To help farmers overcome these challenges, we developed a simple app, Maize-Seed-Area. It enables farmers, agro-dealers and extension workers to measure the size of a maize field and to identify its key characteristics. Then, using that data, the app can generate advice on plant spacing and density, calculate how much seed to buy, and provide information on seed varieties available at markets nearby.

View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)
View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)

Maize-Seed-Area is developed using the Open Data Kit (ODK) format, which allows to collect data offline and to submit it when internet connection becomes available. In this case, the app is also used to deliver information to the end users.

Advisory apps usually require some input data from farmers, so advice can be tailored to their particular circumstances. For example, they might need to provide data on the slope of their field, previous crops or fertilizer use. Some additional information may be collected through the app, such as previous seed variety use. All this data entered by the user, which should be kept to a minimum, is routinely captured by the app and retrieved later.

Hello, Big Data!

As the app user community grows, datasets on farmer practices and outcomes grow as well. In this case, we can observe trends in real time, for instance on the popularity of different maize varieties.

In a pilot in western Kenya, in collaboration with Precision Agriculture for Development (PAD), some 100 agro-dealers and extension workers used the app to give advice to about 2,900 farmers. Most of the advice was on the amount of seed to buy for a given area and on the characteristics of different varieties.

Data showed that the previous year farmers grew a wide range of varieties, but that three of them were dominant: DK8031, Duma43 and WH505.

Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.
Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.

A phone survey among some 300 of the farmers who received advice found that most of them anticipated to do things differently in the future, ranging from asking for advice again (37 percent), growing a different maize variety (31 percent), buying a different quantity of seed (19 percent), using different plant spacing (18 percent) or using more fertilizer (16 percent).

Most of the agro-dealers and extension workers have kept the app for future use.

The dataset was collected in a short period of time, just two months, and was available as soon as app users got online.

The Maize-Seed-Area pilot shows that advisory apps, when used widely, are a major source of new Big Data on agronomic practices and farmer preferences. They also help to make data collection easier and cheaper.

TAMASA is supported by the Bill and Melinda Gates Foundation and is implemented by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), the International Plant Nutrition Institute (IPNI) and Africa Soil Information Service (AfSIS).

Winners of the 2018 MAIZE Youth Innovators Awards – Asia announced

The 2018 MAIZE Youth Innovators Awards – Asia recognize the contributions of young women and men who can inspire fellow young people to get involved in maize-based research, social change and farming. The awards are sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).

The awardees have been invited to attend the 13th Asian Maize Conference in Ludhiana, India, where they will present their work and receive their awards.

The winners in the two categories are:

RESEARCHER

Dinesh Panday, Nepal

Focus: Soil fertility and nutrient management

Dinesh Panday.

Dinesh Panday’s family has a long history in agriculture, which strongly rooted his passions in the field of soil science. He is a Doctorate Graduate Research Assistant in Soil Fertility and Nutrient Management at the University of Nebraska-Lincoln under the supervision of Bijesh Maharjan and Richard Ferguson.

His research aims to determine the effectiveness of high carbon char in reducing environmental nitrogen loss and improving nitrogen fertilizer use efficiency in fertilized soils in semi-arid regions. Using active and passive sensors to detect maize nitrogen stress, predict grain yield and determine in-season and additional side-dress applications of nitrogen fertilizer it is possible to reduce environmental impacts.

Jie Xu, China

Focus: Drought stress in maize root systems

Jie Xu.

An associate researcher at Sichuan Agricultural University, China, Jie Xu is interested in how maize roots influence performance under drought stress. By studying maize inbred lines that exhibit different drought tolerance, her research explores their genome and transcriptome variations to understand the genetic basis of plant adaptation to drought. The findings can then be used in breeding drought-tolerant maize.

Jie Xu and her team have developed methods to dissect the genetic and epigenetic mechanisms underlying maize drought stress response. This work involves the identification of non-synonymous SNPs and corresponding candidate genes for drought tolerance using analyses such as common variant and clustering techniques. Her team also revealed the impact smRNAs and histone modifications have in the regulation of maize drought stress response.

Vignesh Muthusamy, India

Focus: Development of biofortified provitamin-A rich QPM maize hybrids

Vignesh Muthusamy.

Vignesh Muthusamy is from a farming community in the Namakkal district in Tamil Nadu. A Senior Scientist at the Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, he specializes in maize genetics and breeding. His research demonstrates the use of modern biotechnological tools in crop improvement. He was associated with the development of India’s first provitamin A enriched maize hybrid ‘Pusa Vivek QPM 9 Improved’ and with the development of three quality protein maize hybrids that possess high lysine and tryptophan in protein. These biofortified maize hybrids offer tremendous scope to address widespread human malnutrition. Further research work includes the development of a high-yielding sweet corn hybrid and several novel maize genetic resources for nutritional quality traits.

Muthusamy has received many prestigious awards from different societies and scientific organizations, including Jawaharlal Nehru Award for Outstanding Doctoral Thesis Research in Agricultural and Allied Sciences from Indian Council of Agricultural Research. As Principal Investigator, he is handling projects funded by Department of Biotechnology and Department of Science & Technology, Government of India for development of nutritionally rich maize and specialty corn genotypes. Besides research, he is also actively involved in teaching and guidance of post graduate students of the institute.

CHANGE AGENT

Samjhana Khanal, Nepal

Focus: Social inclusion of young people and site-specific nutrient management (SSNM) using Nutrient Expert®

Samjhana Khanal.

Samjhana Khanal, an agricultural graduate, has founded and co-founded various social organizations at a local level in Nepal to involve young minds in the development of innovative strategies to work towards sustainable agriculture and zero hunger.

Besides taking part in agricultural trainings, workshops and conferences during her undergraduate degree, Samjhana worked as a R&D Research Assistant at the Eastern Regional Agricultural Directorate in Nepal and has published a number of research papers. Her most recent research involves the productivity and profitability of hybrid maize using the Nutrient Expert® Maize model in eastern Terai, Nepal. Using Nutrient Expert®, a dynamic nutrient management tool based on site-specific nutrient management (SSNM) principles, farm-specific fertilizer recommendations for maize are possible, resulting in higher grain yield and improved productivity and profits for farmers.

What is green manure? And how is it helping maize farmers?

Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)
Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)

Honest Musafari, a fifty-year-old farmer from rural Zimbabwe, eagerly picks up a clump of soil from his recently harvested field to show how dark and fertile it is. A farmer all his life, Musafari explains the soil has not always been like this. For years, he and his neighbors had to deal with poor eroding soil that increasingly dampened maize yields.

“My soil was getting poorer each time I plowed my field, but since I stopped plowing, left the crop residues and planted maize together with legumes the soil is much healthier,” says Musafari. His 1.6-hectare maize-based farm, in the Murehwa district, supports his family of six.

For over two years, Musafari has been one of the ten farmers in this hot and dry area of Zimbabwe to trial intercropping legumes and green manure cover crops alongside their maize, to assess their impact on soil fertility.

The on-farm trials are part of efforts led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with Catholic Relief Services (CRS) and government extension services to promote climate-resilient cropping systems in sub-Saharan Africa.

Increasing land degradation at the farm and landscape level is the major limitation to food security and livelihoods for smallholder farmers in sub-Saharan Africa, says CIMMYT senior cropping systems agronomist Christian Thierfelder.

Over 65 percent of soils in Africa are degraded. They lack the nutrients needed for productive crops. This is a major part of the reason why the region’s maize yields are not increasing,” he explains. “The failure to address poor soil health will have a disastrous effect on feeding the region’s growing population.”

The area where Musafari lives was chosen to test intercropping, along with others in Malawi and Zambia, for their infamous poor soils.

Mixing it up

When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)
When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)

Planted in proximity to maize, legumes — like pigeon pea, lablab and jack beans — add nitrogen to the soil, acting as green manure as they grow, says Thierfelder. Essentially, they replace the nutrients being used by the cereal plant and are an accessible form of fertilizer for farmers who cannot afford mineral fertilizers to improve soil fertility.

“Our trials show legumes are a win for resource poor family farmers. Providing potentially 5 to 50 tons per hectare of extra organic matter besides ground cover and fodder,” he notes. “They leave 50 to 350 kg per hectare of residual nitrogen in the soil and do not need extra fertilizer to grow.”

Added to the principles of conservation agriculture — defined by minimal soil disturbance, crop residue retention and diversification through crop rotation and intercropping — farmers are well on their way to building a resilient farm system, says Geoffrey Heinrich, a senior technical advisor for agriculture with CRS working to promote farmer adoption of green manure cover crops.

For years Musafari, as many other smallholder farmers in Africa, tilled the land to prepare it for planting, using plows to mix weeds and crop residues back into the soil. However, this intensive digging has damaged soil structure, destroyed most of the organic matter, reduced its ability to hold moisture and caused wind and water erosion.

Letting the plants do the work

Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)
Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)

Musafari says the high price of mineral fertilizer puts it out of reach for farmers in his community. They only buy little amounts when they have spare cash, which is never enough to get its full benefit.

He was at first skeptical green manure cover crops could improve the quality of his soil or maize yields, he explains. However, he thought it was worth a try, considering growing different crops on the same plot would provide his family with more food and the opportunity to make some extra cash.

“I’m glad I tried intercropping. Every legume I intercropped with my maize improved the soil structure, its ability to capture rain water and also improved the health of my maize,” he says.

Thierfelder describes how this happens. Nitrogen fixation, which is unique to leguminous crops, is a very important process for improving soil fertility. This process involves bacteria in the soil and nitrogen in the air. The bacteria form small growths on the plant roots, called nodules, and capture the atmospheric nitrogen as it enters the soil. The nodules change the nitrogen into ammonia, a form of nitrogen plants use to produce protein.

In addition, legumes grown as a cover crop keep soil protected from heavy rains and strong winds and their roots hold the soil in place, the agronomist explains. They conserve soil moisture, suppress weeds and provide fodder for animals and new sources of food for consumption or sale.

Farmers embrace intercropping

Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)
Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)

Working with CIMMYT, Musafari and his wife divided a part of their farm into eight 20 by 10 meter plots. On each plot, they intercropped maize with a different legume: cowpea, jack bean, lablab, pigeon pea, sugar bean and velvet bean. They also tried intercropping with two legumes on one of the plots. Then they compared all those options to growing maize alone.

“Season by season the soil on each of the trial plots has got darker and my maize healthier,” describes Musafari. “Rains used to come and wash away the soil, but now we don’t plow or dig holes, so the soil is not being washed away; it holds the water.”

“I really like how the legumes have reduced the weeds. Before we had a major problem with witchweed, which is common in poor soils, but now it’s gone,” he adds.

Since the first season of the trial, Musafari’s maize yields have almost tripled. The first season his maize harvested 11 bags, or half a ton, and two seasons later it has increased to 32 bags, or 1.5 tons.

Musafari’s wife Eveline has also been convinced about the benefits of intercropping, expressing the family now wants to extend it to the whole farm. “Intercropping has more advantages than just growing maize. We get different types of food on the same space. We have more to eat and more to sell,” she says.

The family prefers intercropping with jack bean and lablab. Even though they were among the hardest legumes to sell, they improved the soil the most. They also mature at the same time as their maize, so they save labor as they only have to harvest once.

The benefits gained during intercropping have influenced farmers to adopt it as part of their farming practices at most of our trial sites across southern Africa, CRS’s Heinrich says.

“Immediate benefits, such as reduced weeding labor and legume cash crops that farmers can sell off quick, provide a good incentive for adoption,” he adds.

Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)
Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)

Climate-resilient farming systems for Africa

Food security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the continent by 2025. Temperatures are increasing: the past three decades have been the warmest on record, according to the International Panel on Climate Change.

Hotter climates, more dry spells and erratic rainfall are a major concern to farmers in sub-Saharan Africa, where over half of maize is grown in rain-fed farming without irrigation.

The majority of African farmers are smallholders who cultivate less than 2 hectares, explains Thierfelder. If they are to meet the food demand of a population set to almost double by 2050, bringing it to over 2 billion people while overcoming multiple challenges, they need much more productive and climate-resilient cropping systems.

New research identifies that the defining principles of conservation agriculture alone are not enough to shield farmers from the impacts of climate change. Complementary practices are required to make climate-resilient farming systems more functional for smallholder farmers in the short and long term, he warns.

“Intercropping with legumes is one complementary practice which can help building healthy soils that stand up to erratic weather,” says Thierfelder. “CIMMYT promotes climate-resilient cropping systems that are tailored to farmers’ needs,” he emphasizes.

“To sustainably intensify farms, growers need to implement a variety of options including intercropping, using improved crop varieties resistant to heat and drought and efficient planting using mechanization along with the principles of conservation agriculture to obtain the best results.”

Planting the seed of agricultural innovation in Africa

Service provider Bedilu Desta and his helper Fekadu Assefa drive a two-wheel tractor and thresher in the village of Gudoberet, Basona district, Ethiopia, in 2015. (Photo: Peter Lowe/CIMMYT)
Service provider Bedilu Desta and his helper Fekadu Assefa drive a two-wheel tractor and thresher in the village of Gudoberet, Basona district, Ethiopia, in 2015. (Photo: Peter Lowe/CIMMYT)

In the last two decades, Africa has taken a leap forward in the development and adoption of agricultural innovations. We have seen an increased use of improved seed, appropriate technologies and agricultural machinery, all adapted to the specific needs of African farmers.

As leaders gather at the African Green Revolution Forum this month, it is time to discuss the best way to take this progress even further, so small farmers across the continent can reap the benefits of sustainable intensification practices and produce more food.

How can we spread access to these technologies and resources and put them into the hands of Africa’s half a billion farmers? How can we best align the efforts of governments, agribusiness and academia? How can we unlock Africa’s agricultural potential and achieve the Malabo Declaration to end hunger by 2025?

It all starts with a seed. Access to quality seed – that stands up to drought, resists diseases and pests, and has nutritional value – helps family farmers adapt to climate change. Bundled with sustainable agronomic practices and technologies, these seeds have the power to unleash an economic shift that could lift millions of Africans out of poverty.

To make this happen, a strong seed system is imperative. Local seed companies need adequate and reliable foundation seed, as well as access to elite germplasm they can include in their own breeding programs. They also want to use new hybrid varieties and improve their certified seed production. Only then they will be able to sell low-cost improved seed to smallholders with low purchasing power and limited market access.

Climate-resilient seeds

The negative effects of climate change have been felt throughout Africa, particularly for maize farmers. The staple for more than 200 million resource-poor people, maize crops have increasingly been affected by changing climate conditions.

To address this challenge, the International Maize and Wheat Improvement Center (CIMMYT) is developing a breeding pipeline of maize varieties, which are deployed by small and medium-sized local agribusinesses. Working in partnership with national governments, private companies and nonprofits, CIMMYT has so far released nearly 300 climate-resilient maize varieties, adapted to the different agroecologies in Africa.

Despite severe El Nino-induced droughts, farmers growing new maize varieties that withstand heat and drought have yielded twice as much as those with common commercial varieties, helping them ensure household food security. In Ethiopia, the estimated economic value of increased maize production due to climate-resilient varieties reached almost $30 million.

In other cases, biofortified food crops are helping to improve nutrition and fight ‘hidden hunger’, by adding micronutrients to people’s diets. For example, nutritious orange maize containing higher amounts of vitamin A is already growing in several southern African countries, preventing children from stunting and losing eyesight.

Modern seed production technologyis providing African seed companies with efficient and affordable ways to develop quality seed and get it to farmers.

Through strong public-private partnerships, the amount of climate-resilient maize grown by African farmers has more than doubled over the last eight years, benefiting an estimated 53 million people. The increased volumes of improved seed reaching farmers now is encouraging, but far from adequate.

When innovation meets collaboration

Traditionally, new varieties can take up to 20 years to reach farmers, but new technologies are helping to speed up the breeding process. Data from flying drones loaded with cameras and other sensors can cut the time to monitor crop health from days to minutes.

The establishment of the region’s first double haploid facility in Kenya reduces the cost and time for breeding work – it enables rapid development of homozygous maize lines and fast-tracks the release of new varieties. It was essential in the emergency response to the deadly Maize Lethal Necrosis, as breeders could release new varieties in just three years, instead of seven. The facility, open to public and private breeders, is currently being used to develop maize varieties that could resist the fall armyworm pest.

New types of small agricultural machines are helping to increase productivity, save time and reduce farmers’ workload. For example, two-wheel tractors allow smallholders to farm with more precision, conserve valuable resources and, ultimately, produce more. Renting agricultural equipment and providing mechanization services is also becoming a way for young entrepreneurs in rural areas to earn a living while giving access to powerful farming tools to family farmers who could not afford them otherwise.

Last June, representatives from dozens of African seed companies and national agricultural research institutions convened in Zimbabwe to establish the International Maize Improvement Consortium (IMIC) in Africa, similar to those already operating in Asia and Latin America. The consortium offers a systematic way to identify and share pre-release maize germplasm, which partners can use in their own breeding.

To address all these issues and democratize access to agricultural innovation, collaboration is crucial. Through past experience, we have learned that partnerships need to be more ambitious and that knowledge needs to be shared across borders. Any new solution must incorporate the expertise and action of national extension systems, private sector companies and other relevant stakeholders.

Donors need to consider long-term funding mechanisms that can operate at a regional and global scale.

Let’s build on the existing success and take it even further. Together, we can build robust seed systems and equip African farmers with the technology they need to envision a safe and sustainable future.

Martin Kropff is the director general of CIMMYT and Stephen Mugo is CIMMYT’s regional representative in Africa.

This article was originally published by Thomson Reuters.

Suitcase-sized lab speeds up wheat rust diagnosis

A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)
A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)

Despite her unassuming nature, the literary character Miss Marple solves murder mysteries with her keen sense of perception and attention to detail. But there’s another sleuth that goes by the same name. MARPLE (Mobile And Real-time PLant disEase) is a portable testing lab which could help speed-up the identification of devastating wheat rust diseases in Africa.

Rust diseases are one of the greatest threats to wheat production around the world. Over the last decade, more aggressive variants that are adapted to warmer temperatures have emerged. By quickly being able to identify the strain of rust disease, researchers and farmers can figure out the best course of action before it is too late.

The Saunders lab of the John Innes Centre created MARPLE. In collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT), researchers are testing the mobile diagnostic kit in Holeta, central Ethiopia.

“These new pathogen diagnostic technologies … offer the potential to revolutionize the speed at which new wheat rust strains can be identified,” says Dave Hodson, a CIMMYT rust pathologist in Ethiopia. “This is critical information that can be incorporated into early warning systems and result in more effective control of disease outbreaks in farmers’ fields.”

Hodson and his colleagues will be presenting their research at the CGIAR Big Data in Agriculture Convention in Nairobi, on October 3-5, 2018.

Read more about the field testing of the MARPLE diagnostic kit on the ACACIA website.

Over 100,000 genes

After 13 years of research, an international team of more than 200 scientists recently cracked the full genome of bread wheat. Considering that wheat has five times more DNA than humans, this is a significant scientific breakthrough. The complete sequencing provides researchers with a map for the location of more than 100,000 genes which, experts say, will help accelerate the development of new wheat varieties.

Philomin Juliana, a Post-Doctoral Fellow in wheat breeding at the International Maize and Wheat Improvement Center (CIMMYT) talks about the relevance of the new map for the center, whose genetics figures in the pedigrees of wheat varieties grown on more than 100 million hectares worldwide.

Are you already using this resource, and how?

We have anchored the genotyping-by-sequencing marker data for about 46,000 lines from CIMMYT’s first-year wheat yield trials (2013-2018) to the new, International Wheat Genome Sequencing Consortium (IWGSC) reference sequence (RefSeq v1.0) assembly of the bread wheat genome, with an overall alignment rate of 64%. This has provided valuable information on the location of key genome regions associated with grain yield, disease resistance, agronomic traits and quality in CIMMYT’s wheat germplasm, identified from genome-wide association mapping studies.

We have also used the new reference sequence to understand the impact of marker densities and genomic coverage on the genomic predictability of traits and have gained a better understanding of the contributions of diverse chromosome regions (distal, proximal, and interstitial) towards different phenotypes.

How will use of the new wheat reference sequence help CIMMYT and partners to develop improved wheat for traits of interest?

There are so many ways we can use this new tool! It provides valuable insights into trait genetics and genomics in bread wheat and will help us to more quickly identify candidate genes associated with traits of interest and to clone those genes. We will also be able to design molecular breeding strategies and precisely select and introgress target regions of the genome.

More generally, the reference sequence already has a range of markers — among them, simple sequence repeats (SSR), diversity array technologies (DArT) markers, and single nucleotide polymorphisms (SNPs) — anchored to it, which will facilitate comparisons between mapping studies and the quick development and validation of useful new markers.

It will also help to apply tools like gene-editing to obtain desired phenotypes and will allow us to better characterize the genetic diversity in CIMMYT’s wheat, to identify useful genes in key CIMMYT parent lines and rapidly introgress them into breeding lines.

With the annotated whole genome information, breeders can design crosses focused directly on desired combinations of genomic regions or predict the outcome of crosses involving gene combinations.

It will definitely speed varietal testing in partner countries through quick and accurate molecular screens for the presence of desired genes, instead of having to perform multiple generations of field testing.

Finally, it will help us to detect molecular-level differences between CIMMYT varieties released in different countries.

Which traits are being targeted by CIMMYT and partners?

We are using the new reference sequence to understand better the molecular bases of grain yield, heat and drought tolerance, rust resistance, flowering time, maturity, plant height, grain and flour protein, and various other quality traits.

Philomin Juliana

A recipient of Monsanto’s Beachell-Borlaug International Scholars Program Award, Juliana completed a Ph.D. in Plant Breeding and Genetics at Cornell University in 2016. Her work at CIMMYT seeks to identify the genetic bases of key traits in CIMMYT wheat germplasm and to assess high-throughput genotyping and phenotyping to increase the rate of genetic gain for yield in the center’s bread wheat breeding. In this work, she partners with the Cornell-led Delivering Genetic Gain in Wheat (DGGW) project and Jesse Poland of the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) and Kansas State University. Her research also forms part of USAID’s Feed the Future projects.

New publications: Toxin-producing fungal strains can now be detected in maize field soils with a new technique

A novel approach allows the detection of aflatoxin-producing fungi in maize fields. A new study explains the technique and how it was tested. “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method” was developed in collaboration between scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Japanese National Agriculture and Food Organization (NARO) and Fukui University of Technology, funded in part by the CGIAR Research Program on Maize (MAIZE).

Aflatoxins are harmful compounds produced by the fungi Aspergillus flavus, which can be found in the soil, plants and grain of a variety of cereals and commodities including maize, nuts, cottonseed, spices and dried fruit. The toxic carcinogenic qualities of aflatoxins pose serious health hazards to humans and animals when contaminated crops are ingested. These health risks include cancers of the liver and gallbladder, stunted development in children, premature births and abnormal fetal development.

Not all strains of A. flavus produce aflatoxins however, so it is important to be able to detect and distinguish between A. flavus strains that are benign (atoxigenic) and those that produce dangerous toxins (aflatoxigenic). Current methods of detection are often complicated by the fact that the fungal strains display very similar physiological and molecular traits, thus a new approach is required.

In the study, a novel approach to detect and distinguish A. flavus strains was tested. Using soil samples from a CIMMYT experimental maize field in Mexico, fungal isolates were chemically treated in-line with a method recently developed in Japan, resulting in a color change indicative of toxicity. The method was found to be effective and accurate in the detection of the aflatoxigenic strains of the fungus.

This study is foundational work in the development of a simple, cost-effective and efficient method of detecting aflatoxigenic strains of A. flavus, which will help inform growers about the potential aflatoxin contamination of their crops. This is of particular importance in the developing world, where the resources for effective control of the fungus are often lacking.

To read the original study, “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method”, please click here.

Original citation: Kushiro, M.; Hatabayashi, H.; Yabe, K.; Loladze, A. Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method. Toxins 2018, 10, 263.

This article was originally published on the website of the CGIAR Research Program on Maize.

Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)
Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)

Check out other recent publications by CIMMYT researchers below:

  1. Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions. 2018. Makumbi, D., Assanga, S., Diallo, A., Magorokosho, C., Asea, G., Regasa, M.W., Bänziger, M. In: Crop Science v. 58, no. 4, p. 1492-1507.
  2. Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line ‘Arula’. 2018.  Randhawa, M.S., Caixia Lan, Basnet, B.R., Bhavani, S., Huerta-Espino, J., Forrest, K.L., Hayden, M., Singh, R.P. In: Australian Journal of Crop Science v. 12, no. 6, p. 1023-1033.
  3. Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. 2018. Tabib Ghaffary, S.M., Chawade, A., Singh, P.K. In: Euphytica v. 214, art. 122.
  4. Sashaydiall : A SAS program for hayman’s diallel analysis. 2018. Makumbi, D., Alvarado Beltrán, G., Crossa, J., Burgueño, J. In: Crop Science v. 58, no. 4, p. 1605-1615.
  5. Soil bacterial diversity under conservation agriculture-based cereal systems in indo-gangetic plains. 2018. Choudhary, M., Sharma, P.C., Jat, H. S., Dash, A., Rajashekar, B., McDonald, A., Jat, M.L.  In: 3 Biotech v. 8, art. 304.

New publications: Adopting new agricultural technologies in Bangladesh

New technologies are at the core of sustainable agricultural growth and rural poverty alleviation, says Khondoker Mottaleb, an Agricultural Economist working within CIMMYT’s Socioeconomic Program. However, he explains, despite the visible benefits of using new agricultural machinery or farm management practices, overall uptake remains low as a range of factors continue to limit farmers’ ability to invest.

In a bid to enhance irrigation efficiency, Bangladesh has tried to introduce and popularize the use of axial-flow pumps (AFPs) for surface water irrigation. These pumps can lift up to 55 percent more water than a conventional centrifugal pump, but despite the obvious benefits, there has been limited uptake in targeted areas of the country. From 2012-13, a CIMMYT initiative made AFPs available for purchase for farmers in the southern regions of Bangladesh, but as of September 2017 only 888 had been purchased by lead farmers and irrigation service providers.

A recent study by CIMMYT in Bangladesh used primary data collected from 70 irrigation service providers – each of whom was given a free AFP for one season under a demonstration program – to examine user perception of AFPs and the major constraints to their adoption. It found that even though the use of AFPs can significantly reduce irrigation and overall crop production costs, more demonstrations and awareness-raising programs are needed if uptake is to be increased in target areas.

The study also highlighted the need for continuous modification of new technologies based on farmers’ requirements, with Mottaleb emphasizing that these must be adapted to local demand specifications, and that prices must be competitive with those of alternative technologies in order to ensure rapid uptake.

This study was supported by USAID through the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project. It was also supported by USAID and the Bill and Melinda Gates Foundation through the Cereal Systems Initiative for South Asia (CSISA) Phase II project. 

Read the full article in Science Direct: “Perception and adoption of a new agricultural technology: Evidence from a developing country.”

A farmer in Bangladesh irrigates his land using an axial-flow pump. (Photo: Ranak Martin)
A farmer in Bangladesh irrigates his land using an axial-flow pump. (Photo: Ranak Martin)

Check out other recent publications by CIMMYT researchers below:

  1. Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. 2018. Montesinos-López, A., Montesinos-Lopez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vazquez, F.J. In: Plant Methods v. 14, art. 46.
  2. Exploring the physiological information of sun-induced chlorophyll fluorescence through radiative transfer model inversion. 2018. Celesti, M., van der‏ Tol, C., Cogliati, S., Panigada, C., Peiqi Yang, Pinto Espinosa, F., Rascher | Miglietta, F., Colombo, R., Rossini, M. In: Remote Sensing of Environment v. 215, p. 97-108.
  3. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. 2018. Juliana, P., Singh, R.P., Singh, P.K., Poland, J.A., Bergstrom, G.C., Huerta-Espino, J., Bhavani, S., Crossa, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 131, no. 7, p. 1405-1422.
  4. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. 2018. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J., Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant Methods v. 14, art. 49.
  5. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. 2018. Parihar, C.M., Parihar M.D., Sapkota, T.B., Nanwal, R.K., Singh, A.K., Jat, S.L., Nayak, H.S., Mahala, D.M., Singh, L.K., Kakraliya, S.K., Stirling, C., Jat, M.L. In: Science of the Total Environment v. 640-641, p. 1382-1392.
  6. Major biotic maize production stresses in Ethiopia and their management through host resistance. 2018. Keno, T., Azmach, G., Dagne Wegary Gissa, Regasa, M.W., Tadesse, B., Wolde, L., Deressa, T., Abebe, B., Chibsa, T., Mahabaleswara, S. In: African Journal of Agricultural Research v. 13, no. 21, p. 1042-1052.
  7. Detection of aflatoxigenic and atoxigenic mexican aspergillus strains by the dichlorvos–ammonia (DV–AM) method. 2018. Masayo Kushiro, Hidemi Hatabayashi, Kimiko Yabe, Loladze, A. In: Toxins v. 10, no. 7, art. 263.
  8. Excessive pruning and limited regeneration: Are Faidherbia albida parklands heading for extinction in the Central Rift Valley of Ethiopia? 2018. Tesfaye Shiferaw Sida, Baudron, F., Dejene Adugna Deme, Motuma Tolera, Giller, K.E. In: Land Degradation and Development v. 29, no. 6, p. 1623-1633.
  9. Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content. 2018. Rodrigues, F., Blasch, G., Defourny, P., Ortiz-Monasterio, I., Schulthess, U., Zarco-Tejada, P.J., Taylor, J.A., Gerard, B. In: Remote Sensing v. 10, no. 6, art 930.
  10. Screening and validation of fertility restoration genes (Rf) in wild abortive CMS system of rice (Oryza sativa L.) using microsatellite markers. 2018. Bhati, P.K., Singh, S.K., Kumar, U. In: Indian Journal of Genetics and Plant Breeding v. 78, no. 2, p. 270-274.
  11. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. 2018. Hassan, M.A., Mengjiao Yang, Rasheed, A., Xiuliang Jin, Xianchun Xia, Yonggui Xiao, He Zhonghu. In: Remote Sensing v. 10, no. 6, art. 809.
  12. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). 2018. Sharma, S., Ranabir Sahu, Sudhir Navathe, Vinod Kumar Mishra, Chand, R., Singh, P.K., Joshi, A.K., Pandey, S.P. In: Frontiers in Plant Science v. 9, art. 636.
  13. Population structure of leaf pathogens of common spring wheat in the West Asian regions of Russia and North Kazakhstan in 2017. 2018. Gultyaeva, E.I., Kovalenko, N.M., Shamanin, V.P., Tyunin, V.A., Shreyder, E.R., Shaydayuk, E.L., Morgunov, A.I. In: Vavilovskii Zhurnal Genetiki i Selektsii v. 22, no. 3, p. 363-369.
  14. The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based case–control study from Mexico City. 2018. Totomoch-Serra, A., Muñoz, M. de L., Burgueño, J., Revilla-Monsalve, M.C., Perez-Muñoz, A., Diaz-Badillo, A. In: Gene v. 669, p. 28-34.

African youth find entrepreneurial opportunity in agricultural mechanization

After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)
After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)

The sound of an engine roars as Gift Chawara, a 28-year-old from rural Zimbabwe, carefully removes a mesh bag bulging with maize grain hooked to his mechanized sheller. Fed with dried maize cobs, the sheller separates the grain from the shaft before shooting the kernels out the side into the awaiting bag. Chawara swiftly replaces the full bag with an empty one as the kernels continue to spill out.

It is eleven in the morning and the sun beats down over the small farm. Chawara and his friends have only been working a few hours and have already shelled 7 tons for their neighbor and customer Loveness Karimuno; thirteen more tons to go.

The widowed farmer watches as the bags of grain line up, ready for her to take to market. It used to take Karimuno two to three weeks to shell her maize harvest by hand, even with the help of hired labor. This grueling task saw her rub each maize ear on a rough surface to remove the grain from the shaft. Now, these young men and their mechanized sheller will do it in just a few hours for a small fee.

“When my neighbor told me the boys were shelling small amounts of maize at reasonable prices, I got in contact with them,” said Karimuno. “It’s cheaper than hiring people to help me do it manually and the speed means I can sell it faster.”

It used to take widowed farmer Loveness Karimuno (left) two or three weeks to shell her 20-ton maize harvest manually, even with the help of hired labor. Using mechanization services, all of her maize is shelled within a day, meaning she can take her grain to market faster. (Photo: Matthew O’Leary/CIMMYT)
It used to take widowed farmer Loveness Karimuno (left) two or three weeks to shell her 20-ton maize harvest manually, even with the help of hired labor. Using mechanization services, all of her maize is shelled within a day, meaning she can take her grain to market faster. (Photo: Matthew O’Leary/CIMMYT)

The group of young entrepreneurs is serving almost 150 family farms around the village of Mwanga, located about two hours northwest of the capital Harare. They offer services such as shelling and planting, powered by special machinery. Since Chawara and his partners started the business three years ago, word has spread and now they are struggling to keep up with demand, he expressed.

Mechanized agricultural services have traditionally only been used by large-scale farmers who could afford the high prices, but small and medium-sized machines are fast becoming affordable options for family farmers through the advent of service providers, explained Frédéric Baudron, an agronomist with the International Maize and Wheat Improvement Center (CIMMYT).

The five young men are among the increasing number of youth across eastern and southern Africa creating a stable living as entrepreneurs in agricultural mechanization service provision, Baudron said.

Tired of the lack of profitable work in their rural community, the group of youths jumped on the opportunity to join a training on agricultural mechanization, run by CIMMYT. They heard about this training through local extension workers.

“We would probably be out of work if we hadn’t had the opportunity to learn how agricultural mechanization can be used to help smallholder farmers and gain skills to run our own business to provide these services,” Chawara expressed as he took a quick rest from shelling under a tree.

“It has really changed our lives. Last season we shelled over 300 tons of maize making just under US $7,000,” he said. “It has gone a long way in helping us support our families and invest back into our business.”

Masimba Mawire, 30, and Gift Chawara, 28, take a break from shelling and rest under a tree. The small car behind was bought by Chawara with his profits earned from the mechanization service business. (Photo: Matthew O’Leary/CIMMYT)
Masimba Mawire, 30, and Gift Chawara, 28, take a break from shelling and rest under a tree. The small car behind was bought by Chawara with his profits earned from the mechanization service business. (Photo: Matthew O’Leary/CIMMYT)

Mechanization as a way out of poverty

Sub-Saharan African youth struggle with high unemployment and working poverty. Agriculture is perceived as a sector that can absorb much of the rising level of unemployment, particularly when combined with entrepreneurship. Mechanization is one of the ways youth can get ahead, pointed out Baudron.

Through the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, supported by the Australian Centre for International Agricultural Research (ACIAR), CIMMYT is offering training courses to promote mechanization in Ethiopia, Kenya, Tanzania and Zimbabwe. Trainings equip entrepreneurs with essential business skills and knowledge, tailored to rural environments, so they can support farmers with appropriate mechanization services that sustainably intensify their production.

Chawara and his partners attended one of these trainings, hosted on the grounds of an agricultural technical college on the outskirts of Harare. For a week, they participated in practical courses led by local agriculture and business experts.

As part of the CIMMYT research project, the youth group paid a commitment fee and were loaned a planter and sheller to start their business, which they are now paying off with their profits.

Youth tend to be better at managing modern technologies and successfully take to service providing, said Baudron, who leads the FACASI project.

“We found consistently, in all countries where we work, that being a successful service provider is highly correlated to being young,” he highlighted. “However, other factors are also important, such as being entrepreneurial, educated, able to contribute to the cost of the machinery and preferably having an experience in similar businesses, particularly in mechanics.”

(From left to right) Shepard Kawiz, 24, gathers dried maize cobs into a bucket passing it to his brother Pinnot Karwizi, 26, who pours the maize into the sheller machine by feeding the hopper. The maize falls into the sheller’s barrel where high-speed rotation separates the grain from the cob. As the bare shafts are propelled out one side, Masimba Mawire, 30, is there to catch and dispose of them. Meanwhile, Gift Chawara, 28, is making sure a bag is securely hooked to the machine to collect the maize grain. (Photo: Matthew O’Leary/CIMMYT)
(From left to right) Shepard Kawiz, 24, gathers dried maize cobs into a bucket passing it to his brother Pinnot Karwizi, 26, who pours the maize into the sheller machine by feeding the hopper. The maize falls into the sheller’s barrel where high-speed rotation separates the grain from the cob. As the bare shafts are propelled out one side, Masimba Mawire, 30, is there to catch and dispose of them. Meanwhile, Gift Chawara, 28, is making sure a bag is securely hooked to the machine to collect the maize grain. (Photo: Matthew O’Leary/CIMMYT)

Mentoring and support are key to success

The young men operate like a well-oiled machine. Shepard Kawiz, 24, gathers dried maize cobs into a bucket and passes it to his brother Pinnot Karwizi, 26, who pours the maize into the sheller machine by feeding the hopper. The maize falls into the sheller’s barrel where high-speed rotation separates the grain from the cob. As bare shafts are propelled out one side, Masimba Mawire, 30, is there to catch and dispose of them. Meanwhile, Gift Chawara is making sure a bag is securely hooked to the machine to collect the maize grain.

Trials showed that when youth form a group and are provided guidance they are more inclined to succeed as service providers, explained CIMMYT agribusiness development specialist Dorcas Matangi.

“The group model works because they share the costs, the workload and they are more attractive to lenders when looking for investment capital,” she remarked.

Throughout the season, Mantangi works with local government extension workers and engineers from the University of Zimbabwe to mentor those starting out. They also organize meetings where service providers can gather to discuss challenges and opportunities.

“This is a good opportunity to iron out any problems with the machines, connect them with mechanics and spare part providers and we gain their feedback to improve the design of machinery,” she added.

Mechanization backs resilient farming systems

CIMMYT has provided a model to promote the use of agricultural mechanization among smallholder farmers through service providers, affirmed Misheck Chingozha, a mechanization officer with Zimbabwe’s Ministry of Agriculture.

Farm machinery helps farmers implement sustainable crop practices that benefit from greater farm power and precision,” he said. “This is in line with the government’s strategy to promote conservation agriculture – defined by minimal soil disturbance, crop residue retention and diversification through crop rotation and intercropping.”

CIMMYT promotes small-scale mechanization, such as two-wheel tractor-based technologies, including direct seeding planters that reduce labor and allow for improved resource allocation when implementing these practices, described CIMMYT’s Baudron.

Conservation agriculture is a sustainable intensification practice that seeks to produce more food, improve nutrition and livelihoods, and boost rural incomes without an increase in inputs – such as land and water – thus reducing environmental impacts.

With support from CIMMYT, students at the University of Zimbabwe are working to develop agricultural machinery fitted to the environmental conditions and needs of farmers in their country and other parts of Africa. (Photo: Matthew O’Leary/CIMMYT)
With support from CIMMYT, students at the University of Zimbabwe are working to develop agricultural machinery fitted to the environmental conditions and needs of farmers in their country and other parts of Africa. (Photo: Matthew O’Leary/CIMMYT)

Students fuel next-generation machinery

As part of their degree, students at the University of Zimbabwe are working with CIMMYT to continuously improve the effectiveness and efficiency of agricultural machinery.

In a bid to improve the allocation of resources, agricultural engineering student Ronald Mhlanga, 24, worked on a prototype that uses sensors to monitor the amount of seed and fertilizer distributed by planters attached to two-wheel tractors. The device sends information to the driver if anything goes off course, helping farmers improve precision and save resources.

“Often planters will get clogged with mud blocking seeding. The sensors identify this and send a signal to the driver,” said Mhlanga. “This allows the driver to focus on driving and limits wasted resources.”

Learning from farmer feedback and working with agricultural engineers and the private sector, CIMMYT is building agricultural mechanization suited to the needs and conditions of sub-Saharan African farms, concluded Baudron.

Call for nominees: Maize-Asia Youth Innovators Awards

Nominations are open for the 2018 Maize-Asia Youth Innovators Awards. The first edition of these awards recognizes the contributions of young women and men below 35 years of age who are implementing innovations in Asian maize-based agri-food systems.

The awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems.

Winners will be given the opportunity to present their work at the 13th Asian Maize Conference in Ludhiana, India (October 8-12, 2018). They will also join a platform for young innovators from around the world to network and share their experiences.

MAIZE invites CGIAR researchers and partners to nominate young innovators for any of the following three categories:

a) Researcher: Maize research-for-development (in any discipline)

b) Farmer: Maize farming systems in Asia

c) Change agent: Maize value chains (i.e., extension agents, input and service suppliers,
transformation agents).

Nominations close on August 20, 2018.

More information, submission guidelines and forms are available here:
http://maize.org/call-for-nominees-for-the-2018-maize-asia-youth-innovators-awards/

This award is sponsored by the CGIAR Research Program on maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).

 

Unleashing innovation at CIMMYT

CIMMYT staff share lessons learned at UNLEASH innovation labs with colleagues

Jennifer Johnson (first from right) and her team at UNLEASH 2018 work on solutions to improve nutrition for adolescent girls in Nepal. (Photo: Jennifer Johnson)
Jennifer Johnson (first from right) and her team at UNLEASH 2018 work on solutions to improve nutrition for adolescent girls in Nepal. (Photo: Jennifer Johnson)

Four young staff members from the International Maize and Wheat Improvement Center (CIMMYT) are working to bring home lessons learned at UNLEASH to foster innovation across CIMMYT programs. UNLEASH is a global innovation lab that brings together people from all over the world to transform personal insights into hundreds of ideas and build lasting global networks around the Sustainable Development Goals (SDGs). The annual event, which began in 2017 and is scheduled to occur each year until 2030, brings together 1,000 selected young talents for 10 immersive days of co-creation and problem solving.

Innovation is key to finding solutions to major global challenges such as hunger, climate change and sustainability. However, innovation cannot occur in a vacuum – the strongest and most inclusive solutions are often interdisciplinary approaches developed by a wide range of people from diverse backgrounds and perspectives. What sets UNLEASH apart from other innovation labs and processes is this commitment to diversity, as well as its focus on the Sustainable Development Goals.

While at UNLEASH 2017 in Denmark, CIMMYT staff Aziz Karimov, Daniela Vega and David Guerena were part of 200 teams that were split across 10 ‘folk high schools’ in the Danish countryside. There, they worked through an innovation process with facilitators and experts, refined their ideas to contribute to the SDGs and finally reconvened in the city of Aarhus to pitch the solutions they had developed.

Jennifer Johnson, Maize Communications Officer at CIMMYT, attended the UNLEASH Innovation Lab 2018 in Singapore last June. She worked alongside a diverse team of young people to develop solutions to improve nutrition for adolescent girls in Nepal.

The UNLEASH innovation process has five main phases: problem framing, ideation, prototyping, testing and implementing. “UNLEASH is really about finding and framing the problem,” said Vega, a projects coordinator and liaison officer for the Americas at CIMMYT and UNLEASH 2017 alumna. “Innovation is 90 percent about understanding the problem. Once you get that right, everything that follows becomes easier,” she explained.

Daniela Vega (third from left), UNLEASH 2017 alumna, leads CIMMYT colleagues in a breakout session on innovation during Science Week. (Photo: Alfonso Arredondo/CIMMYT)
Daniela Vega (third from left), UNLEASH 2017 alumna, leads CIMMYT colleagues in a breakout session on innovation during Science Week. (Photo: Alfonso Arredondo/CIMMYT)

Johnson, Guerena and Vega held a session on innovation and lessons learned at UNLEASH at CIMMYT’s Science Week 2018. Participants were walked through an abridged version of the UNLEASH innovation process to develop creative solutions to real-world problems relating to agriculture. The session emphasized diversity, respect and creativity, which are central tenets of both CIMMYT and UNLEASH.

“One of the key takeaways I got from UNLEASH was the power of diversity and collaboration,” said Guerena, a soil scientist and systems agronomist at CIMMYT who participated in UNLEASH 2017. “The diversity of the participants and collaboration lead to better solutions.”

Vega agreed. “People come from different backgrounds, geographically and professionally, and the level of cooperation and openness with no judgement is essential. We all share a similar value set, we are here because we want to make the world a better place by solving problems on a very hands-on level.”

In just one hour, participants of the CIMMYT session formed diverse teams, developed problem framings, brainstormed potential solutions and gave a three-minute pitch presenting their solution to the audience. Participants expressed extreme satisfaction with what they had learned and the innovation process they had been guided through, as well as interest in participating in similar programs in the future.

“This is a great idea, a very good experience. Often creativity doesn’t get enough attention,” said Lennart Woltering, CIMMYT scaling expert.

“This is fantastic and I’m going to adopt it. This is a great way to introduce concepts such as gender,” said Rahma Adam, CIMMYT gender and development specialist.

In the future, CIMMYT’s UNLEASH alumna hope to continue sharing their experience with colleagues and implementing lessons learned within their work.

“Unleash helps young people to think freely and differently,” said Karimov, a CIMMYT development economist whose team won second place in UNLEASH 2017’s ‘Sustainable Consumption & Production’ category which targeted Goal 12 of the SDGs. “We think innovation is something very complicated but by attending UNLEASH I realized that very simple moves can make a big change. You start believing that what is not possible is actually very possible. You just have to have will and strong desire.”

Agricultural and development economist Aziz Karimov (left photo, fifth from left) and soil scientist and systems agronomist David Guerena (right photo, fifth from left) represented CIMMYT at UNLEASH Innovation Lab 2017. (Photos: UNLEASH)
Agricultural and development economist Aziz Karimov (left photo, fifth from left) and soil scientist and systems agronomist David Guerena (right photo, fifth from left) represented CIMMYT at UNLEASH Innovation Lab 2017. (Photos: UNLEASH)

Breaking Ground: Gemma Molero sheds light on wheat photosynthesis

Postcard_Gemma MoleroDespite the rising interest in advanced methods to discover useful genes for breeding in crops like wheat, the role of crop physiology research is now more important than ever, according to Gemma Molero, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT).

“Physiology starts with the physical, observable plant,” Molero said. “It attempts to understand plant traits and processes and, ultimately, to provide breeders with selectable traits. Take for example the plant’s ability to capture and use sunlight. This is a complex trait and there are no useful DNA markers for it, so we have to analyze how it works and then help breeders to select plants that use sunlight better and yield more grain.”

A key goal of breeders and physiologists is to boost wheat’s genetic yield potential dramatically. Progress through current breeding is less than 1 percent each year. Molero said that needs to go to 1.7 percent yearly, to meet the demand expected by 2050 from expanding and urbanizing populations.

“Science must also adapt wheat to rising temperatures, less water, and mutating disease strains, and physiology is contributing,” she added.

Applied science and fieldwork drew Molero to CIMMYT

Molero grew up near Barcelona, Spain, in a family that included a folk-healing grandmother and a grandfather whose potato fields and orchards she recalls helping to tend as a child, during summers in Granada.

“My family called me ‘santurrona’ — something like ‘goody-two-shoes’ in English — because I was always trying to help people around me,” Molero explained.

Molero completed bachelor’s and master’s degrees in biology at the University of Barcelona, Spain, by 2006. She then pursued a doctorate in eco-physiology under the supervision of José Luis Araus, a University of Barcelona professor who was also working as a CIMMYT maize physiologist around the same time.

“Araus was an example of persistence and enthusiasm for me,” Molero explained. “He sent me to the CIMMYT research station near Ciudad Obregón, in northwestern Mexico, for fieldwork as part of my Ph.D. research. That sealed the deal. I said ‘This is the type of work where I can have impact, in an interdisciplinary setting, and with fieldwork.’ ”

She joined CIMMYT in 2011 as a post-doctoral fellow with Matthew Reynolds, a CIMMYT distinguished scientist who leads wheat physiology research.

Wheat spikes hold grain and catch light

Molero has quickly made a mark in CIMMYT wheat physiology research. Among other achievements, she has spearheaded studies on photosynthesis in wheat spikes — the small ears that hold the grain — to increase yield.

“In elite wheat varieties, spike photosynthesis adds an average 30 percent to grain yield,” she said. “In wheat wild relatives and landraces, that can go as high as 60 percent. This has put wheat spike photosynthesis in the science limelight.”

Practical outputs of this work, which involves numerous partners, include molecular markers and other tools that breeders can use to select for high spike photosynthesis in experimental lines. “We have a project with Bayer Crop Science to refine the methods,” Molero said.

Molero is also collaborating with plant biologists Stephen Long, University of Illinois, and Elizabete Carmo-Silva, Lancaster University, UK, to understand how quickly wheat returns to full photosynthesis after being shaded — for example, when clouds pass overhead. According to Molero, wheat varies greatly in its response to shading; over a long cropping season, quick recoveries can add 20 percent or more to total productivity.

“This is a breakthrough in efforts to boost wheat yields,” explained Molero, who had met Long through his participation in the International Wheat Yield Partnership (IWYP), an initiative that aims to raise wheat’s genetic yield potential by 50 percent over the next two decades. “I was fortunate to arrive at CIMMYT at just the right time, when IWYP and similar global partnerships were being formalized.”

Training youth and improving conditions for young women

From a post-doctoral fellow to her current position as a full scientist at CIMMYT, Molero has supervised 13 Ph.D. students and post-doctoral fellows, as well as serving as an instructor in many training courses.

“During my first crop cycle at Ciudad Obregón, I was asked to coordinate the work of five Ph.D. students,” she said. “I’d arrive home exhausted from long days and fall asleep reading papers. But I love supervising students and it’s a great way to learn about diverse facets of wheat physiology.”

Regarding the challenges for women and youth in the scientific community, Molero believes a lot needs to change.

“Science is male-dominated and fieldwork even more,” she observed. “It’s challenging being a woman and being young — conditions over which we have no control but which can somehow blind peers to our scientific knowledge and capacity. Instances of what I call ‘micro-machismo’ may appear small but they add up and, if you push back, the perceived ‘feminism’ makes some male scientists uncomfortable.”

Molero also believes young scientists need ample room to develop. “The most experienced generation has to let the new generation grow and make mistakes.”

Training manual greases the wheels for mechanization entrepreneurs

ROME — A new training manual is set to provide practical guidance for agricultural mechanization entrepreneurs in rural areas, where family farmers commonly lack capital to invest in the farm power required to increase food production.

The five-module training manual targeted at farm mechanization hire service providers, including youth and women, was developed by researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the UN Food and Agriculture Organization (FAO) and official launched July 13 at FAO’s Rome headquarters.

Bedilu Desta, an agricultural mechanization service provider, demonstrates a two-wheel tractor. (Photo: Frédéric Baudron/CIMMYT)
Bedilu Desta, an agricultural mechanization service provider, demonstrates a two-wheel tractor. (Photo: Frédéric Baudron/CIMMYT)

It sets out a syllabus which trainers can tailor to local environments to equip entrepreneurs with essential business skills and knowledge to promote appropriate mechanization farmers need to sustainably intensify production, said Josef Kienzle, an agricultural engineer at FAO.

The manual will initially be rolled out in sub-Saharan African rural communities where improved access to agricultural mechanization is crucial, he said.

Small-scale mechanization, such as two-wheel tractor based technologies including direct seed planters, represent a shift away from destructively intensive agriculture. However, the decline of hire tractor schemes means resource-poor farmers often lack the financial means to obtain them, said Bruno Gerard, director of CIMMYT’s sustainable intensification program.

“To increase the productivity, profitability, and sustainability of their farms, family farmers need greater access to affordable yield-enhancing inputs. Hire service providers can improve access to mechanization that reduces labor drudgery and promotes sustainable intensification practices,” he said.

Sustainable intensification seeks to produce more food, improve nutrition and livelihoods, and boost rural incomes without an increase in inputs – such as land and water – thus reducing environmental impacts.

Sub-Saharan Africa needs sustainable intensification of agriculture. With 224 million people currently undernourished and a population tipped to almost double by 2050, bringing it to over 2 billion people, increasing food production is of the utmost importance.

Despite the need, African crop yields are stagnant with more than 95 percent of farmed land in sub-Saharan Africa rain-fed. Over half of soils are degraded following years of farming without replacing nutrients and low fertilizer use, as most farmers can’t afford it.

“Inclusive mechanization strategies create an enabling environment and provide a framework for making decisions on how to allocate resources, how to address current challenges, how to take advantage of opportunities that arise while in the meantime emphasize the concept of sustainable crop intensification and the roles of the private and public sectors,” said Kienzle. Farm machinery enables farmers to adopt sustainable crop production intensification practices – such as conservation agriculture – that benefit from greater farm power and precision.

The manual will be initially distributed and courses organized through FAO and CIMMYT field projects in sub-Saharan Africa utilizing local trainers and experts in machinery and agribusiness, he said. The manual is expected to be rolled out to other subregional offices and hubs in the future.

Mechanization fuels rural employment opportunity

Increased adoption of agricultural mechanization is stimulating jobs and entrepreneurial opportunities in Africa where youth and women increasingly face severe job insecurity, said Gerard.

Clara Chikuni has gained a reliable income since becoming a mechanization service provider and offering maize shelling in her local area. (Photo: Matthew O’Leary/CIMMYT)
Clara Chikuni has gained a reliable income since becoming a mechanization service provider and offering maize shelling in her local area. (Photo: Matthew O’Leary/CIMMYT)

Clara Chikuni, a mother from rural Zimbabwe, has secured a stable income after starting her own mechanized shelling business two years ago. Servicing maize farmers in a 5 kilometer radius of her home, Chikuni has more customers than she says she can handle and has developed reliable employment compared to her previous job buying and selling shoes.

“There is a lot of demand for mechanized maize shelling services. I am happy I can provide a service to the community and make money to support my family,” she said. “I hope with the profits I can move into the two wheel tractor business in the future.”

Chikuni was trained as an agricultural mechanization service provider through CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project supported by the Australian Government.

“The training and support gave me the know-how and confidence to start my business,” said the mother. “Other women now ask me how I did it and I encourage them to also get involved.”

There is a market for farming mechanization services that can make a big difference for a smallholder farm and help it transition from subsistence farming to a more market-oriented farming enterprise, said FAO’s Kienzle.

Apart from hire services, mechanization creates additional opportunities for new business with repair and maintenance of equipment, sales and dealership of related businesses including transport and agro-processing along the value chain.

The knowledge and expertise of both CIMMYT and FAO combined has made this manual unique and very praxis oriented, focused on smallholder mechanization businesses, he said.

Download the training manual: Hire services as a business enterprise: a training manual for small-scale mechanization service providers

Further information:

Q+A: Agricultural mechanization fuels opportunity for youth in rural Africa

Mechanization fuels rural opportunities around the globe

Rural21 features CIMMYT mechanization experts

Mechanization for smallholder farmers fact sheet