Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

Call for nominees for the 2019 Maize Youth Innovators Awards – Africa

2019 Maize Youth Innovators Awards – Africa

Nominations are now open for the 2019 MAIZE Youth Innovators Awards – Africa! These awards are part of the efforts that the CGIAR Research Program on Maize (MAIZE) is undertaking to promote youth participation in maize-based agri-food systems. These awards recognize the contributions of young women and men below 35 years of age who are implementing innovations in African maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.

Young people are the key to ensuring a food-secure future and agricultural sustainability. However, rural youth face many challenges related to unemployment, underemployment and poverty. According to the Food and Agriculture Organization (FAO) of the United Nations, facilitating young people’s participation in agriculture has the potential to drive widespread rural poverty reduction among young people and adults alike. In Africa, where over 300 million smallholder-farming families grow and consume maize as a staple crop, the human population stands at 1.2 billion people, 60 percent of whom are below the age of 25.

The MAIZE Youth Innovators Awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems. Part of the vision is to create a global network of young innovators in maize-based systems from around the world.

Award recipients will be invited to attend the annual Stress Tolerant Maize for Africa (STMA) project meeting in Lusaka, Zambia, from May 7 to May 9, where they will receive their awards and will be given the opportunity to present their work. The project meeting and award ceremony will also allow these young innovators to network and exchange experiences with MAIZE researchers and partners. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Africa on implementing or furthering their innovations.

MAIZE invites young innovators to apply and CGIAR researchers and partners to nominate eligible applicants for any of the following three categories:

  1. Researcher: Maize research for development (in any discipline)
  2. Farmer: Maize farming systems in Africa
  3. Change agent: Maize value chains (i.e., extension agents, input and service suppliers, transformation agents, etc.)

We ask nominators/applicants to take into account the following criteria and related questions:

  • Novelty and innovative spirit: To which specific novel findings or innovation(s) has this young person contributed? (in any of the three categories mentioned above)
  • Present or potential impact: What is the present or potential benefit or impact of the innovation(s) in maize-based agri-food systems?

Applications should be submitted online through this form by March 15, 2019.

Key dates:

  • Opening date for nominations: January 21, 2019
  • Closing date for nominations: March 15, 2019 (Please note: Nominations received after the closing date will not be considered)
  • Notification of winners: March 22, 2019

Information documents:

  • A PDF version of this Call for Nominees is available here.
  • Nomination/Application Guidelines can be found here.
  • The Application Form can be found here and is also available on the MAIZE and YPARD websites.

For any questions or issues, contact maizecrp@cgiar.org.

This award is sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with YPARD (Young Professionals for Agricultural Development).

New publications: Role of Modelling in International Crop Research

“Crop modelling has the potential to significantly contribute to global food and nutrition security,” claim the authors of a recently published paper on the role of modelling in international crop research.  “Millions of farmers, and the societies that depend on their production, are relying on us to step up to the plate.”

Among other uses, crop modelling allows for foresight analysis of agricultural systems under global change scenarios and the prediction of potential consequences of food system shocks. New technologies and conceptual breakthroughs have also allowed modelling to contribute to a better understanding of crop performance and yield gaps, improved predictions of pest outbreaks, more efficient irrigation systems and the optimization of planting dates.

While renewed interest in the topic has led in recent years to the development of collaborative initiatives such as the Agricultural Model Intercomparison and Improvement Project (AgMIP) and the CGIAR Platform for Big Data in Agriculture, further investment is needed in order to improve the collection of open access, easy-to-use data available for crop modelling purposes. Strong impact on a global scale will require a wide range of stakeholders – from academia to the private sector – to contribute to the development of large, multi-location datasets.

Resource-poor farmers worldwide stand to gain from developments in the field of crop modelling. Photo: H. De Groote/CIMMYT.
Resource-poor farmers worldwide stand to gain from developments in the field of crop modelling. (Photo: H. De Groote/CIMMYT)

In “Role of Modelling in International Crop Research: Overview and Some Case Studies,” CGIAR researchers outline the history and basic principles of crop modelling, and describe major theoretical advances and their practical applications by international crop research centers. They also highlight the importance of agri-food systems, which they view as key to meeting global development challenges. “The renewed focus on the systems-level has created significant opportunities for modelers to participant in enhancing the impact of science on developments. However, a coherent approach based on principles of transparency, cooperation and innovation is essential to achieving this.”

The authors call for closer interdisciplinary collaboration to better serve the crop research and development communities through the provision of model-based recommendations which could range from government-level policy development to direct crop management support for resource-poor farmers.

Read the full article in Agronomy 2018, Volume 8 (12).

Check out other recent publications by CIMMYT researchers below:

  1. A framework for priority-setting in climate smart agriculture research. 2018. Thornton, P.K., Whitbread, A., Baedeker, T., Cairns, J.E., Claessens, L., Baethgen, W., Bunn, C., Friedmann, M., Giller, K.E., Herrero, M., Howden, M., Kilcline, K., Nangia, V., Ramirez Villegas, J., Shalander Kumar, West, P.C., Keating, B. In: Agricultural Systems v. 167, p. 161-175.
  2. Cereal consumption and marketing responses by rural smallholders under rising cereal prices. 2018. Mottaleb, K.A., Rahut, D.B. In: Journal of Agribusiness in Developing and Emerging Economies v. 8, no. 3, p. 461-479.
  3. Community typology framed by normative climate for agricultural innovation, empowerment, and poverty reduction. 2018. Petesch, P., Feldman, S., Elias, M., Badstue, L.B., Dina Najjar, Rietveld, A., Bullock, R., Kawarazuka, N., Luis, J. In: Journal of Gender, Agriculture and Food Security v. 3, no. 1, p. 131-157.
  4. Fit for purpose? A review of guides for gender-equitable value chain development. 2018. Stoian, D., Donovan, J.A., Elias, M., Blare, T. In: Development in Practice v. 28, no. 4, p. 494-509.
  5. Gendered aspirations and occupations among rural youth, in agriculture and beyond: a cross-regional perspective. 2018. Elias, M., Netsayi Mudege, Lopez, D.E., Dina Najjar, Kandiwa, V., Luis, J., Jummai Yila, Amare Tegbaru, Gaya Ibrahim, Badstue, L.B., Njuguna-Mungai, E., Abderahim Bentaibi. In: Journal of Gender, Agriculture and Food Security v. 3, no. 1, p. 82-107.
  6. Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. 2018. Bhatta, M.R., Morgounov, A.I., Belamkar, V., Baenziger, P.S. In: International Journal of Molecular Sciences v. 19, no. 10, art. 3011.
  7. Identificacion de areas potenciales en Mexico para la intervencion con maiz biofortificado con zinc = Identification of potential areas in Mexico for intervention with biofortified high-zinc maize. 2018. Ramirez-Jaspeado, R., Palacios-Rojas, N., Salomon, P., Donnet, M.L. In: Revista Fitotecnia Mexicana v. 4, no. 3, p. 327 – 337.
  8. Impact of climate-change risk-coping strategies on livestock productivity and household welfare: empirical evidence from Pakistan. 2018. Rahut, D.B., Ali, A. In: Heliyon v. 4, no. 10, art. e00797.
  9. Impact of conservation agriculture on soil physical properties in rice-wheat system of eastern indo-gangetic plains. 2018. Kumar, V., Kumar, M., Singh, S.K., Jat, R.K. In: Journal of Animal and Plant Sciences v. 28, no. 5, p. 1432-1440.
  10. Impact of ridge-furrow planting in Pakistan: empirical evidence from the farmer’s field. 2018. Hussain, I., Ali, A., Ansaar Ahmed, Hafiz Nasrullah, Badar ud Din Khokhar, Shahid Iqbal, Azhar Mahmood Aulakh, Atta ullah Khan, Jamil Akhter, Gulzar Ahmed. In: International Journal of Agronomy v. 2018, art. 3798037.
  11. Introduction to special issue: smallholder value chains as complex adaptive systems. 2018. Orr, A., Donovan, J.A. In: Journal of Agribusiness in Developing and Emerging Economies v. 8, no. 1, p. 2-13.
  12. Local dynamics of native maize value chains in a peri-urban zone in Mexico: the case of San Juan Atzacualoya in the state of Mexico. 2018. Boue, C., Lopez-Ridaura, S., Rodriguez Sanchez, L.M., Hellin, J. J., Fuentes Ponce, M. In: Journal of Rural Studies v. 64, p. 28-38.
  13. Local normative climate shaping agency and agricultural livelihoods in sub-Saharan Africa. 2018. Petesch, P., Bullock, R., Feldman, S., Badstue, L.B., Rietveld, A., Bauchspies, W., Kamanzi, A., Amare Tegbaru, Jummai Yila. In: Journal of Gender, Agriculture and Food Security v. 3, no. 1, p. 108-130.
  14. Maize seed systems in different agro-ecosystems; what works and what does not work for smallholder farmers. 2018. Hoogendoorn, C., Audet-Bélanger, G., Boeber, C., Donnet, M.L., Lweya, K.B., Malik, R., Gildemacher, P. In: Food security v. 10, no. 4, p. 1089–1103.
  15. Mapping adult plant stem rust resistance in barley accessions Hietpas-5 and GAW-79. 2018. Case, A.J., Bhavani, S., Macharia, G., Pretorius, Z.A., Coetzee, V., Kloppers, F.J., Tyagi, P., Brown-Guedira, G., Steffenson, B.J. In: Theoretical and Applied Genetics v. 131, no. 10, p. 2245–2266.
  16. Potential for re-emergence of wheat stem rust in the United Kingdom. 2018. Lewis, C.M., Persoons, A., Bebber, D.P., Kigathi, R.N., Maintz, J., Findlay, K., Bueno-Sancho, V., Corredor-Moreno, P., Harrington, S.A., Ngonidzashe Kangara, Berlin, A., Garcia, R., German, S.E., Hanzalova, A., Hodson, D.P., Hovmoller, M.S., Huerta-Espino, J., Imtiaz, M., Mirza, J.I., Justesen, A.F., Niks, R.E., Ali Omrani., Patpour, M., Pretorius, Z.A., Ramin Roohparvar, Hanan Sela, Singh, R.P., Steffenson, B.J., Visser, B., Fenwick, P., Thomas, J., Wulff, B.B.H.,  Saunders, D.G.O. In: Communications Biology v. 1, art. 13.
  17. Qualitative, comparative, and collaborative research at large scale: an introduction to GENNOVATE. 2018. Badstue, L.B., Petesch, P., Feldman, S., Prain, G., Elias, M., Kantor, P. In: Journal of Gender, Agriculture and Food Security v. 3, no. 1, p. 1-27.
  18. Qualitative, comparative, and collaborative research at large scale: the GENNOVATE field methodology. 2018. Petesch, P., Badstue, L.B., Camfield, L., Feldman, S., Prain, G., Kantor, P. In: Journal of Gender, Agriculture and Food Security v. 3, no. 1, p. 28-53.
  19. Transaction costs, land rental markets, and their impact on youth access to agriculture in Tanzania. 2018. Ricker-Gilbert, J., Chamberlin, J. In: Land Economics v. 94, no. 4, p. 541-555.
  20. What drives capacity to innovate? Insights from women and men small-scale farmers in Africa, Asia, and Latin America. 2018. Badstue, L.B., Lopez, D.E., Umantseva, A., Williams, G.J., Elias, M., Farnworth, C.R., Rietveld, A., Njuguna-Mungai, E., Luis, J., Dina Najjar., Kandiwa, V. In: Journal of Gender, Agriculture and Food Security v. 3, no. 1, p. 54-81.

 

Seeds go digital

Seed Assure app testing in the field in Kiboko, Kenya. Photo credit: CIMMYT.
Seed Assure app testing in the field in Kiboko, Kenya. (Photo: CIMMYT)

Many Kenyan maize farmers are busy preparing their seed stock for the next planting season. Sowing high quality seeds of stress-tolerant varieties is a cost-effective way for African smallholder farmers to boost their harvests while being resilient to evolving crop pests and diseases as well as an erratic climate. However, even if a majority of farmers buy their seeds, they are often of dubious quality or of old, outdated varieties, which do not cope well against increasing drought and heat shocks or emerging diseases.

Insufficient seed quality control

The African seed sector has long been plagued by counterfeit seeds and a complex and costly certification process, which hampers access to better, higher-yielding, wide-ranging varieties for farmers.

Since the 1990s, national agencies could not keep up with the seed trade growth to handle the certification processes. Backlogs of certification requests and erroneous seed checks make it costly for private seed companies to produce and commercialize new varieties. As a result, maize varieties grown by farmers in sub-Saharan Africa are old: 28 years old on average for hybrids and up to 40 years old for open-pollinated varieties.

“A lot of the national certification systems in the region are overwhelmed. They do not have enough seed inspectors with proper training and tools to carry out compliance checks effectively and in a timely manner. The licensing, labeling and branding protocols and regulations are equally not in full force, and much of the work still needs to be digitized. This slows the entire process,” said Kate Fehlenberg, Drought Tolerant Maize for Africa Seed Scaling (DTMASS) Project Manager at the International Maize and Wheat Improvement Center (CIMMYT), at a recent Common Market for Eastern and Southern Africa (COMESA) seed policies’ harmonization event in Nairobi.

Go digital

To solve this certification bottleneck, seed actors are looking at digital solutions for faster, more accurate seed quality checks for both seed producers and regulators. One Kenyan company, Cellsoft Ltd., has developed SeedAssure, a cloud-based platform that enables digital seed inspections. Data necessary for quality seed production, pest and disease surveillance, and the required checks to apply for a commercial license can be shared in real-time on a common platform that links seed companies, inspectors and local authorities.  Such a tool not only enables optimal quality in seed production, but expedites the licensing, certification and trade processes with traceable data records.

SeedAssure is rapidly being rolled out across eastern and southern Africa with support across the seed value chain. This includes regional trade bodies like COMESA and the Southern African Development Community (SADC), national regulators such as the Seed Control and Certification Institute (SCCI), to research and development organizations like CIMMYT and the Alliance for a Green Revolution in Africa (AGRA). So far, 15 seed companies in seven countries in the region have been testing SeedAssure.

Transboundary data-sharing to boost regional seed trade

Kinyua Madhan from Zamseed and Nicolai NASECO testing SeedAssure on smartphone in the field in Kiboko, Kenya. Photo credit: CIMMYT.
Visitors test SeedAssure on a smartphone during a field visit in Kiboko, Kenya. (Photo: CIMMYT)

To boost regional seed trade, all actors along the seed value chain and across the region must embrace this digital revolution and “speak the same language”. This means adopting the same rules to identify and register a new variety, and using a common platform to easily share data between countries.

Currently, despite efforts to harmonize seed trade policies across the region, such as the COMESA Seed Harmonization Implementation Program (COMSHIP), passed in 2014, most countries still use different protocols to name and register seed varieties. One variety could have a different name in each country it is sold in. Data used for quality control are still often on paper rather than online, with each country performing its own tests. Seed companies must apply for new variety registration, with new data for each country they operate in. This all costs them time and money.

Adopting a unique identifier for seed products and digitalization can help alleviate this harmonization issue, easing comparable data sharing across border. Since November 2017, CIMMYT has adopted a Variety Identification Number (VIN) system. It is like a unique barcode for each variety which contains information about the organization that produced the variety, the year of release, the crop and specific traits such as drought-tolerance, the country where it is produced, etc. SADC and COMESA have just adopted this VIN system. COMSHIP is setting digital seed variety catalogues using the VIN, and soon regional seed labels. It will facilitate cross-border seed trade and help track seed fraud.

The  2019 Global Forum for Food and Agriculture (GFFA) held this week in Berlin is debating how digitalization is transforming the farming sector. This is particularly relevant for the African seed sector as digital innovations could make seed certification and quality control cheaper, faster and more transparent, while narrowing the space for fake seed. Seed companies would then be encouraged to release more new improved varieties, and ultimately accelerate our research impact for African farmers.

Breaking Ground: Breeder Marcela C. Andrade bolsters maize with hardiness from ancestral races

Postcard_Marcela CarvalhoAs the world heats up and water grows scarce, threatening the productivity of humankind’s preferred crops, breeder Marcela Carvalho Andrade and her colleagues at the International Maize and Wheat Improvement Center (CIMMYT) are working to toughen maize, drawing resilience traits from landraces, the forerunners of modern maize.

For decades, scientists have sought to utilize the hardiness of maize landraces, which evolved over millennia of farmer selection for adaptation to diverse and sometimes harsh local settings in Mexico, Central and South America.

But crossing elite varieties with landraces brings along wild traits that are difficult and costly to purge, including lower grain yields, excessive tallness or a tendency to fall over in strong winds. For this and for their genetic complexity, landraces are seldom used directly in breeding programs, according to Andrade.

Crosses that home in on genetically complex traits

“Our strategy is to cross selected landraces with elite maize lines, thus developing improved lines that can be directly incorporated and recycled in breeding programs,” explained Andrade, who joined CIMMYT in 2016.

The traits sought include better resilience under high temperatures, drought conditions or the attacks of rapidly-evolving crop diseases. “All these features will be critical for the future productivity of maize,” said Andrade.

One of the world’s three most important crops, maize contributes over 20% of the calories in human diets in 21 low-income countries, as well as being used in industry, biofuels, and feed for livestock and poultry.

Andrade and the maize breeding team develop new lines that carry a 75 percent genetic contribution from the elite source and 25 percent from a landrace. The aim she said is to get the good components from both sides, while broadening maize’s genetic diversity for use by breeders and ultimately farmers.

The resulting lines and hybrids are tested for yield, resilience and overall agronomic performance, under both normal growing conditions and “stressed” environments; for example, in plots grown at sites with high temperatures or reduced water availability.

“We can thus identify landraces that offer traits of interest, as well as generating improved breeding lines to strengthen the resilience of elite maize without reducing its yield,” said Andrade, noting that the research employs conventional cross-pollination and selection.

According to Andrade, CIMMYT has carried out large-scale molecular analysis of its maize seed collections, which number around 28,000 and comprise landraces from 70 countries.

“Over the past years, CIMMYT has used genetic diversity analyses of its maize collections to select landraces for use in drought tolerance breeding or for finding lines that are resistant to newly important diseases such as  Maize Lethal Necrosis or Tar Spot,” she explained. “Genetic diversity analysis allows us to narrow the number of candidate landrace sources that we need to cross and assess in the field.”

The viral disease Maize Lethal Necrosis (MLN) has devastated crops in eastern Africa since its appearance there in 2011.

The researchers have also found landrace sources of resilience against Tar Spot Complex, a maize disease of the Americas that can cause 50 percent or greater yield losses in infected crops.

Benefiting breeding and farmers

Andrade said the breeding team expects to release a first wave of landrace-derived, improved maize lines in 2019, some featuring enhanced drought tolerance and others that provide better resistance to Tar Spot.

“The lines we offer will be freely available to breeders worldwide and must yield well and show superior resilience,” Andrade explained. “They will have reasonable agronomics—ear and plant height and standability, for example. The lines will not be perfect, but breeders won’t hesitate to use them because we’ve ensured that they are superior for at least one crucial trait and reasonably competitive for most other traits.”

From Brazil to the world

Growing up in a small town and having direct contact with her father’s dairy farm in Minas Gerais, a mainly rural state in Brazil, Andrade finds her CIMMYT work enormously satisfying. “My dad and a few uncles were farmers and complained some years that their crops didn’t yield well,” she says. “I knew I wanted to help them somehow.”

Andrade obtained Bachelor and Master’s degrees in agronomy/plant science from the Universidade Federal de Lavras (UFLA), one of Brazil’s premier institutions of higher education. She later completed a Doctorate in Genetics and Plant Breeding at UFLA, in partnership with Ohio State University.

She credits CIMMYT maize scientist Terry Molnar, her supervisor and mentor, with teaching her the complex ins and outs of maize breeding. “I am a plant breeder and worked previously with vegetables, but I learned the practical aspects of maize breeding from Terry.”

Looking ahead, Andrade sees herself continuing as a plant breeder. “I don’t see myself working in anything else. I would eventually like to lead my own program but, at this point in my career, I’m happy to help transfer landrace traits to modern maize varieties.”

The itsy bitsy spider can make a big impact in agriculture

Face of an adult male Phidippus audax male jumping spider. (Photo: Opoterser/Wikimedia Commons)
Face of an adult male Phidippus audax male jumping spider. (Photo: Opoterser/Wikimedia Commons)

A new study explores how conservation agriculture in southern Africa supports spider populations and diversity in fields, which could help mitigate pest damage and potentially lead to higher yields for farmers. According to the Food and Agriculture Organization of the United Nations (FAO), herbivorous insects such as aphids, caterpillars and weevils destroy about one fifth of the world’s total crop production each year. Spiders can help keep voracious pests in-check, but conventional farming practices (e.g. tilling, crop residue removal and monoculture) can harm or drastically reduce these beneficial bio-control agents.

There are more than 45,000 identified spider species around the world. From glaciers to tropical rainforests, they inhabit every terrestrial ecosystem on earth. Some can even live in tidal zones, and at least one species inhabits fresh water. While we tend to associate spiders with webs, only about 50 percent of the species catch their prey this way; the rest hunt on plants, on the ground or below it, using a variety of tactics such as stalking, stabbing, crushing – even seduction.

Although spiders have been around for 300 million years, some species are at risk of extinction due to habitat loss and fragmentation. Drastic reductions in vegetation – whether from a new parking lot or a tilled field – removes the food source that attracts their prey. Bare ground exposes their nesting sites and themselves, which makes it harder to hunt and easier to be hunted by birds and small mammals.

At the Chinhoyi University of Technology experimental farm in Zimbabwe, a team of researchers aimed to determine the response of spiders under different agricultural practices. Conventional farmers often prepare their fields for planting by physically breaking up and inverting the top 6-10 inches of soil. This practice of ploughing prepares a fine soil tilth, which makes it easier to plant; it breaks up and buries weeds, and reduces soil compaction to aerate the soil. But tilling also increases topsoil erosion from wind and water. It accelerates soil carbon decomposition, reduces soil water infiltration and disrupts microorganisms living in the soil, including beneficial insects and spiders.

The researchers conducted two experiments over the 2013/2014 and 2014/2015 cropping seasons to see how tilling, crop residue retention (i.e. leaving stalks and post-harvest organic matter in the field), fertilizer application and weeding affected ground- and plant-wandering spider species. They hypothesized that spider abundance and diversity would increase with lower levels of soil disturbance and more plant cover.

The results showed direct seeding into no-till soil increased the abundance of spiders and the diversity of species. Mulching also showed a positive effect. Contrary to their hypotheses and results from temperate regions, the application of fertilizer and intense weeding did not affect the spider community. The researchers attributed this to the difference in climatic conditions (tropical vs. temperate) of this study in southern Africa.

“Often the government’s and farmer’s immediate reaction to a crop pest issue is to apply a pesticide, but we can make use of biological control agents, which may be cheaper and less damaging for the environment,” says Christian Thierfelder, a co-author of the study. Thierfelder is a cropping systems agronomist and conservation agriculture specialist with the International Maize and Wheat Improvement Center (CIMMYT) with long-term experience in sustainable intensification.

“Spiders, ants and beetles all do a really good job with little or no cost to the farmer,” he adds. “For us, it’s quite fascinating to see simple agronomic practices to affect and control crop pests. This also provides new avenues of dealing with the fall armyworm, an invasive species which has devastated crops across the majority of sub-Saharan Africa countries.”

A robust number of studies from Europe, Australia and North America have shown the link between conservation agriculture and biodiversity, but Thierfelder says that research on biodiversity in agronomic systems is relatively new in southern Africa. While the study in Zimbabwe helps fill this gap, more research is needed to show the connection between the abundance of spiders, beetles and ants with the suppression of insect pest activity.

For more information, read Spider community shift in response to farming practices in a sub-humid agroecosystem in southern Africa.

This research was jointly funded by Chinhoyi University of Technology (CUT) and the German Academic Exchange Program (DAAD). The CGIAR Research Program on Maize (MAIZE) supported this study through Christian Thierfelder’s contributions.

Reducing high yield gaps with decision-support apps

Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Ethiopia is Africa’s third largest producer of maize, after Nigeria and South Africa. Although the country produces around 6.5 million tons annually, the national average maize yield is relatively low at 3.5 tons compared to the attainable yield of 8.5 tons. This high yield gap — the difference between attainable and actual yields — can be attributed to a number of factors, including crop varieties used, farm management practices, and plant density.

The Taking Maize Agronomy to Scale (TAMASA) project aims to narrow maize yield gaps in Ethiopia, Nigeria and Tanzania through the development and scaling out of decision-support tools, which provide site-specific recommendations based on information held in crop and soil databases collected from each country. These help farmers to make decisions based on more accurate variety and fertilizer recommendations, and can contribute to improving maize production and productivity.

One such tool is Nutrient Expert, a free, interactive computer-based application. It can rapidly provide nutrient recommendations for individual farmers’ fields in the absence of soil-testing data. The tool was developed by the International Plant Nutrition Institute in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), and research and extension service providers.

Nutrient Expert user interface.
Nutrient Expert user interface.

In Ethiopia, regional fertilizer recommendations are widely used, but soil fertility management practices can vary greatly from village to village and even between individual farmers. This can make it difficult for farmers or extension agents to receive accurate information tailored specifically to their needs. Nutrient Expert fills this gap by incorporating information on available fertilizer blends and giving customized recommendations for individual fields or larger areas, using information on current farmer practices, field history and local conditions. It can also provide advice on improved crop management practices such as planting density and weeding, thereby helping farmers to maximize net returns on their investment in fertilizer.

Data calibration was based on the results of 700 multi-location nutrient omission trials conducted in major maize production areas in Ethiopia, Nigeria and Tanzania. These trials were designed as a diagnostic tool to establish which macro-nutrients are limiting maize growth and yield, and determine other possible constraints.

In Ethiopia, CIMMYT scientists working for the TAMASA project conducted nutrient omission trials on 88 farmer fields in Jimma, Bako and the Central Rift Valley in 2015 to produce a version of Nutrient Expert suitable for the country. Researchers trialed the app on six maize-belt districts in Oromia the following year, in which Nutrient Expert recommendations were compared with soil-test based and regional ones.

Researchers found that though the app recommended lower amounts of phosphorus and potassium fertilizer, overall maize yields were comparable to those in other test sites. In Ethiopia, this reduction in the use of NPK fertilizer resulted in an investment saving of roughly 80 dollars per hectare.

Results from Nutrient Expert trials in Ethiopia, Nigeria and Tanzania showed improved yields, fertilizer-use efficiency and increased profits, and the app has since been successfully adapted for use in developing fertilizer recommendations that address a wide variety of soil and climatic conditions in each of the target countries.

The World Bank’s 2016 Digital Dividends report states that we are currently “in the midst of the greatest information and communications revolution in human history.” This shifting digital landscape has significant implications for the ways in which stakeholders in the agricultural sector generate, access and use data. Amidst Africa’s burgeoning technology scene, CIMMYT’s TAMASA project demonstrates the transformative power of harnessing ICTs for agricultural development.

Learn more about different versions of Nutrient Expert and download the free software here.

TAMASA is a five-year project (2014-2019) funded by the Bill & Melinda Gates Foundation, seeking to improve productivity and profitability for small-scale maize farmers in Ethiopia, Nigeria and Tanzania. Read more about the project here.

International Maize Improvement Consortium for Africa ramps up seed innovations

Group photo during the IMIC-Africa inception workshop in Harare, Zimbabwe, in May 2018. (Photo: CIMMYT)
Group photo during the IMIC-Africa inception workshop in Harare, Zimbabwe, in May 2018. (Photo: CIMMYT)

Maize is the most important staple food crop in sub-Saharan Africa, providing food security and a source of income to more than 200 million households. Nonetheless, maize yields in this region rank among the lowest worldwide.

The International Maize and Wheat Improvement Center (CIMMYT) launched the International Maize Improvement Consortium for Africa (IMIC-Africa) in May 2018, to better engage with a committed set of partners from the public and private sector, and to achieve enhanced maize yields in Africa.

Members of IMIC-Africa share a vision: meeting the challenges of maize production by scaling out and fully exploiting the potential of improved climate-resilient and stress-tolerant varieties in sub-Saharan Africa.

Cultivated on over 35 million hectares of typically rainfed land across sub-Saharan Africa, maize is subject to the vagaries of climate, suffering occasional to frequent drought stress. Other regional challenges include poor soil quality, characterized by nitrogen deficiency, and the ongoing threat of transboundary pathogens and pests, such as the voracious fall armyworm. In addition, farmers generally have inadequate access to improved seed that could help them achieve higher yields.

Although the challenges are complex, the effective use of improved, climate-resilient and multiple-stress-tolerant maize varieties has achieved tangible results in this region. Elite drought-tolerant (DT) maize hybrids developed by CIMMYT have demonstrated at least 25-30 percent grain yield advantage over non-DT maize varieties in sub-Saharan Africa under drought stress. CIMMYT has also derived elite heat-tolerant maize hybrids for sub-Saharan Africa, and during the recent outbreak of maize lethal necrosis (MLN), the rapid development and deployment of elite MLN-resistant hybrids was instrumental in the containment of this threat to eastern Africa.

Modelled on its successful counterpart initiatives in Asia (IMIC-Asia) and Latin America (IMIC-LatAm), there is hope that IMIC-Africa will follow a similar pattern of success.

The consortium is comprised of a diverse array of member institutions, including seed companies, national programs and foundations.

Its key objective is to enhance members’ capacity for germplasm development in their own breeding programs through provision of early generation or advanced maize lines. The subsequent multi-location testing of elite pre-commercial maize hybrids throughout sub-Saharan Africa by members will serve to identify products that can advance to commercialization and deployment.

“IMIC-Africa has a growing membership aimed at formalizing the sharing of maize lines under development with public and private maize breeding programs,” said CIMMYT scientist and Africa regional representative Stephen Mugo. “The consortium will also support a vibrant germplasm testing network, offer opportunities for training and cross learning among members, and grant access to other special services offered by CIMMYT including MLN testing, doubled haploid development and molecular quality assurance/quality control.”

The work of the consortium will ultimately benefit the farming community through the targeted development of maize varieties that express traits jointly identified and prioritized by consortium members and that are specifically adapted to the suite of agro-ecologies in sub-Saharan Africa. Traits of relevance include tolerance to abiotic stresses, disease and insect-pest resistance and higher yielding hybrids.

“IMIC-Africa will contribute to food security in Africa by broadening access to and use of stress-tolerant improved maize germplasm as well as strengthening maize breeding programs, thus improving farmers’ access to improved maize varieties,” Mugo explained.

In September 2018, members of IMIC-Africa held their first annual field day and visited the CIMMYT and Kenya Agriculture and Livestock Research Organization (KALRO) facilities in Kiboko and Naivasha.

Membership of IMIC-Africa is open to all organized and registered private commercial seed companies, corporations, and organized and registered public agencies or organizations involved in maize crop research and improvement, hybrid seed production or maize seed marketing.

For further information about membership and eligibility, please contact B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize: b.m.prasanna@cgiar.org.

Finding the story behind weeds

Field technicians use their cameras during the Photovoice training. (Photo: CIMMYT)
Field technicians use their cameras during the Photovoice training. (Photo: CIMMYT)

The main focus of the Sustainable and Resilient Farming Systems Intensification (SRFSI) project is on conservation agriculture technologies. Since farmers may face an increase in weeds after adopting zero-till planters, however, more research is needed about how farmers are dealing with weed.

One of the research objectives of the project is to understand farmers’ knowledge, perception, and practices of conservation agriculture. To this end, researchers are using the Photovoice methodology in Cooch Behar (West Bengal, India), Rongpur (Bangladesh) and Sunsari (Nepal) to collect relevant data on weed management practices.

Photovoice is a visual qualitative research method that allows people to express their perspectives through photographs. Photography can be used for evaluation purposes, through storytelling exercises.

On December 6-7, 2019, field technicians in Bangladesh, India and Nepal participated in a training about this methodology. They learned the rationale of Photovoice, its technical and logistic aspects, as well as the ethical considerations and the need to collect consent forms.

Participants also learned how to take pictures of inter-row cultivation and weeds on the farm, and how to confirm the geolocation of the farm.

Worth a thousand words

Using the Photovoice method, 30 households will be explored, including their labor allocation and decision-making dynamics around the implementation of conservation agriculture practices.

The effectiveness of this approach will emerge as smallholder farmers present their perspectives through photographs accompanied by their narratives.

Activities will be monitored on weekly basis.

The SRFSI project, funded by the Australian Centre for International Agricultural Research (ACIAR) and led by the International Maize and Wheat Improvement Center, is set to improve the productivity, profitability and sustainability of smallholder agriculture in the Eastern Gangetic Plains of Bangladesh, India and Nepal, by promoting sustainable intensification based on conservation agriculture technologies.

Cobs & Spikes podcast: Hello Tractor and agricultural innovation

For small-scale farmers, mechanization and other appropriate technologies have a big impact in agricultural production and yield. However, they might lack the resources to buy these tools. Hello Tractor is trying to improve this.

Dubbed the “Uber for the farm”, the company’s app easily allows tractor owners to rent their machinery to farmers and includes features that can help enhance a tractor owner’s business and operations. In this episode, we’re talking to Martha Haile, Chief Operations Officer at Hello Tractor, about the company’s success and social innovation in agriculture.

You can listen to our podcast here, or subscribe on iTunes, Spotify, StitcherSoundCloud, or Google Play.

Experts identify policy gaps in fertilizer application in India

A farmer in Ara district, Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium.
A farmer in Ara district, Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

NEW DELHI (CIMMYT) — Imbalanced application of different plant nutrients through fertilizers is a widespread problem in India. The major reasons are lack of adequate knowledge among farmers about the nutritional requirement of crops, poor access to proper guidelines on the right use of plant nutrients, inadequate policy support through government regulations, and distorted and poorly targeted subsidies.

This context makes it necessary to foster innovation in the fertilizer industry, and also to find innovative ways to target farmers, provide extension services and communicate messages.

A dialogue on “Innovations for promoting balanced application of macro and micro nutrient fertilizers in Indian agriculture” facilitated discussion on this issue. Representatives from key fertilizer industries, state governments, research institutions and the Indian Council of Agricultural Research gathered in New Delhi, India, on December 12, 2018. This dialogue was part of the Cereal Systems Initiative for South Asia (CSISA) and was organized by the International Food Policy Research Institute (IFPRI) and the International Plant Nutrition Institute (IPNI).

CIMMYT scientist and CSISA project leader Andrew McDonald presents the new Soil Intelligence System for India, which employs innovative and rapid approaches to soil health assessments.
CIMMYT scientist and CSISA project leader Andrew McDonald presents the new Soil Intelligence System for India, which employs innovative and rapid approaches to soil health assessments. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

The Director General of the Fertilizer Association of India (FAI), Shri Satish Chander, pointed out that new-product approvals in India take approximately 800 days. However, he explained, this delay is not the biggest problem facing the sector: other barriers include existing price controls that are highly contingent on political myths.

IFPRI researcher Avinash Kishore presented evidence contradicting the myth that farmers are highly sensitive to any price change. He presented data demonstrating that farmers’ demand for Urea and DAP remained highly price inelastic during periods of steep price increases, in 2011 and 2012.

Sheetal Sharma, soil scientist for nutrient management at IRRI, co-chaired a session on field evidences on the soil health card scheme and farmers incentives for change.
Sheetal Sharma, soil scientist for nutrient management at IRRI, co-chaired a session on field evidences on the soil health card scheme and farmers incentives for change. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

The Director of the South Asia Program at IPNI, T. Satyanarayana, highlighted the importance of micronutrients in promoting balanced fertilization of soils and innovative methods for determining soil health.

Andrew McDonald, from the International Maize and Wheat Improvement Center (CIMMYT), presented the new Soil Intelligence System for India, which employs innovative approaches to soil health assessments.

Farmers’ representative Ajay Vir Jakhar elaborated on the failure of underfunded extension systems to reach and disseminate relevant, factual and timely messages to vast numbers of farmers.

Other representatives from the fertilizer industry touched upon the need to identify farmer requirements for risk mitigation, labor shortages and site-specific nutrient management needs for custom fertilizer blends. Participants also discussed field evidence related to India’s soil health card scheme. Ultimately, discussions held at the roundtable helped identify relevant policy gaps, which will be summarized into a policy brief.

The Cereal Systems Initiative for South Asia project is led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI). It is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation.

Best of 2018: Editors’ picks

In 2018, our editors continued to cover exciting news and events related to maize and wheat science around the world. Altogether, we published more than 200 stories.

It is impossible to capture all of the places and topics we reported on, but here are some highlights and our favorite stories of the year.

Thank you for being a loyal reader of CIMMYT’s news and features. We are already working on new stories and platforms for 2019. Stay tuned!

New technical guide to help farmers protect against fall armyworm

In response to the spread of the fall armyworm across Africa, CIMMYT and its partners published a technical guide for integrated pest management. Produced by international experts, it offers details on the best management practices to help smallholder farmers effectively and safely control the pest while simultaneously protecting people, animals and the environment.

The voracious fall armyworm was on the news again in July, as its presence was reported in India, giving this issue a global scale.

CIMMYT and IITA are co-leading the new Fall Armyworm R4D International Consortium, composed of 40 partners, which held an international conference in Ethiopia in October.

Foliar damaged by full-grown fall armyworm larva in Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)
Foliar damaged by full-grown fall armyworm larva in Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)

Cobs & Spikes podcast: Blue maize opportunities for Mexican farmers

This year we launched our new podcast, Cobs & Spikes, where you can listen to stories from the field, interviews and explainers.

The most popular episode so far was about blue maize, a distinctive feature of Mexico’s food culture. Valued for its rich flavor and texture, it is also catching the attention of some food processing companies and high-end culinary markets. CIMMYT researchers are helping Mexican farmers tap into two emerging markets that could boost incomes while conserving culture and biodiversity.

Blue maize tortillas. (Photo: Luis Figueroa)
Blue maize tortillas. (Photo: Luis Figueroa)

Scientists confirm value of whole grains and wheat for nutrition and health

A review of scientific studies on cereal grains and health showed that gluten- or wheat-free diets are not inherently healthier for the general populace and may actually put individuals at risk of dietary deficiencies.

Based on a compilation of 12 reports, eating whole grains is actually beneficial for brain health and associated with reduced risk of diverse types of cancer, coronary disease, diabetes, hypertension, obesity and overall mortality.

Whole wheat bread. (Photo: Rebecca Siegel/Flickr)
Whole wheat bread. (Photo: Rebecca Siegel/Flickr)

African youth find entrepreneurial opportunity in agricultural mechanization

Mechanized agricultural services have traditionally only been used by large-scale farmers who could afford them, but small and medium-sized machines are fast becoming affordable options for family farmers through the advent of service providers. An increasing number of young people across eastern and southern Africa are creating a stable living as entrepreneurs, providing agricultural mechanization services.

CIMMYT is offering training courses to promote mechanization in Ethiopia, Kenya, Tanzania and Zimbabwe. Trainings equip entrepreneurs with essential business skills and knowledge, tailored to rural environments, so they can support farmers with appropriate mechanization services that sustainably intensify their production.

After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)
After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)

New wheat gene map will speed breeding and help secure grain supplies

In a scientific breakthrough, the International Wheat Genome Sequencing Consortium presented an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. The research was published on Science.

A BBC news report on this discovery mentioned CIMMYT as a leader in wheat research to help feed the world’s rapidly expanding population.

Improved wheat growing in Pakistan. (Photo: A. Yaqub/CIMMYT)
Improved wheat growing in Pakistan. (Photo: A. Yaqub/CIMMYT)

Better together: Partnership around zinc maize improves nutrition in Guatemala

Over 46 percent of children under five in Guatemala suffer from chronic malnutrition. More than 40 percent of Guatemala’s rural population is deficient in zinc, an essential micronutrient that plays a crucial role in pre-natal and post-natal development and is key to maintaining a healthy immune system.

CIMMYT is working with partners HarvestPlus and Semilla Nueva to reduce malnutrition and zinc deficiency in the country, through the development and deployment of Guatemala’s first biofortified zinc-enriched maize.

Last year we also reported on the release of a new zinc-enriched maize variety in Colombia and how vitamin A orange maize is improving nutrition in Zimbabwe.

Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)
Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)

Innovation, partnerships and knowledge for African farmers meet at AGRF 2018

CIMMYT was present at the African Green Revolution Forum in Kigali, Rwanda. Leaders discussed practical ways to transform policy declarations into impact on the ground, at a time when farmers are facing the challenge of climate change and the threat of emerging pests and diseases.

On the occasion of this event, CIMMYT’s Director General, Martin Kropff, and the Regional Representative for Africa, Stephen Mugo, authored an op-ed on agricultural innovation in Africa, published by Thomson Reuters (in English) and Jeune Afrique (in French).

The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion "Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit." (Photo: CIMMYT)
The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion “Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit.” (Photo: CIMMYT)

International experts discuss progress and challenges of maize research and development in Asia

More than 280 delegates from 20 countries gathered in Ludhiana, in the Indian state of Punjab, for the 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security.

Technical sessions and panel discussions covered topics such as novel tools and strategies for increasing genetic gains, stress-resilient maize, sustainable intensification of maize-based cropping systems, specialty maize, processing and value addition, and nutritionally enriched maize for Asia.

Four young people were distinguished in the first edition of the 2018 MAIZE-Asia Youth Innovators Award. One of them wrote a blog about her personal story and her commitment to make hunger history.

Conference participants pose for a group photo at the field visit site during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
Conference participants pose for a group photo at the field visit site during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)

Researchers find “hotspot” regions in the wheat genome for high zinc content, new study shows

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as two wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

Around the same time, a study confirmed the nutritional and health benefits of zinc-biofortified wheat in India. It showed that when vulnerable young children in India consume foods with wheat-enriched zinc, the number of days they spend sick with pneumonia and vomiting significantly diminishes.

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: Rocio Quiroz/CIMMYT)
The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: Rocio Quiroz/CIMMYT)

Study in Ethiopia links healthy soils to more nutritious cereals

A study in Ethiopia found that wheat grown in areas closer to the forest had more nutrients, like zinc and protein. Soils in these areas are rich in organic matter — about 1% higher — due to decomposing trees and plants, as well as manure of livestock grazed in the forest.

Increasing organic matter by 1 percent was associated with an increase in zinc equivalent to meet the daily needs of 0.2 additional people per hectare and an increase in protein equivalent to meeting the daily needs of 0.1 additional people per hectare. These modest increases in soil organic matter contribute a small, but important, increase in nutrients found in wheat.

Although these nutrient increases are not enough to address hidden hunger on their own, they reveal how healthy soils are an additional tool — alongside diet diversity and the biofortification of food — to fight malnutrition.

Annual report 2017

In 2018 we published our latest annual report, highlighting CIMMYT’s global work and collaboration with partners. It features infographics and case studies from Bangladesh, Ethiopia, Haiti, Mexico and Pakistan.

It is a good way to understand how CIMMYT’s science improves livelihoods around the world.

You can read the web version or the PDF of the report, or watch the video summary below.

The saving grace of a hefty investment

Bangladesh farmer Raju Sarder sits on his recently acquired reaper. (Photo: CIMMYT/Md. Ikram Hossain)
Bangladesh farmer Raju Sarder sits on his recently acquired reaper. (Photo: iDE/Md. Ikram Hossain)

A man in his early 20s walked the winding roads of Sajiara village, Dumuria upazila, Khulna District in Bangladesh. His head hanging low, he noticed darkness slowly descending and then looked up to see an old farmer wrapping up his own daily activities. With traditional tools in hand, the farmer looked exhausted. The young man, Raju Sarder, considered that there had to be a better way to farm to alleviate his drudgery and that of others in the community.

Determined to act, Raju set out to meet Department of Agricultural Extension (DAE) officials the very next day. They informed him about the Mechanization and Irrigation project of the Cereal Systems Initiative for South Asia (CSISA MI). They also introduced him to the project’s most popular technologies, namely the power tiller operated seeder, reaper and axial flow pumps, all of which reduce labor costs and increase farming efficiency.

Raju found the reaper to be the most interesting and relevant for his work, and contacted a CSISA representative to acquire one.

The first challenge he encountered was the cost — the equivalent of $1,970 — which as a small-scale farmer he could not afford. CSISA MI field staff assured him that his ambitions were not nipped in the bud and guided him in obtaining a government subsidy and a loan of $1,070 from TMSS, one of CSISA MI’s micro financing partners. Following operator and maintenance training from CSISA MI, Raju began providing reaping services to local smallholder rice and wheat farmers.

He noticed immediately that he did not have to exert himself as much as before but actually gained time for leisure and his production costs dwindled. Most remarkably, for reaping 24 hectares Raju generated a profit of $1,806; a staggering 15 times greater than what he could obtain using traditional, manual methods and enough to pay back his loan in the first season.

“There was a time when I was unsure whether I would be able to afford my next meal,” said Raju, “but it’s all different now because profits are pouring in thanks to the reaper.”

As a result of the project and farmers’ interest, field labor in Raju’s community is also being transformed. Gone are the days when farmers toiled from dawn to dusk bending and squatting to cut the rice and wheat with rustic sickles. Laborious traditional methods are being replaced by modern and effective mechanization. Through projects such as CSISA MI, CIMMYT is helping farmers like Raju to become young entrepreneurs with a bright future. Once poor laborers disaffected and treated badly in their own society, these youths now walk with dignity and pride as significant contributors to local economic development.

CSISA MI is a partnership involving the International Maize and Wheat Improvement Center (CIMMYT) and iDE, a non-governmental organization that fosters farmers’ entrepreneurial development, with funding from USAID under the Feed the Future initiative.

International experts discuss progress and challenges of maize research and development in Asia

The importance of maize in Asian cropping systems has grown rapidly in recent years, with several countries registering impressive growth rates in maize production and productivity. However, increasing and competing demands — food, feed, and industry — highlight the continued need to invest in maize research for development in the region. Maize experts from around the world gathered to discuss these challenges and how to solve them at the 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security, held from October 8 to 10, 2018, in Ludhiana, Punjab, India.

More than 280 delegates from 20 countries attended the conference. Technical sessions and panel discussions covered diverse topics such as novel tools and strategies for increasing genetic gains, stress-resilient maize, sustainable intensification of maize-based cropping systems, specialty maize, processing and value addition, and nutritionally enriched maize for Asia.

The international conference was jointly organized by the Indian Council of Agricultural Research (ICAR), the International Maize and Wheat Improvement Center (CIMMYT), the Indian Institute of Maize Research (ICAR-IIMR), Punjab Agricultural University (PAU), the CGIAR Research Program on Maize (MAIZE), and the Borlaug Institute for South Asia (BISA).

In Asia, maize is rapidly growing in its importance, due to high demand. Maize productivity in the region is growing by 5.2 percent annually compared to a global average of 3.5 percent. However, this is not enough. “Asia produces nearly 80 million tons of maize annually, but demand will be double by the year 2050,” said Martin Kropff, CIMMYT director general, in his opening address at the conference. “We need to produce two times more maize in Asia, using two times less inputs, including water and nutrients. Climatic extremes and variability, especially in South and South East Asia, will make this challenge more difficult. Continued funding for maize research is crucial. We need to work together to ensure that appropriate innovations reach the smallholder farmers.”

Field visit in Ludhiana, India, during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
Field visit in Ludhiana, India, during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)

Climate-resilient maize and sustainable intensification

A major theme emphasized at the conference was climate resilience in maize-based systems. South Asia is a hotspot for vulnerability due to climate change and climate variability, which poses great risks to smallholder farmers. “Climate resilience cannot be brought by only a single technology — it has to be through a judicious mix of several approaches,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

Great advances have been made in developing climate-resilient maize for Asia since the last Asian Maize Conference, held in 2014. Many new heat- and drought-tolerant maize varieties have been developed through various projects, such as the Heat Stress Tolerant Maize for Asia (HTMA), and Affordable, Accessible, Asian (AAA) maize projects. Through the HTMA project, over 50 CIMMYT-derived elite heat-tolerant maize hybrids have been licensed to public and private sector partners in Asia during the last three years, and nine heat-tolerant maize hybrids have been released so far in Bangladesh, India and Nepal.

Sustainable intensification of maize-based farming systems has also helped farmers to increase yields while reducing environmental impact, through conservation agriculture and scale-appropriate mechanization. Simple technologies are now available to reduce harvest time by up to 80 percent and hired labor costs by up to 60 percent. Researchers across the region are also working to strengthen the maize value chains.

B.S. Dhillon (center) receives the MAIZE Champion Award for his pioneering work in maize breeding. (Photo: Manjit Singh/Punjab Agricultural University)
B.S. Dhillon (center) receives the MAIZE Champion Award for his pioneering work in maize breeding. (Photo: Manjit Singh/Punjab Agricultural University)

Science and appropriate technologies

CIMMYT has been focusing on developing and deploying new technologies that can enhance the efficiency of maize breeding programs; these include doubled haploid (DH) technology, high-throughput field-based phenotyping, and genomics-assisted breeding. The conference emphasized on the need for Asian institutions to adapt such new tools and technologies in maize breeding programs.

Another topic of interest was the fall armyworm, an invasive insect pest that has spread through 44 countries in Africa and was recently reported in India for the first time. “This pest can migrate very quickly and doesn’t require visas and passports like we do. It will travel, and Asian nations need to be prepared,” Prasanna said. “However, there is no need for alarm. We will be looking at lessons learned from other regions and will work together to control this pest.”

In addition to grain for food and feed, specialty maize varieties can provide beneficial economic alternatives for smallholder maize farmers. Conference participants had the opportunity to hear from Indian farmers Kanwal Singh Chauhan and Yugandar Y, who have effectively adopted specialty maize varieties, such as baby corn, sweet corn and popcorn, into life-changing economic opportunities for farming communities. They hope to inspire other farmers in the region to do the same.

On October 10, conference delegates participated in a maize field day organized at the BISA farm in Ladhowal, Ludhiana. Nearly 100 improved maize varieties developed by CIMMYT, ICAR and public and private sector partners were on display, in addition to scale-appropriate mechanization options, decision support tools, and precision nutrient and water management techniques.

The conference concluded with a ceremony honoring the winners of the 2018 MAIZE-Asia Youth Innovators Award. The awards were launched in collaboration between the CGIAR Research Program on Maize and YPARD (Young Professionals for Agricultural Development) to recognize the contributions of innovative young women and men who can inspire fellow youth to get involved in improving maize-based agri-food systems in Asia. Winners of the first edition of the awards include Dinesh Panday of Nepal, Jie Xu of China, Samjhana Khanal of Nepal, and Vignesh Muthusamy of India.

Participants listen to a briefing during the field visit of the 13th Asian Maize Conference, in Ludhiana, India. (Photo: Manjit Singh/Punjab Agricultural University)
Participants listen to a briefing during the field visit of the 13th Asian Maize Conference, in Ludhiana, India. (Photo: Manjit Singh/Punjab Agricultural University)

Farmers cite climate change as biggest challenge, says World Farmers Organization at COP24 talks

Since 2011, farmers in Nyando climate-smart villages, in Kenya’s Kisumu county, have been working with researchers, development partners, and government extension agents to test a portfolio of promising climate change adaptation, mitigation, and risk management interventions. (Photo: K. Trautmann/CCAFS)
Since 2011, farmers in Nyando climate-smart villages, in Kenya’s Kisumu county, have been working with researchers, development partners, and government extension agents to test a portfolio of promising climate change adaptation, mitigation, and risk management interventions. (Photo: K. Trautmann/CCAFS)

KATOWICE, Poland (CIMMYT) — Controversies over fossil fuels, indigenous rights and the intricacies of the 2015 Paris Agreement, which was designed to keep global temperatures from rising no more than 1.5 degrees Celsius above pre-industrial levels, are just some of the key topics in focus at U.N. COP24 climate talks.

A vital thread in the climate change narrative, much debated in the corridors of the conference center in Katowice, Poland, is agriculture — a fragile yet vital sector of the global economy which produces about a third of global greenhouse gas emissions.

The member-driven World Farmers Organization (WFO), a group of 1.5 billion farmers from 54 countries, represents the farm community at the United Nations on climate change and other topics, including the Sustainable Development Goals 2030 Agenda.

A new “Climakers” initiative, launched on the sidelines of the COP24 talks, will help address the biggest threat farmers say they fear, according to Luisa Volpe, head of policy development at WFO in an interview. Volpe, who has been with WFO since 2014, formerly worked on farmers programs with the International Fund for Agriculture and Development (IFAD).

“I decided I wanted to move to the other side of the coin and work directly with those who are the targets of big multilateral governmental organizations and government policies,” Volpe said, adding that farmers, tasked with producing more with less for a growing population, are also among those most affected by climate change.

Q: What is the biggest challenge farmers face?

A: The view of the farmers that I represent is that climate is the most important challenge because climate may have an impact on the harvest, on the seeds, on the area where they want to harvest, whether they should move, migration of young farmers to the city, on the kind of products they can produce. Climate change also has an impact on market prices. Of course there are others — they include access to infrastructure, access to financing, having proper insurance and availability and access to financing mechanisms. Farmers say that among this range of issues they may face, climate is probably the most intense because it’s probably the one that they cannot control. They’re just influenced by it and there is little that they can do. Foreseeing weather patterns is very limited — with technology they’re able to predict weather patterns one week before, but not longer. It’s really challenging for them.

23-year-old Ruby Mehla receives regular updates on weather and climate-smart practices through voice messages on her registered mobile phone in the climate-smart village of Anjanthali, Haryana state, India. (Photo: Prashanth Vishwanathan/CCAFS)
23-year-old Ruby Mehla receives regular updates on weather and climate-smart practices through voice messages on her registered mobile phone in the climate-smart village of Anjanthali, Haryana state, India. (Photo: Prashanth Vishwanathan/CCAFS)

Q: How are farmers managing the challenge of climate change?

A: This is something that represents the common ground for all the farmers of the world despite differences in terms of geographical area, in terms of type of business that they manage. Last May in Moscow, during the WFO general assembly, WFO got a unanimous mandate from all of our constituency — made up of national farmers organizations from all over the world — to initiate, establish and propose a new agenda for climate, driven by the farmers themselves. Basically, our members realized that the impact of climate change on farming is something that’s common to all farmers around the world. Their proposal is to first create a broad alliance with the farmers organizations worldwide who may have either a regional voice or a global voice in order to represent all the areas of the world and work together — to join their hands in a new initiative on climate change.

Q: How will the initiative take shape?

A: The outcome of the initiative will be an overarching document with which we as a farmers organization can advocate at the international level and our members can advocate at the national level. What we’re planning to do is to organize a series of regional workshops to meet the farmers themselves and collect case studies and best practices of what farmers are already doing to mitigate and adapt to climate change. Farmers, as all other sectors of the world, are contributing to the causes of climate change. This agenda would not work if we don’t add other actors to the alliance. It’s farmers first, but then a close dialogue with CGIAR.

We’ve started with CCAFS, the CGIAR Research Program on Climate Change, Agriculture and Food Security. We want to work closely with them to make sure that the practices we propose to governments as examples to follow and to scale up when they propose their Nationally Determined Contributions (NDCs) — country level contributions to reducing emissions as part of the Paris Agreement — are effective and science based. Here, we propose to close the gap with science and improve cooperation between farmers and science, so that science really responds to the questions farmers pose — to which they align their practices. In this sense, the scientific research can be more aligned to what farmers actually need, while the farmers may improve their own practices by also responding to the needs of the research.

To really tackle climate change challenges, we need innovation and technologies that are science-based and sustainable, because the main principle of all these agendas is sustainability. What we propose is that farmers contribute by improving their access to innovation research and technology to make their production more sustainable.

Q: Could you explain how you intend to take this practice to a global scale?

A: The other actors we plan to involve are those belonging to the food value chain, because we think that farmers alone cannot be the only solution. That’s why we’re establishing a partnership, for example, with the International Fertilizer Association as well as the International Seeds Federation. We’re in a partnership with Crop Life because they represent a huge element in the food chain. It has to be a global movement if you really want to achieve something that’s effective and efficient. We’ll expand also to other actors in the food chain. We’re also negotiating with multilateral governmental organizations because we need their support for advocacy work we want to do. Governments will become the targets instead of being those who will just propose and impose policies to the farmers. In our view, farmers have the solution in their hands already. What we have to do is to put them in a condition to really influence and feed the political documents that governments will adopt and that will become national policies.

A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)
A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)

Q: What is Climakers and the farmer-driven climate change agenda you launched at COP24?

A: Climakers are those who become part of the global alliance for this new initiative. The alliance is global, the agenda is farmers-driven. Farmers expressing their needs and their challenges and their best practices — together with science and the multilaterals and the private sector is that of supporting the agenda, supporting the farmers and take it to the governments. Climakers is the name we have chosen for those who are on the farmer side because we think that farmers may make the climate.

Q: In terms of the COP24 negotiations, are you getting any sense of what could be happening that could benefit farmers or are more demands being put on farmers?

A: I see it [as] a very slow process. We were very happy when we saw the concept of food security and food production in the Paris Agreement because although there is no mention of agriculture, at least they mentioned food production. It means that probably some little political will to address the farming sector is there. There is a will to implement the Paris Agreement in the agricultural sector. The negotiation is very slow between north and south regarding the mitigation and adaptation issue, and also the fact that financing for climate change is there, but probably the way it is managed is not really supporting the communities because the channels are too complicated and too long… There are probably some seeds up there, but it’s still a long way. That’s why farmers want to propose an icebreaking agenda.

Q: Are there any other key points you would like to make in the context of climate change?

A: One element that is a little bit controversial for me is critical in the development of agriculture and also in tackling climate change, which is innovation — innovation in terms of practices, in terms of technology, in terms of research, but also in terms of creating financing for farmers and to support rural areas. These have to come from the government side, from the value chain actors, from the farmers themselves and also from the science, from the research centers.

If we close the gap between the farmers and the science, it’s probably the way out for boosting development for the rural areas. We don’t have to be scared of being innovative. Innovation doesn’t mean GMOs. Innovation may also mean an innovative way to treat soils. It may be a new way to access markets, create access to finance for farmers, but also an innovative way to interact between governments and the farmers themselves. To me, innovation is the way out really, that can give a boost to this process.

A farmer's son carries his brother through the family field, planted with BH 546 DT maize, in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)
A farmer’s son carries his brother through the family field, planted with BH 546 DT maize, in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)

Breeders find strength in diversity at EiB contributor meeting

Around 115 members of the CGIAR breeding community, plus others representing national programs, universities, funders and the private sector, met for a three-day discussion of how to co-develop the next generation of advanced breeding programs that will improve the rate at which resource-poor farmers are able to adopt improved varieties that meet their needs.

The annual Excellence in Breeding Platform (EiB) Contributor’s meeting, held this year in Amsterdam from 13-15 November, caps a year of engagement with CGIAR Centers and national agricultural research system (NARS) partners around the world.

Paul Kimani, from the University of Nairobi, speaks during the meeting. (Photo: Sam Storr/CIMMYT)
Paul Kimani, from the University of Nairobi, speaks during the meeting. (Photo: Sam Storr/CIMMYT)

“Although breeding is one of the oldest functions in CGIAR, we have never had a meeting like this with scientists from all the centers,” said Michael Baum, director of Biodiversity and Crop Improvement at the International Center for Agricultural Research in the Dry Areas, (ICARDA). “Within CGIAR, plant breeding started as a science, but now we are looking at how to implement it not as a science but as an operation, as it is done in the private sector, so there are many new concepts.”

Key items on the agenda for November were new tools to develop product profiles and create improvement plans that will define the modernization agenda in each center and across the Platform itself, based in part on the Breeding Program Assessment Tool (BPAT) that most Centers completed in 2018.

The conversation was enriched by Paul Kimani (University of Nairobi) presenting on the Demand-led Variety Design project, which produced the book, “The Business of Plant Breeding.”

Ranjitha Puskur, gender research coordinator at the International Rice Research Institute (IRRI), started an animated discussion on how to incorporate gender into product design by thinking about customer segments.

Tim Byrne from AbacusBio introduced methods for identifying farmer preferences to be targeted by breeding programs.

IRRI's Ranjitha Puskur started a discussion on how to incorporate gender into product design. (Photo: Sam Storr/CIMMYT)
IRRI’s Ranjitha Puskur started a discussion on how to incorporate gender into product design. (Photo: Sam Storr/CIMMYT)

In breakout sessions, contributors were able to have detailed discussions according to their various specializations: phenotyping, genotyping and bioinformatics/data management. The direct feedback from contributors will be incorporated into EiB workplans for training and tool development for the coming year.

A key outcome of the meeting was an agreement to finalize the product profile tool, to be made available to EiB members in early December 2018. The tool helps breeders to work with other specialisms, such as markets, socioeconomics and gender, to define the key traits needed in new products for farmers. This helps to focus breeding activities towards areas of greatest impact, supports NARS to play a greater role, and creates accountability and transparency for donors, in part by defining the geographic areas being targeted by programs.

“Breeding trees is different to the annual crops,” said Alice Muchugi, genebank manager at the World Agroforestry Centre (ICRAF), “but we are seeing what we can borrow from our colleagues. By uploading what we are doing in maps, for example, donors are able to perceive the specific challenges we are undertaking.”

EiB's George Kotch describes his vision of product profiles. (Photo: Sam Storr/CIMMYT)
EiB’s George Kotch describes his vision of product profiles. (Photo: Sam Storr/CIMMYT)

“I think we have realized there are lot of challenges in common, and the Platform is helping us all work on those,” said Filippo Bassi, durum wheat breeder at ICARDA. “I like to see all the people around the room, if you look at the average age there is a big shift; the number of countries present also tells you a lot.”

Tabare Abadie, R&D external academic outreach lead at Corteva Agriscience, also saw the meeting as a good opportunity to meet a broader group of people. “One of the take homes I hear is [that] there are a lot of challenges, but also a lot of communication and understanding. For me as a contributor it’s an incentive to keep supporting EiB, because we have gone through those changes before [at Corteva], and we can provide some know-how and experience of what happens,” Abadie explained.

“There are still a lot of gaps to fill, but this is a good start,” said Thanda Dhliwayo, maize breeder at the International Maize and Wheat Improvement Center (CIMMYT). “We need to get everyone involved, from leadership down to the guys working in the field.”

Michael Quinn, director of the CGIAR Excellence in Breeding Platform, discusses the CGIAR’s initiative on crops to end hunger.