Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

African small-scale mechanization project winds down after strong results

Smallholder farmers in Zimbabwe and Ethiopia have embraced small-scale mechanization thanks to an innovative CIMMYT-led project, which is now drawing to a close. Since 2013, the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project has helped farmers access and use two-wheel tractors that significantly reduce the time and labor needed to grow, harvest and process their crops. To ensure long-term sustainability, the project and its partners helped support and develop local enterprises which could supply, service and operate the machines, and encouraged the development of supportive government policies. The project was funded by the Australian Centre for International Agricultural Research (ACIAR), as well as the CGIAR Research Programs on Maize and Wheat.

“Mechanization is a system not a technology”

From its inception, FACASI went beyond simply providing machinery to farmers, and instead envisioned mechanization as a way out of poverty. “Mechanization is a system, not only a technology,” said Bisrat Getnet, the project’s national coordinator in Ethiopia and director of the Agricultural Engineering Research Department at the Ethiopian Institute of Agricultural Research. “Mechanization needs infrastructure such as roads, fuel stations, spare part dealerships, maintenance centers, training centers and appropriate policies. This project assessed which measures are needed to sustain a new technology and addressed these with direct interventions,” he explained.

The FACASI project worked to introduce and develop new small-scale machines, including two-wheel tractors, small shellers and threshers, and small pumps, in African rural settings, collaborating with local engineers, farmers and manufacturers. This included adapting a range of attachments that could be used to mechanize on-farm tasks such as planting, harvesting, transporting and shelling. In parallel, the project developed local business opportunities around the supply, maintenance and use of the machines, to ensure that users could access affordable services and equipment in their communities.

The project initially worked in four countries: Ethiopia, Kenya, Tanzania and Zimbabwe. Researchers saw significant potential for mechanization to reduce the labor intensity associated with smallholder farming, while encouraging application of conservation agriculture techniques and developing rural service provision businesses. In its second phase, which began in 2017, the project focused on strengthening its efforts in Zimbabwe and Ethiopia.

“In my view the most innovative aspect enabling FACASI’s success was the concept of combining engineering and business modelling, with an understanding of the political, legislative and policy situations in the four countries,” said Professor John Blackwell, an Adjunct Professor at Charles Sturt University who reviewed FACASI and also invented and helped commercialize several successful machines in South Asia, including the famous Happy Seeder.

“FACASI has proven that small mechanization is viable in smallholder settings,” said CIMMYT scientist and project coordinator FrĂ©dĂ©ric Baudron. “It has shown smallholders that they don’t have to consolidate their farms to benefit from conventional machines, but that machines can instead be adapted to their farm conditions. This, to me, defines the concept of ‘appropriate mechanization’,” he said.

Conservation agriculture planter manufacturing in Arusha, Tanzania. (Photo: CIMMYT)

Benefits to local communities

During its course, the project improved the efficiency and productivity of smallholder farming, reducing labor requirements and creating new pathways for rural women and youth.

The reduction in the labor and drudgery of farming tasks has opened many doors. Farmers can save the costs of hiring additional labor and reinvest that money into their enterprises or households. With a small double-cob sheller producing one ton of kernels in an hour compared to up to 12 days by hand, women can do something else valuable with their time and energy. Entrepreneurs offering mechanization services — often young people who embrace new technologies — can earn a good income while boosting the productivity of local farms.

Mechanization has shown to sustainably improve yields. In Ethiopia, farmers using two-wheel tractors were able to reduce the time needed to establish a wheat crop from about 100 hours per hectare to fewer than 10 hours. In trials, maize and wheat respectively yielded 29% and 22% more on average, compared with using conventional crop establishment methods.

Local female artisan, Hawassa, Ethiopia. (Photo: CIMMYT)

Impacts now and into the future

According to its national partners, FACASI has laid the groundwork for cheap and practical two-wheel tractors to proliferate. In Ethiopia, there are currently 88 service providers whose skills has been directly developed through FACASI project interventions. “This has been a flagship project,” said Ethiopia national coordinator Bisrat Getnet. “It tested and validated the potential for small-scale mechanization and conservation agriculture, it proved that new business models could be profitable, and it opened new pathways for Ethiopian agriculture policy,” he said.

In Zimbabwe, the project has also set the wheels of change in motion. “FACASI demonstrated an opportunity for creating employment and business opportunities through small-scale mechanization,” said Tirivangani Koza, of Zimbabwe’s Ministry of Lands, Agriculture, Water and Rural Resettlement. “With the right funding and policies, there is a very wide and promising scope to scale-up this initiative,” he said.

Read more:
Explore the FACASI Hello Tractor knowledge platform to learn more about conservation agriculture and small-scale mechanization

Cover photo: Demonstration of a minitiller, Naivasha, Kenya. (Photo: CIMMYT)

 

Reaping the benefits of innovation

Post-harvest losses — which can range between 10-20% in major cereals — cause not only the loss of economic value of the food produced, but also the waste of scarce resources such as labor, land, and water, as well as non-renewable resources such as fertilizer and energy.

“High postharvest losses imply reduced grain yield, but with the same total greenhouse gas emission,” says RabĂ© Yahaya, a CIM/GIZ Integrated Expert working at the International Maize and Wheat Improvement Center (CIMMYT). “Reducing these losses reduces the yield-scaled global warming potential — total greenhouse gas emission per kilogram of grain — and contributes to climate change mitigation, as well as food security.”

A significant proportion of these losses are caused by late harvest due to labor shortages, with crops languishing in the field before farmers can retrieve them. Small and medium-sized machinery may seem like the answer, but many one or two-axe machines are often unable to reach the inner sections of rice and wheat fields because of limited road access, or the fact that they are simply too heavy to carry.

“As mechanized land preparation works outwards, inner fields get ready for harvest first, but without any applicated technical solution,” he explains.

Could motorized scythes be the answer? Yahaya thinks so.

The other scythe

Motorized scythes are hand-operated tools used for mowing grass or reaping crops. Though largely replaced by horse-drawn and tractor-mounted implements, they are still commonly used in some areas of Asia and Europe.

Models specifically adapted for harvesting rice and wheat have been commercially available in Africa for over two decades and currently sell for $150-350, presenting the lowest initial investment cost of all engine-driven solutions on the market. The motor scythe also boasts the lowest harvest cost per hectare and is portable enough to reach inner fields.

Despite its relative affordability, uptake in much of West Africa has been slow, as many farmers have found the 10kg machinery too heavy for sustained use.

“Studies carried out in Benin, Burkina Faso, Cote d’Ivoire and Mali show that this rapid fatigue is caused by incorrect handling of the machinery, including flawed posture,” Yahaya explains. “This is simply because most operators have never undertaken official training for operating the tool.”

In a bid to address this challenge, Yahaya has been collaborating with Elliott Dossou, Sali Atanga Ndindeng and Ernst Zippel — all scientists at AfricaRice — to design and test potential solutions. Their proposal for the development of a Service Provider Harvest (SPH) model has been shortlisted for the GIZ Innovation Fund 2020 award, from a GIZ/BMZ-supported Innovation Fund.

Ernst Zippel, CIM/GIZ Integrated Expert at AfricaRice, presents on the reduction of postharvest losses through correct usage of motor scythes. (Video: AfricaRice)

Cut for service

The approach focuses heavily on capacity development, with an initial nucleus group of trainers taking the lead on activities such as recruiting and contracting service providers, providing training on harvesting and threshing, supporting aftersales services such as machine maintenance and repair, and helping to determine the optimum harvest time.

Under the proposed model, each trainer will be responsible for a group of around 50 service providers, who will receive guidance on understanding their role, finance, creating a network of client farmers, machine maintenance and use.

In addition to the financial rewards and aftersales services, the training opportunities will make this technology accessible to young entrepreneurs in rural areas. Earning up to $18 a day for harvesting and weeding services, those using the tool can expect to see a return on their initial investment in one to two months.

“Young people are the main prospective clients for this initiative,” says Yahaya. “With the motor scythe and related training, they can start earning serious money.” He stresses, however, that all farmers – regardless of age or gender – will be able to benefit from the job creation opportunities this initiative provides.

The initiative has been shortlisted for the GIZ Innovation Fund 2020. If selected, funding from the accelerator program would support testing, the integration of GPS sensors into the tools, creation of a platform for bank security and Carbon Credit earning, other technical activities.

Farmers diversify crops in their fields and food on their plates

Farmers in the Bale area, in Ethiopia’s Oromia region, mainly produce wheat and barley. Temam Mama was no different — but some six years ago, the introduction of the two-wheel tractor offered him additional opportunities. This was part of an initiative of the International Maize and Wheat Improvement Center (CIMMYT) and the Africa RISING project.

Selected as one of the two farmers in the region to test the technology, Temam took a five-day training course to understand the technology and the basics behind operating calibrating and maintaining the equipment.

The two-wheel tractor is multipurpose. By attaching various implements to a single engine, farmers can use it for ploughing, planting, water pumping, transportation, harvesting and threshing. For Temam, who had always relied on a rainfed agricultural system, the technology has high importance — he will be able to use the nearby river as a source of water for irrigation purposes.

To start off, Temam allocated 0.25 hectare from his four hectares of land for irrigation and planted potatoes for the first time. He was delighted with his harvest and the income he collected afterwards.

“From the first harvest, I was able to collect 112 quintals of potato and made roughly $1,529 in total,” said Temam.

Temam Mama checks his crops. (Photo: Simret Yasabu/CIMMYT)
Temam Mama checks his crops. (Photo: Simret Yasabu/CIMMYT)

Eternal returns

His productive journey had just started. This income allowed Temam to keep growing his business. He bought a horse and cart for $550 and taking the advice from the project team, he constructed a Diffused Light Storage (DLS) system to store his potatoes for longer.

To diversify his income, Temam occasionally provides transport services to other farmers. Over time, Temam’s financial capital has continued to grow, bringing new ideas and a desire to change. He went from a wooden fence to a corrugated iron sheet, to an additional three rooms by the side of his house for rentals.

He is fortunate for having access to the river and the road, he explains. He also sees new opportunities emerging as the demand for potato in the market continues to grow. The price for one quintal of potato sometimes reaches $76 and matching the demand is unthinkable without the two-wheel tractor, he says.

In addition to the two-wheel tractor, he has also bought a water pump to enable him to increase the area that he can grow irrigated potato, garlic and pepper on. His target is to have two hectares irrigated soon.

Temam Mama drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)
Temam Mama drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)

The future is bright

With his wife and four children, Temam is now living a well-deserved, healthy and exemplary life. Tomato, chilli and onion now grow on his farm ensuring a healthy diet, as well as diversified and nutritious food for the family. His economic status is also enabling him to support his community in times of need. “As part of my social responsibility, I have contributed around $152 for road and school constructions in our area,” noted Temam.

Under the Africa RISING project, Temam has proven that irrigation of high-value crops using two-wheel tractor pumping really works, and that it increases production and the profitability of farming. He has now stepped into a new journey with a bright future ahead of him.

“I plan to sell my indigenous cows to buy improved breeds and, in two to three years’ time, if I am called for refreshment training in Addis Ababa, I will arrive driving my own car,” concluded Temam.

Cover photo: Temam Mama’s family eats healthy and nutritious food produced through irrigation. (Photo: Simret Yasabu/CIMMYT)

Interdrought 2020 congress proceedings now online

The critical global challenge of significantly increasing food production by 2050 is exacerbated by water limitations. Droughts and water scarcity affect crop production across the world and global climate warming is aggravating this effect. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production in drier environments.

The Interdrought 2020 congress presents the latest developments to address this global challenge.

Interdrought 2020 was scheduled to be held in Mexico City in March 2020. As it was not possible to proceed with the congress as a face-to-face meeting due to the travel restrictions associated with the COVID-19 pandemic, the organizing committee has delivered the scientific program of the congress online. Congress proceedings are available at interdrought2020.cimmyt.org.

Today the organizing committee extended the reach of the congress proceedings to the global community by providing free online access to 43 presentations, 75 abstracts and 35 posters. The complete book of abstracts can also be downloaded. To date over 10,000 members of the scientific community have been invited to watch presentations and read the proceedings online.

Internationally recognized keynote speakers participated in the seven main sessions, supported by nine symposia convened by global experts, on topics ranging from breeding and management approaches to the basic science of plant–water relations.

State-of-the-art research and technology

Interdrought 2020 is an opportunity for scientific leaders from across the world to share the latest research and technology developments to advance plant production in water-limited situations. Interdrought 2020 embraces the philosophy of presenting and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.

Interdrought 2020, also known as Interdrought VI (IDVI) is the sixth congress in the series. It builds on the success of previous congresses held in Montpellier in 1995, Rome in 2005, Shanghai in 2009, Perth in 2013, and Hyderabad in 2017.

The congress was organized by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Queensland. The organizers share a strong history of collaboration in crop research and agronomy that seeks to increase wheat’s tolerance to drought and its yield potential in hot conditions, such as those seen in Queensland, Australia, and Sonora, Mexico.

The organizers and the congress committee would like to thank major sponsors Corteva, the Grains Research and Development Corporation (GRDC), the University of Queensland, and supporting sponsors in silico Plants, the Journal of Experimental Botany, Illumina, Analitek, and LI-COR. Our sponsors’ belief in the value of the scientific content enabled us to deliver congress proceedings to not only delegates but the broader scientific community.


For more information, please contact

Professor Graeme Hammer
Chair of the Interdrought 2020 congress committee
g.hammer@uq.edu.au

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

QAAFI at the University of Queensland

The Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of the University of Queensland supported by the Queensland Government via the Department of Agriculture and Fisheries. QAAFI is comprised of four inter-related research centres working across crops, horticulture, animals, and nutrition and food sciences, with a focus on addressing challenges in the tropical and subtropical systems. For more information visit www.qaafi.uq.edu.au/about.

The many colors of maize, the material of life

Tonahuixtla, a small town located in Mexico’s state of Puebla, had suffered extreme environmental degradation due to deforestation and erosion. Agricultural land was in poor condition and the town had stopped producing many of their heirloom maize varieties, a loss to both biodiversity in the region and local culture. Poverty had increased, forcing many to migrate to bigger cities or to the United States for work. Those who were left behind, most of them women, had few ways to generate income to support their families.

Today, the story of Tonahuixtla is different. The town actively participates in reforestation and erosion-prevention activities. Landrace maize production is increasing, preserving the town and region’s biodiversity and customs. The residents have job opportunities that allow them to stay in their town and not migrate, all while preserving local biodiversity and protecting the environment.

What caused this change?

Corn husks.

Long considered a waste product, corn husks have been given a new lease on life through the Totomoxtle project. Named for the traditional indigenous Nahuatl word for corn husk, Totomoxtle turns the husks of native maize, found in a variety of colors, into a beautiful and sustainable veneer for furniture and walls. Founded by Mexican graphic designer Fernando Laposse, Totomoxtle has given farmers an incentive to plant native maize again, preserving invaluable biodiversity for future generations.

When Denise Costich, head of the maize collection of the germplasm bank at the International Maize and Wheat Improvement Center (CIMMYT), heard about the Totomoxtle project she knew she wanted to help. Passionate about preserving native maize, she and her team identified 16 landrace varieties from the CIMMYT maize collection that would produce husks in interesting colors and could grow well in the altitude and climate conditions of Tonahuixtla. She invited Laposse and project members to come visit the genebank and learn about CIMMYT’s work, and provided them with seed of the landraces they had identified.

“This is what we normally do in our work at the germplasm bank, we give people seed,” Costich said. “But this turned into a closer collaboration.”

In the dry and mountainous terrain surrounding the village of Tonahuixtla, native maize preservation and reforestation efforts have been key in protecting the local environment and culture. (Photo: Denise Costich/CIMMYT)
In the dry and mountainous terrain surrounding the village of Tonahuixtla, native maize preservation and reforestation efforts have been key in protecting the local environment and culture. (Photo: Denise Costich/CIMMYT)

Colorful collaboration

The maize germplasm bank team arranged for Totomoxtle project members to receive training in how to make controlled pollinations in the native maize varieties, at one of CIMMYT’s experimental stations.

“The technicians at CIMMYT’s Agua Fria station loved meeting the project members from Tonahuixtla, and immediately became passionate about the Totomoxtle project,” Costich said. “To this day, the technicians still save all of the colored corn husks from CIMMYT maize trials and send them to Tonahuixtla to provide them with additional material for their project.”

In the village of Tonahuixtla, project members — many of them women — work to iron the corn husks flat and glue them on to a stiff backing, then send them via courier to Laposse’s workshop in London where he uses them to create beautiful furniture and wall panels. This work allows the residents of Tonahuixtla to stay in their village and not be forced to migrate, all while preserving maize biodiversity and protecting the environment.

“Part of what this project is doing is also helping to keep families together — providing livelihoods so that people can stay in their communities, so that they don’t have to send all of their young people off to Mexico City or to the United States. To me, it’s really all connected,” Costich said.

Native maize tassels against a bright blue sky in Tonahuixtla. (Photo: Denise Costich/CIMMYT)
Native maize tassels against a bright blue sky in Tonahuixtla. (Photo: Denise Costich/CIMMYT)
In the town of Tonahuixtla, Puebla, Mexico, a native maize field sits below a tree-covered hillside. The town has been active in reforestation efforts to control erosion. (Photo: Denise Costich/CIMMYT)
In the town of Tonahuixtla, Puebla, Mexico, a native maize field sits below a tree-covered hillside. The town has been active in reforestation efforts to control erosion. (Photo: Denise Costich/CIMMYT)
Denise Costich (front right, sitting) poses for a photo with Tonahuixtla residents and members of the Totomoxtle project. (Photo: Provided by Denise Costich/CIMMYT)
Denise Costich (front right, sitting) poses for a photo with Tonahuixtla residents, members of the Totomoxtle project, and CIMMYT Germplasm Bank staff. (Photo: Provided by Denise Costich/CIMMYT)

The value of sustainability

The project also shows the intersection between biodiversity conservation and protecting the local environment. The maize husks used for the project are a sustainable and biodegradable material, and any residue from the maize husks that are not used for the Totomoxtle project are either fed to animals in the dry season or used to make fertilizer, which is then returned to the maize fields, a completely circular cycle in which nothing is wasted.

“I think that many of the communities that we work in really do understand the value and the importance of biodiversity,” Costich said. “In Tonahuixtla, the people are trying to reforest the hillsides in their region. They understand the connection between having no vegetation on the hills and having the rain water just roll right off the hills and into the temporary streams, thus losing that critically important resource. Over the years, as a result of the work they have done there, they have seen with their own eyes the improvement in the environment, not only that the hills are now covered with vegetation, but also they see a lot less runoff and erosion. I think that’s a really important lesson for everyone. I come from an ecology background, so I am always very excited to get involved in projects where it’s not just about maize, it’s about everything. It’s also about people’s lives, and nutrition, and the connections between them.”

Preserving local maize biodiversity is not just important for Tonahuixtla — it is important to all of humanity. Native maize varieties have adapted for thousands of years in farmers’ fields across Mesoamerica, developing natural resistance to local plant pests and diseases, as well as climatic conditions such as heat or drought. These native maize seeds, passed down generation to generation, could hold the key to developing improved maize varieties that can resist emerging maize diseases or extreme weather events related to climate change. If this biodiversity is lost, it represents a loss to global food security as a whole.

CIMMYT works to protect many of these native maize varieties in their germplasm bank, which is home to over 28,000 different collections of maize. Kept in cold storage under optimum conditions in the CIMMYT seed vault, these seeds are preserved for future generations and are available to anyone who needs them, including farmers such as those in Tonahuixtla, who had lost much of their native maize diversity.

“The biodiversity of cultivated plants is basically the guarantee for the future,” Costich said. “This is our security backup. Seed security is food security.”

Maize cobs and veneer made out of corn husks are on display at an exhibition of the Totomoxtle project in Mexico City. (Photo: Denise Costich/CIMMYT)
Maize cobs and veneer made out of corn husks are on display at an exhibition of the Totomoxtle project in Mexico City. (Photo: Denise Costich/CIMMYT)
Members of the CIMMYT Germplasm Bank team stand for a photo with a variety of landraces at an exhibition of the Totomoxtle project in Mexico City. (Photo: Emilio Diaz)
Members of the CIMMYT Germplasm Bank team stand for a photo with a variety of landraces at an exhibition of the Totomoxtle project in Mexico City. (Photo: Emilio Diaz)

Cover photo: Denise Costich (center, pink hat) stands with members of the Totomoxtle project and CIMMYT Germplasm Bank staff members near Tonahuixtla. (Photo: Provided by Denise Costich/CIMMYT)

Farm mechanization under COVID-19

The COVID-19 pandemic continues to transform the way the world operates, and agricultural production systems are not exempt.

Even in countries that have identified the agricultural sector as an essential one, ongoing restrictions on transport and freedom of movement are causing disruptions across the value chain — with potentially devastating impact on already fragile food systems in Latin America, sub-Saharan Africa and South Asia.

With this in mind, systems agronomists and mechanization specialists at the International Maize and Wheat Improvement Center (CIMMYT), discuss the impact of restrictions on agricultural labor and production, and the role farm mechanization can play in addressing new challenges.

What are the implications of the agricultural labor shortages that are emerging in Africa and Latin America as a result of COVID-19 restrictions?

A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)
A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)

FrĂ©dĂ©ric Baudron: The pandemic has demonstrated that food production systems around the world — even in countries where agriculture is thought to be highly mechanized — are highly dependent on farm labor.

Africa is often presented as being dominated by farms which rely mainly on the labor of family members. Therefore, one could expect that Africa would be spared from the consequences of unavailability and/or unaffordability of hired labor. However, a recent CIMMYT study shows that farming systems in Africa are far more dependent on hired labor than commonly thought, and that the quasi total dependence of smallholder farming on family labor is a myth. Depending on the farming system, a complete loss of hired labor could lead to a productivity decrease of up to 20% in Eastern and Southern Africa. Hired labor is also likely to be replaced by child labor.

Because most production on the continent is rainfed during a single season, most farmers only plant and harvest once per year, making the timing of each task critical. A delay in planting because of labor shortages — as will soon occur Ethiopia — could lead to dramatically reduced yields. A delay in harvesting — as is currently experienced in Zimbabwe — means a large fraction of the crop is likely to be spoilt in the field.

Jelle Van Loon: The situation is similar for Mexico and the general Central American corridor, although the main production cycle is only just starting. Proper land preparation and timely sowing are critical, not only in terms of food production and achieving proper yields, but also to ensure that farmers have a stable income at the end of the year. This is especially important now, as financial and food reserves are shrinking at a faster pace due to COVID-19 restrictions that heavily affect demand on informal markets.

An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)
An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)

Are you seeing a similar situation in South Asia?

Timothy Krupnik: Depending on the country, we’ve seen either abrupt interruptions in the movement of agricultural laborers — for example in India where millions of migrant laborers have not been able to travel home during lockdown — or an influx of people from urban areas who fled to their villages when lockdown began.

In the latter case, one might expect this to increase labor availability for farming, but we tended to observe the reverse. People remain largely frightened of coming out of their homes, so even in rural areas which saw an influx of people, labor availability has not necessarily increased. Where laborers are willing to work, our initial scan of the evidence indicates that daily wage labor costs have also increased considerably due to risks of infection spreading. In either situation, smallholder farmers who need to hire labor to assure crucial crop management activities like planting or harvesting are suffering. There are reports emerging also of increased child labor in the region as schools are closed and resource-poor farmers are allocating family members and children to work where they can’t afford to hire labor.

M.L. Jat: I would like to cite the specific example of intensive rice-wheat rotation in India’s breadbasket and the Green Revolution corridors in the western Indo-Gangetic plains, which provide the bulk of cereals to the national food basket. An ex-ante analysis on the consequences of the reverse migration of the agricultural workforce and social distancing due to COVID-19 revealed that a delay in the transplanting of rice seedlings by two weeks is likely, which will delay rice harvesting and consequently delay the planting of wheat. This will potentially lead to rice and wheat production losses of 10-25%, worth up to $1.5 billion.

In addition, the shorter turn around between harvesting rice and planting wheat may further increase the incidence of rice residue burning. This is a major problem which creates significant health issues and may exacerbate the threat of COVID-19 by increasing both infection rates and disease severity.

Krupnik: The situation has increased interest and policy to support use of scale-appropriate machinery for operations like harvesting. In Bangladesh, for example, there was a recent and very serious risk of losing much of the rice harvest as the monsoon has started early and flash flooding has been a concern. Without manual laborers to harvest the crop, CIMMYT-led projects like the Cereal Systems Initiative for South Asia – Mechanization and Extension Activity (CSISA-MEA) have played a key role in assisting the movement of combine harvesters and crop reapers to areas at risk of crop losses and helping to assure the rice crop is harvested on time.

An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)
An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)

It sounds like these machines were instrumental in avoiding crop losses. Does this mean that mechanization has a key role to play in lessening the impact of these labor shortages?

Krupnik: During the COVID-19 crisis, scale-appropriate machinery has become even more important for mitigating labor shortages.  We work to facilitate the availability of scale-appropriate machinery not only so that farmers can buy and use equipment, but also by encouraging those who own machineries to become entrepreneurial service providers who offer efficient and mechanized land preparation, planting, irrigation, harvesting and post-harvesting to other farmers on an affordable fee-for-service basis.

This is a win-win situation for farmers who can’t access or afford the escalating costs of labor. In the COVID-19 crisis, these arrangements assist in responding to the labor crunch in locations where resource-poor farmers are most in need, and also allow farmers to get crucial work done while maintaining and encouraging social distancing.

Baudron: Over the past seven years, CIMMYT and its partners have fine-tuned technologies and developed delivery models — based on rural service providers supported by private sector companies — to scale the use of small machines in East and Southern Africa. These are profitable for both farmers and service providers and reduce labor requirements tremendously.

In Zimbabwe, we found that labor requirements were 15 times lower when establishing a maize field with a direct seeder pulled by a two-wheel tractor, and 23 times lower using a similar technology for establishing wheat in Rwanda, compared to the conventional method based on labor and draft power. A ton of maize that would take 12 people a full day to shell manually, can be shelled in one hour using a small double-cob sheller that costs about $300.

Jat: Rapid policy decisions by sub-national and national governments on facilitating more mechanized operations in labor intensive rice-wheat production regions will address labor availability issues while contributing to productivity enhancement of succeeding wheat crop in rotation, as well as overall system sustainability. Our ex-ante analysis on the implications of labor shortages in rice-wheat rotation in the western Indo-Gangetic plains due to COVID-19 indicates that adoption of scale-appropriate farm mechanization has the potential to stabilize the food production as well as reducing the income losses and air pollution surges in northwest India.

Harvesting maize in Mexico. (Photo: CIMMYT)
Harvesting maize in Mexico. (Photo: CIMMYT)

The situation in the regions each of you have mentioned is unique, but are there any global trends that you’ve noticed? And if so, can other regions learn from these localized experiences?

Krupnik: A huge part of what we do as a research and training institute is facilitate exchanges of information across continents and countries. Different types and designs of machinery that can be used in similar circumstances can be shared, as can business models supporting service providers.

Importantly, part of the concept of ‘scale-appropriate mechanization’ is also learning when and where machinery makes sense — where labor is not scarce and rural communities are highly dependent on income from labor to sustain their communities, some forms of mechanization may not be appropriate. We work to understand these dynamics and target the right machines in the right time and right places.

Van Loon: In addition to reducing pressure on available labor and alleviating drudgery, modern farm equipment tailored to the needs of smallholders can also increase competitiveness, as it allows for higher precision and efficiency.

In this sense, scale-appropriate mechanization can stimulate rural transformation incentivizing short and efficient value chains while ensuring stable food provision — aspects that have become essential to navigating the present crisis.

Has the current pandemic brought up any new perspectives in terms of how you consider labor and mechanization?

Baudron: We often look at yield and area planted in staple crops to assess the food security situation of a country during a particular year. This pandemic has shown us that we need to pay more attention to labor productivity. In many countries, policy-makers and development agents fear that mechanization will displace labor, but the dependency of staple crops on labor is a threat to food security, as we currently see in Africa and South Asia.

If the production of fruit, vegetables, cash crops, and so on will continue to depend on manual labor, it is essential in my view for critical tasks in the production of staples to be mechanized — particularly planting and harvesting. This will ensure the resilience of national food systems in the case of a future disruption similar to the COVID-19 pandemic.

Cover photo: Establishment of demo trial in Nyanga, Zimbabwe. (Photo: CIMMYT/ZRBF)

Breaking Ground: Yoseph Beyene breeds desirable maize varieties for smallholder farmers in sub-Saharan Africa

About 25 years ago, Yoseph Beyene first heard about the International Maize and Wheat Improvement Center (CIMMYT) from one of his professors, back when he was pursuing his undergraduate degree in Plant Science at Haramaya University in Ethiopia. “The professor, whom I regard as a great mentor, (
) always told me that if I ever got an opportunity to work at CIMMYT, I should not hesitate to take it up, as it was a great place to conduct maize breeding,” recollects Beyene, now a maize breeder at CIMMYT. He grew up in Alem Ketema, a village located 190 km north of Addis Ababa, Ethiopia’s capital.

In retrospect, he did not know this would change his perspective on how he viewed crops, especially maize, on smallholder farms. Like many other families in Alem Ketema, his family attended to their small farm to meet their food and nutritional needs. Most people practiced subsistence farming, intertwined with livestock keeping, on small plots that were typically less than 2 hectares. At the backyard of his family’s farm, different crops such as maize, sorghum and teff were grown. As a child, he never quite registered in his mind that farmers grew mainly recycled seed. “In hindsight, I can say that the yield of a crop such as maize was just about 1.5 tons per hectare at the time,” he reckons.

Such low yield potential meant feeding relatively large family sizes of about seven people was a tall order. It did not help that crops such as maize and wheat were frequently affected by diseases and pests and erratic rains, which diminished yields. It was not until his high school days when he had firsthand experience with high-yielding improved crop varieties. As part of the farm management class, he actively participated in the school’s farm management unit. He got to appreciate the yield variation between improved and local varieties, grown on the school plots. These improved seed, he quickly realized, were the ideal antidote to the low yield farmers obtained. 

Struck by an epiphany

“This was like a eureka moment for me. When I realized that it was possible to improve and deliver desirable seed varieties that could double farmers’ yields, I decided to study plant breeding at the university. If only the farmers back in my village knew about the improved seed and adopted them at the time, it could not only have helped solve the problems of food insecurity but also bettered their livelihoods,” he ponders.

When he enrolled for a PhD in Plant Breeding and Genetics at the University of Pretoria, he did his research in highland maize in collaboration with CIMMYT in Ethiopia. Upon completion, he was appointed as a senior cotton breeder at South Africa’s Agricultural Research Council (ARC), where he worked for one and a half years.

“One day, I saw an advertisement in which CIMMYT was looking for a maize breeder. I applied, went for the interview and was happy to get the position. That was in 2008,” he says.

The right tool for the right variety

Biotic and abiotic stresses are becoming more frequent and vicious because of climate change and there is growing urgency to tackle them to avert future potential food crises.

Beyene’s current research focuses on developing high-yielding and climate-resilient maize inbred lines and hybrids for sub-Saharan Africa. He uses  conventional and molecular breeding, including integration of novel tools and techniques, such as doubled haploid, and marker-assisted recurrent section and genomic selection. Over the years, he has developed at least 25 new drought-tolerant maize hybrids recommended for commercialization in Kenya, Mozambique, Uganda, South Africa and Tanzania. Currently, 23 seed companies have been engaged to produce and market the released hybrids through sub-licensing.

Presently, as the Regional Breeding Coordinator for Africa, he is responsible for assessing the progress of implementing product profile-based breeding, appropriate germplasm exchange within and across regional breeding hubs, and ascertaining the progress on new initiatives by regional breeding teams.

A long-term endeavor

Breeding is a costly, time consuming and complex exercise. “It takes at least 10 years from crossing to release using pedigree breeding because the hybrids should be evaluated in multiple years and tested in multiple locations, which increases costs and time of the breeding cycle. You have to appreciate the fact that you are not breeding for now but for the future,” he says.

“As a breeder, you have to keep testing new tools and techniques to make breeding more efficient. Yet, resources are not always constant but inadequate. Stresses are becoming more urgent and vicious, despite increased urgency in tackling them to avert a potential food crises,” he says.

To reduce the time and accelerate genetic gains, Beyene and his colleagues at CIMMYT are currently applying the genomic selection technique for maize breeding, using it to predict the performance of un-phenotyped genotypes at early stage of testing. He and his colleagues recently published their research comparing genomic selection with phenotypic selection, as used by CIMMYT’s maize breeding program in sub-Saharan Africa. They found that the use of genomic selection for yield under optimum and drought conditions in tropical maize can produce selection candidates with similar performance as those generated from conventional phenotypic selection, but at a lower cost. They concluded that this strategy should be effectively incorporated into maize breeding pipelines to enhance breeding program efficiency.

Breeding challenges notwithstanding, Beyene feels fulfilled whenever he sees a farmer has planted a variety that he helped breed. “The epitome of my inspiration is when there is a smile on their face because of the variety’s good performance on their farm,” he says.

Interacting with the farmers and seed companies provides an opportunity for him to learn, understand their varietal preferences as well as appreciate the impact that his work has on their operations. He is also actively engaged in building the capcity of public and private partners, and supervising master’s and doctoral students from various countries. He has published more than 50 articles in journals.

The life of a breeder is not as lonely and boring as some would think. Beyene creates time to be with his three children, playing with them and helping with their homework, taking them out for social events. He also dedicates time to watch football, reality television, comedy and drama with his family.

Scaling up research for development in CGIAR

An overview of the proposed ILRI scaling process. (Graphic: ILRI)
An overview of the proposed ILRI scaling process. (Graphic: ILRI)

“Agricultural research for development is increasingly being held accountable to demonstrate that research goes beyond successful pilots,” said Iain Wright, deputy director general of research and development at the International Livestock Research Institute (ILRI).

In a bid to scale impact of its research outputs, ILRI has recently undertaken a systematic review of the scaling tools and processes available to help guide and improve the organization’s efforts.

The Scaling Scan has been incorporated into a new scaling framework for ILRI projects and for the CGIAR Research Program on Livestock (Livestock CRP). The Scaling scan, developed in 2017 by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with PPPLab at SNV, is one of three tools that have been identified as most suitable for the ILRI and CGIAR operational contexts.

“ILRI’s scaling framework applies the Scaling Scan and the USAID Scaling Pathway methodology before diving deep using the RTB/Wageningen Scaling Readiness methodology,” explained CIMMYT Scaling Coordinator Maria Boa. “It’s exciting because it aligns some of the best available tools to scale impact with a systems view.”

Designed for use by anyone involved in pro-poor and sustainable development programs looking to scale impact, the CIMMYT Scaling scan is found to be user-friendly and quick to help project implementation teams understand and define their scaling ambitions and asses their scaling environment. Though it is often applied as part of annual project review meetings, the tool can in fact be used at any stage of a project’s lifecycle. This helps stakeholders understand the multiple dimensions of scaling and the significant role nontechnical factors play in a scaling mindset.

CIMMYT shared lessons on how the methodology can be applied in a workshop setting and the Livestock CRP team has already used these to organize two workshops around improving productivity and incomes in Uganda’s pig value chain. The workshops, held in November 2019 and February 2020, brought together value chain actors, CRP researchers and project staff to better understand the multiple dimensions of scaling, develop realistic scaling goals, and identify key bottlenecks and opportunities using the Scaling Scan.

Read more on ILRI’s website:
ILRI adopts new framework for scaling up livestock research for development

New Publications: Cropping pattern zonation of Pakistan

The tremendous diversity of crops in Pakistan has been documented in a new publication that will foster more effective and targeted policies for national agriculture.

Using official records and geospatial modeling to describe the location, extent, and management of 25 major and minor crops grown in 144 districts of Pakistan, the publication “Cropping Pattern Zonation of Pakistan” offers an invaluable tool for resource planning and policymaking to address opportunities, challenges and risks for farm productivity and profitability, according to Muhammad Imtiaz, crop scientist and country representative in Pakistan for the International Maize and Wheat Improvement Center (CIMMYT).

“With rising temperatures, more erratic rainfall and frequent weather extremes, cropping pattern decisions are of the utmost importance for risk mitigation and adaptation,” said Imtiaz, a co-author of the new publication.

Featuring full-color maps for Pakistan’s two main agricultural seasons, based on area sown to individual crops, the publication was put together by CIMMYT and the Climate, Energy and Water Research Institute (CEWRI) of the Pakistan Agricultural Research Council (PARC), with technical and financial support from the Agricultural Innovation Program (AIP) for Pakistan, which is funded by the U.S. Agency for International Development (USAID).

Pakistan’s main crops–wheat, rice, cotton and sugarcane—account for nearly three-quarters of national crop production. Various food and non-food crops are grown in “Rabi,” the dry winter season, October-March, and “Kharif,” the summer season characterized by high temperatures and monsoon rains.

Typically, more than one crop is grown in succession on a single field each year; however, despite its intensity, farming in Pakistan is largely traditional or subsistence agriculture dominated by the food grains, according to Ms. Rozina Naz, Principal Scientific Officer, CEWRI-PARC.

“Farmers face increasing aridity and unpredictable weather conditions and energy shortage challenges that impact on their decisions regarding the type and extent of crops to grow,” said the scientist, who is involved in executing the whole study. “Crop pattern zoning is a pre-requisite for the best use of land, water and capital resources.”

The study used 5 years (2013-14 to 2017-18) of data from the Department of Agricultural Statistics, Economics Wing, Ministry of National Food Security and Research, Islamabad. “We greatly appreciate the contributions of scientists and technical experts of Crop Science Institute (CSI) and CIMMYT,” Imtiaz added.

View or download the publication:
Cropping Pattern Zonation of Pakistan. Climate, Energy and Water Research Institute, National Agricultural Research Centre, Pakistan Agricultural Research Council, and the International Maize and Wheat Improvement Center. 2020. CDMX: CEWRI, PARC, and CIMMYT.

See more recent publications from CIMMYT researchers:

1. Plant community strategies responses to recent eruptions of PopocatĂ©petl volcano, Mexico. 2019. Barba‐Escoto, L., Ponce-Mendoza, A., GarcĂ­a-Romero, A., Calvillo-Medina, R.P. In: Journal of Vegetation Science v. 30, no. 2, pag. 375-385.

2. New QTL for resistance to Puccinia polysora Underw in maize. 2019. Ce Deng, Huimin Li, Zhimin Li, Zhiqiang Tian, Jiafa Chen, Gengshen Chen, Zhang, X, Junqiang Ding, Yuxiao Chang In: Journal of Applied Genetics v. 60, no. 2, pag. 147-150.

3. Hybrid wheat: past, present and future. 2019. Pushpendra Kumar Gupta, Balyan, H.S., Vijay Gahlaut, Pal, B., Basnet, B.R., Joshi, A.K. In: Theoretical and Applied Genetics v. 132, no. 9, pag. 2463-2483.

4. Influence of tillage, fertiliser regime and weeding frequency on germinable weed seed bank in a subhumid environment in Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Gandiwa, E., Thierfelder, C., Muposhi, V.K., Svotwa, E.In: South African Journal of Plant and Soil v. 36, no. 5, pag. 319-327.

5.  Identification and mapping of two adult plant leaf rust resistance genes in durum. 2019. Caixia Lan, Zhikang Li, Herrera-Foessel, S., Huerta-Espino, J., Basnet, B.R., In: Molecular Breeding v. 39, no. 8, art. 118.

6. Genetic mapping reveals large-effect QTL for anther extrusion in CIMMYT spring wheat. 2019. Muqaddasi, Q.H., Reif, J.C., Roder, M.S., Basnet, B.R., Dreisigacker, S. In: Agronomy v. 9 no. 7, art. 407.

7. Growth analysis of brachiariagrasses and ‘tifton 85’ bermudagrass as affected by harvest interval. 2019. Silva, V. J. da., Faria, A.F.G., Pequeno, D.N.L., Silva, L.S., Sollenberger, L.E., Pedreira, C. G. S. In: Crop Science v. 59, no. 4, pag. 1808-1814.

8. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. 2019. Chunqin Zou, Yunfei Du, Rashid, A., Ram, H., Savasli, E., Pieterse, P.J., Ortiz-Monasterio, I., Yazici, A., Kaur, C., Mahmood, K., Singh, S., Le Roux, M.R., Kuang, W., Onder, O., Kalayci, M., Cakmak, I. In: Journal of Agricultural and Food Chemistry v. 67, no. 29, pag. 8096-8106.

9. Economic impact of maize stem borer (Chilo partellus) attack on livelihood of maize farmers in Pakistan. 2019. Ali, A., Issa, A.B. In: Asian Journal of Agriculture and Biology v. 7, no. 2, pag. 311-319.

10. How much does climate change add to the challenge of feeding the planet this century?. 2019. Aggarwal, P.K., Vyas, S., Thornton, P.K., Campbell, B.M. In: Environmental Research Letters v. 14 no. 4, art. 043001.

11. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. 2019. Ming Hao, Lianquan Zhang, Laibin Zhao, Shoufen Dai, Aili Li, Wuyun Yang, Die Xie, Qingcheng Li, Shunzong Ning, Zehong Yan, Bihua Wu, Xiujin Lan, Zhongwei Yuan, Lin Huang, Jirui Wang, Ke Zheng, Wenshuai Chen, Ma Yu, Xuejiao Chen, Mengping Chen, Yuming Wei, Huaigang Zhang, Kishii, M, Hawkesford, M.J, Long Mao, Youliang Zheng, Dengcai Liu In: Theoretical and Applied Genetics v. 132, no. 8, pag. 2285-2294.

12. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. 2019. Hassine, M., Siah, A., Hellin, P., Cadalen, T., Halama, P., Hilbert, J.L., Hamada, W., Baraket, M., Yahyaoui, A.H., Legreve, A., Duvivier, M. In: Fungal Biology v. 123, no. 10, pag. 763-772.

13. Influence of variety and nitrogen fertilizer on productivity and trait association of malting barley. 2019. Kassie, M., Fantaye, K. T. In: Journal of Plant Nutrition v. 42, no. 10, pag. 1254-1267.

14. A robust Bayesian genome-based median regression model. 2019. Montesinos-Lopez, A., Montesinos-Lopez, O.A., Villa-Diharce, E.R., Gianola, D., Crossa, J. In: Theoretical and Applied Genetics v. 132, no. 5, pag. 1587-1606.

15. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. 2019. Jin Sun, Poland, J.A., Mondal, S., Crossa, J., Juliana, P., Singh, R.P., Rutkoski, J., Jannink, J.L., Crespo-Herrera, L.A., Velu, G., Huerta-Espino, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 132, no. 6, pag. 1705-1720.

16. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. 2019. Varshney, R.K., Thudi, M., Roorkiwal, M., Weiming He, Upadhyaya, H., Wei Yang, Bajaj, P., Cubry, P., Abhishek Rathore, Jianbo Jian, Doddamani, D., Khan, A.W., Vanika Garg, Annapurna Chitikineni, Dawen Xu, Pooran M. Gaur, Singh, N.P., Chaturvedi, S.K., Nadigatla, G.V.P.R., Krishnamurthy, L., Dixit, G.P., Fikre, A., Kimurto, P.K., Sreeman, S.M., Chellapilla Bharadwaj, Shailesh Tripathi, Jun Wang, Suk-Ha Lee, Edwards, D., Kavi Kishor Bilhan Polavarapu, Penmetsa, R.V., Crossa, J., Nguyen, H.T., Siddique, K.H.M., Colmer, T.D., Sutton, T., Von Wettberg, E., Vigouroux, Y., Xun Xu, Xin Liu In: Nature Genetics v. 51, pag. 857-864.

17. Farm typology analysis and technology assessment: an application in an arid region of South Asia. 2019. Shalander Kumar, Craufurd, P., Amare Haileslassie, Ramilan, T., Abhishek Rathore, Whitbread, A. In: Land Use Policy v. 88, art. 104149.

18. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. 2019. Radhakrishnan, G.V., Cook, N.M., Bueno-Sancho, V., Lewis, C.M., Persoons, A., Debebe, A., Heaton, M., Davey, P.E., Abeyo Bekele Geleta, Alemayehu, Y., Badebo, A., Barnett, M., Bryant, R., Chatelain, J., Xianming Chen, Suomeng Dong, Henriksson, T., Holdgate, S., Justesen, A.F., Kalous, J., Zhensheng Kang, Laczny, S., Legoff, J.P., Lesch, D., Richards, T., Randhawa, H. S., Thach, T., Meinan Wang, Hovmoller, M.S., Hodson, D.P., Saunders, D.G.O. In: BMC Biology v. 17, no. 1, art. 65.

19. Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat. 2019. Bhatta, M.R., Morgounov, A.I., Belamkar, V., Wegulo, S.N., Dababat, A.A., Erginbas-Orakci, G., Moustapha El Bouhssini, Gautam, P., Poland, J.A., Akci, N., Demir, L., Wanyera, R., Baenziger, P.S. In: International Journal of Molecular Sciences v. 20, no. 15, art. 3667.

20.  Genetic diversity and population structure analysis of synthetic and bread wheat accessions in Western Siberia. 2019. Bhatta, M.R., Shamanin, V., Shepelev, S.S., Baenziger, P.S., Pozherukova, V.E., Pototskaya, I.V., Morgounov, A.I. In: Journal of Applied Genetics v. 60, no. 3-4, pag. 283-289.

21. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. 2019. Jing Li, Gou-Bo Chen, Rasheed, A., Delin Li, Sonder, K., Zavala Espinosa, C., Jiankang Wang, Costich, D.E., Schnable, P.S., Hearne, S., Huihui Li In: Molecular Ecology v. 28, no. 15, pag. 3544-3560.

22. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: evidence from Uganda. 2019. Simtowe, F.P., Amondo, E., Marenya, P. P., Rahut, D.B., Sonder, K., Erenstein, O. In: Land Use Policy v. 88, art. 104091.

23. Do market shocks generate gender-differentiated impacts?: policy implications from a quasi-natural experiment in Bangladesh. 2019. Mottaleb, K.A., Rahut, D.B., Erenstein, O. In: Women’s Studies International Forum v. 76, art. 102272.

24. Gender differences in the adoption of agricultural technology: the case of improved maize varieties in southern Ethiopia. 2019. Gebre, G.G., Hiroshi Isoda, Rahut, D.B., Yuichiro Amekawa, Hisako Nomura In: Women’s Studies International Forum v. 76, art. 102264.

25. Tracking the adoption of bread wheat varieties in Afghanistan using DNA fingerprinting. 2019. Dreisigacker, S., Sharma, R.K., Huttner, E., Karimov, A. A., Obaidi, M.Q., Singh, P.K., Sansaloni, C.P., Shrestha, R., Sonder, K., Braun, H.J. In: BMC Genomics v. 20, no. 1, art. 660.

Fawligen registered in Bangladesh

Ispahani and AgBiTech are pleased to announce the formal registration of a biological control for Fall Armyworm in Bangladesh.

This rapid assessment and registration despite the ongoing lockdown due to Covid-19 is the result of months of collaborative hard work and support from members representing multiple organizations including USAID, CIMMYT, the Ministry of Agriculture, Bangladesh Agricultural Research Institute, Plant Protection Wing of Agricultural Extension, and the Fall Armyworm National Task Force.

Read more here: https://www.prnewswire.com/news-releases/fawligen-registered-in-bangladesh-301061228.html

International analytics award goes to CGIAR centers for sustainable agriculture tools

A researcher demonstrates the use of the AgroTutor app on a mobile phone in Mexico. (Photo: Francisco AlarcĂłn/CIMMYT)
A researcher demonstrates the use of the AgroTutor app on a mobile phone in Mexico. (Photo: Francisco AlarcĂłn/CIMMYT)

While technology and data analysis have revolutionized farming in high-income countries, farmers in low-income nations have often been left out. New tools developed by CGIAR centers are narrowing the digital divide for smallholder farmers. These tools are increasingly gaining international notice beyond the field of agriculture, as a recent international award attests.

The 2020 Innovative Applications in Analytics Award (IAAA) was awarded to the International Maize and Wheat Improvement Center (CIMMYT), the Alliance of Bioversity International and CIAT, and the International Institute for Applied Systems Analysis (IIASA). Their tools, which help farmers to increase productivity, use more sustainable practices and access markets, topped bids from international technology companies and universities with projects applied to various fields.

“The award from this collaboration highlights the strengths of bringing together our research centers under One CGIAR,” said Daniel JimĂ©nez, an Alliance scientist who was part of the winning team. “It shows that we can collaborate and compete at the highest level when it comes to applying science to global challenges.”

CIMMYT, CIAT and the IIASA won with their ‘Integrated Analytics for Sustainable Agriculture in Latin America’ projects. Finalists included projects focused on a wide range of analytics tools used in pricing, optimizing gas transmission, taxi guidance and management of hospital discharges.

A farmer in Mexico uses the AgroTutor application in the field. (Photo: Francisco AlarcĂłn/CIMMYT)
A farmer in Mexico uses the AgroTutor application in the field. (Photo: Francisco AlarcĂłn/CIMMYT)

“The IAAA award emphasizes novelty and creativity in analytics applications along with real-world impact,” said Pallav Chhaochhria, Director of Equities Trading at Citigroup and co-chair of the IAAA selection committee, during the virtual award ceremony.

The winning submission recognizes groundbreaking data systems and tools by publicly funded researches and field technicians who advise more than 150,000 farmers who participate in MasAgro, CIMMYT’s bilateral collaboration project with Mexico for sustainable maize and wheat production.

The multi-disciplinary team developed a system to track over 500 variables during the growing cycle at each plot monitored. These variables are subsequently analyzed in combination with geographic, weather and market data obtained from open sources of information. Data analysts and researchers mine these databases to find correlations or patterns that help identify limiting factors and the best management practices for each plot.

The resulting analytics feed an application called AgroTutor — available on Android and iOS — which offers free information to farmers, including historic yield potential, local benchmarks, windows of opportunity, recommended agricultural practices and commodity price forecasting.

“Although sophisticated data analyses have been used in agriculture before, small and medium-sized farmers have seldom benefited from a combination of systems and tools that offer predictive and prescriptive site-specific analytics,” said Andrea Gardeazabal, Information and Communication Technology for Agriculture, Monitoring & Evaluation Manager for CIMMYT’s Integrated Development program. “MasAgro and AgroTutor have proven that resource-constrained farmers can benefit from high-end innovative analyses.”

Launching the AgriFoodTrust platform

A new testing and learning platform for digital trust and transparency technologies — such as blockchain — in agri-food systems was launched at the Strike Two Summit in late February. 

AgriFoodTrust debuted at the summit which brought together key agri-food system players to discuss how blockchain and related technologies can contribute to food safety, quality and sustainability, said Gideon Kruseman, an economist with the International Maize and Wheat Improvement Center (CIMMYT), who co-founded the platform. 

“Blockchain is often associated with the digital security that led to cryptocurrencies. However, growing research is providing evidence on its unique potential to bring greater efficiency, transparency and traceability to the exchange of value and information in the agriculture sector,” said Kruseman. 

“Many of the wicked problems and seemingly insuperable challenges facing dynamic, complex agri-food system value chains, especially in low and middle-income countries, boil down to a lack of trust, transparency and reliable governance structures,” said the researcher who also leads the Socio-Economic Data Community of Practice of the CGIAR Platform for Big Data in Agriculture.  

Future Food panelist speak at the Strike Two Summit in Amsterdam, the Netherlands. (Photo: The New Fork)
Future Food panelist speak at the Strike Two Summit in Amsterdam, the Netherlands. (Photo: The New Fork)

A blockchain is a ledger that is almost impossible to forge. It can be described as a data structure that holds transactional records and ensures security, transparency and decentralization. Technology may be at the foundation of the solutions, but technology is the easy part; solving the softer side has proven to be a seemingly insuperable challenge over the past decades, Kruseman explained. 

Digital trust and transparency technologies can be used to improve governance structures and limit corruption in agri-food systems in low and middle income countries, said Marieke de Ruyter de Wildt, co-founder of AgriFoodTrust. 

“This new generation of decentralized technologies is, in essence, improving governance structures. People often think it is about technology, but it’s not. It is about people and how we organize things.”  

“These technologies are neutral, immutable and censorship resistant. You can mimic this if you think about rules without a ruler. Just imagine what opportunities arise when a system is incorruptible,” said de Ruyter de Wildt.  

It is hoped, accessible via QR codes, for example, that the technology can be used to tackle challenges, such as preventing the sale of counterfeit seeds to smallholder farmers, ensuring the nutritional value of biofortified crop varieties and promoting the uptake of sustainable agricultural principles whilst improving the implementation and monitoring of international agreements related to agriculture. 

“This is where the platform comes in as a knowledge base. The AgriFoodTrust platform sees researchers from CGIAR Centers and academia, such as Wageningen University, experiment with these technologies on top of other solutions, business models and partnerships to determine what works, how, when and for whom, in order to share that information,” Kruseman added. 

Findings on the new platform will be used to build capacity on all aspects of the technologies and their application to ensure this technology is inclusive and usable. 

Along with Kruseman, AgriFoodTrust co-founders include digital agriculture experts de Ruyter de Wildt, the Founder and CEO of The New Fork, and Chris Addison, Senior Coordinator of Data for Agriculture at CTA. Seed funding for the platform has been raised through CTA, the CGIAR Platform for Big Data in Agriculture and the CGIAR Programs on MAIZE and WHEAT. 

“AgriFoodTrust sets out to accelerate understanding about these technologies and fundamentally make food systems more integer and resilient,” explained de Ruyter de Wildt. 

By 2050, farmers will need to grow enough diverse and nutritious food to feed 10 billion people on less land using less resources while faced with the challenges of a changing climate. This has led researchers to push for agricultural technologies that engender more inclusive, sustainable food systems. It is hoped that increased trust and transparency technologies can help overcome counterproductive incentives, poor governance structures, prevailing institutional arrangements and market failures. 

For more information, subscribe to the Socio-Economic Data Community of Practice newsletter.

Breaking Ground: Maria Itria Ibba and the lab that bakes bread

The rising and shifting demand for wheat, with rapid urbanization and increasingly globalized food markets, is pushing farmers more than ever to produce high-quality grain, according to the scientist who leads wheat quality research in the world’s foremost publicly-funded wheat breeding program.

“Wheat quality is becoming more and more important, as the industrial production of bread and other wheat-based foods increases to meet the demands of city dwellers, working women, and wheat consumers in wheat-importing countries,” said Maria Itria Ibba, head of the Wheat Chemistry and Quality Laboratory at the International Maize and Wheat Improvement Center (CIMMYT).

“Companies that produce and market food for such consumers demand high, consistent quality in grain they purchase and we have to help wheat farmers to meet stringent requirements.”

This is so important that CIMMYT’s Global Wheat Program — whose contributions figure in more than half of the wheat varieties released worldwide — directly uses lab data on milling, processing and end-use quality to decide which bread and durum wheat lines to move forward in its breeding programs, according to Ibba.

“Assessing quality is a huge task, because wheat is used to make hundreds of different foods, including all kinds of leavened bread, flat breads, pastas, noodles and steamed bread,” said Ibba. “Our lab is an integral part of breeding, analyzing thousands of grain samples from thousands of wheat lines each year for nearly a dozen quality parameters.”

Cut out for quality

A native of Viterbo, Italy, Ibba has led the Wheat Chemistry and Quality Laboratory since 2019 and is uniquely qualified for the job, with a bachelor’s degree in biotechnology, a master’s degree in biotechnology for the safety and quality of agricultural products — both from the University of Tuscia, Viterbo — and a doctorate in crop science from the Washington State University. Her Ph.D. dissertation addressed “low-molecular-weight glutenin subunit gene family members and their relationship with wheat end-use quality parameters.”

With a mother who studied medicine and a father who worked at the Italian Space Agency, Ibba said that in school she always enjoyed science subjects such as biology and chemistry. “They were easy for me to understand and I really liked how, after studying them, I was able to explain and understand many things around me.”

Ibba said the biggest challenges for her and her lab team are to understand wheat quality needs and conduct faster and better analyses.

“Several of the tests we do are expensive, time-consuming, and require skilled personnel and significant amounts of grain,” she explained, citing the use of exotically named devices such as the “Quadrumat Senior mill,” the “mixograph,” and the “alveograph,” to list a few. “We’re continuously looking for novel methods that are quicker, use smaller samples of grain, and with lower costs.”

Understanding the biochemical and genetic bases of wheat grain and flour quality traits is key to this, according to Ibba, but wheat quality traits are so complex genetically that DNA markers are of little help in breeding. “We’ve begun to explore whole genome selection for wheat quality traits, in collaboration with Kansas State University, but this will never completely replace the laboratory tests.”

Let’s talk health and nutrition

A staple of tours for the hundreds of visitors that come each year to CIMMYT in Mexico, the wheat quality laboratory combines the razzle-dazzle of high-tech devices with hands-on, sensory attractions such as inflating dough balls and freshly baked test loaves.

Ibba’s work includes talking to visitors about wheat, its important history and role in human nutrition and food, and concerns in the popular media regarding wheat and health.

“I think people know more now about what gluten is and its importance, but there is still the need to talk about gluten and wheat so that people can make informed decisions based on scientific facts,” she said. “I was happy to see the recent article from CIMMYT on a review study which, among many other things, showed there was no scientific evidence for the idea that eating refined flour is bad for your health.”

“Wheat provides about 20 percent of calories and protein for more than 4.5 billion people in developing countries,” Ibba pointed out. “There’s an increasing focus on understanding and improving the nutritional quality of wheat and its products because of the greater overall interest in diets and in the nutritional value of diverse foods.”

New publications: Gender differentiated small-scale farm mechanization in Nepal hills

The use of small-scale mechanization in smallholder farming systems in South Asia has increased significantly in recent years. This development is a positive step towards agricultural transformation in the region. Small-scale mechanization is now seen as a viable option to address labor scarcity and offset the impact of male outmigration in rural areas, as well as other shortages that undermine agricultural productivity.

However, most existing farm mechanization technologies are either gender blind or gender neutral. This is often to the detriment of women farmers, who are increasingly taking on additional agricultural work in the absence of male laborers. Minimizing this gender disparity among smallholders has been a key concern for policymakers, but there is little empirical literature available on gender and farm mechanization.

A new study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) addresses this gap, using data from six districts in the highlands of Nepal to assess the impact of the gender of household heads on the adoption of mini-tillers — small machinery used to prepare and cultivate land before planting.

Their findings reveal that, when it comes to mini-tiller adoption, there is a significant gender gap. Compared to male-headed households, explain the authors, the rate of adoption is significantly lower among female-headed households. Moreover, they add, when male- and female-headed households have similar observed attributes, the mini-tiller adoption rate among the food insecure female-headed households is higher than in the food secure group.

The authors argue that this gender-differentiated mini-tiller adoption rate can be minimized in the first instance by increasing market access. Their findings suggest that farm mechanization policies and programs targeted specifically to female-headed households can also help reduce this adoption gap in Nepal and similar hill production agroecologies in South Asia, which will enhance the farm yield and profitability throughout the region.

Read the full article in Technology in Society:
Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression.

Women farmers test a mini tiller on farmland in Ramghat, Nepal. (Photo: CIMMYT)

See more recent publications from CIMMYT researchers:

  1. Effect of missing values on variance component estimates in multienvironment trials. 2019. Aguate, F.M., Crossa, J., Balzarini, M. In: Crop Science v. 59, no. 2, p. 508-517.
  2. The relative efficiency of two multistage linear phenotypic selection indices to predict the net genetic merit. 2019. Ceron Rojas, J.J., Toledo, F.H., Crossa, J. In: Crop Science v. 59, no. 3, p. 1037-1051.
  3. High-density mapping of triple rust resistance in barley using DArT-Seq markers. 2019. Dracatos, P.M., Haghdoust, R., Singh, R.P., Huerta-Espino, J., Barnes, C.W., Forrest, K.L., Hayden, M., Niks, R.E., Park, R.F., Singh, D. In: Frontiers in Plant Science v. 10, art. 467.
  4. Modernising breeding for orphan crops: tools, methodologies, and beyond. 2019. Ribaut, J.M., Ragot, M. In: Planta v. 250, no. 3, p. 971-977.
  5. An update of recent use of Aegilops species in wheat breeding. 2019. Kishii, M. In: Frontiers in Plant Science v. 1., art. 585.
  6. Genetics of greenbug resistance in synthetic hexaploid wheat derived germplasm. 2019. Crespo-Herrera, L.A., Singh, R.P., Reynolds, M.P., Huerta-Espino, J. In: Frontiers in Plant Science v. 10, art. 782.
  7. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population. 2019. Xinyao He, Dreisigacker, S., Singh, R.P., Singh, P.K. In: Theoretical and Applied Genetics v. 132, no. 8, 2401-2411.
  8. Studying selection criteria and genetic variability for improvement of indigenous maize in Pakistan. 2019. Maqbool, M.A., Aslam, M., Issa, A.B., Khan, M. S., Saeed, M.T. In: Pakistan Journal of Agricultural Sciences v. 56, no. 4. 819-827.
  9. Genome wide association study of karnal bunt resistance in a wheat germplasm collection from Afghanistan. 2019. Gupta, V., Xinyao He, Kumar, N., Fuentes DĂĄvila, G., Sharma, R.K., Dreisigacker, S., Juliana, P., Ataei, N., Singh, P.K. In: International Journal of Molecular Sciences v. 20, no. 13, art. 3124.
  10. Does caste determine farmer access to quality information? 2019. Krishna, V.V., Aravalath, L., Vikraman, S. In: PLoS One v. 14, no. 1, art. e0210721.
  11. Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropical maize (Zea mays L.). 2019. Trachsel, S., Dhliwayo, T., Gonzalez-Perez, L., Mendoza Lugo, J.A., Trachsel, M. In: PLoS One v. 14, no. 3, art. e0212200.
  12. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. 2019. Roncallo, P.F., Beaufort, V., Larsen, A.O., Dreisigacker, S., Echenique, V. In: PLoS One v. 14, no. 6, art. e0218562.
  13. The abandonment of maize landraces over the last 50 years in Morelos, Mexico: a tracing study using a multi-level perspective. 2019. McLean R., F.D., Camacho Villa, T.C., Almekinders, C., PĂš, M.E., Dell’Acqua, M., Costich, D.E. In: Agriculture and Human Values v. 36, no. 4, 651-668.
  14. Molecular screening of Zymoseptoria tritici resistance genes in wheat (Triticum aestivum L.) using tightly linked simple sequence repeat markers. 2019. Mekonnen, T., Haileselassie, T., Kaul, T., Sharma, M., Abeyo Bekele Geleta, Kassahun, T. In: European Journal of Plant Pathology v. 155, no. 2, p. 593-614.
  15. Bacterial diversity based on a 16S rRNA gene amplicon data set from a high-altitude crater lake and glacial samples of the Iztaccihuatl volcanic complex (Mexico). 2019. Calvillo-Medina, R.P., Reyes‐Grajeda, J.P., Moreno-Andrade, V.D., Barba‐Escoto, L., Bautista‐de Lucio, V.M., Jones, G.H., Campos‐Guillen, J. In: Microbiology Resource Announcements v. 8, no. 12, art. e01636-18art. e01636-18art. e01636-18art. e01636-18art. e01636-18art. e01636-18.
  16. Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, ‘BARI Gom 33’, in Bangladesh. 2019. Hossain, A., Mottaleb, K.A., Farhad, M., Barma, N.C.D. In: Acta Agrobotanica v. 72, no. 2, art. 1775.
  17. Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing. 2019. Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto Espinosa, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H., Pacheco-Labrador, J., Mac Arthur, A. In: Remote Sensing v. 11, no. 8, art. 962.
  18. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance. 2019. Badu-Apraku, B., Talabi, O., Fakorede, M. A. B., Fasanmade, Y., Gedil, M., Magorokosho, C., Asiedu, R. In: BMC Plant Biology v. 9, art. 129.
  19. Understanding factors associated with agricultural mechanization: a Bangladesh case. 2019. Aryal, J.P., Rahut, D.B., Maharjan, S., Erenstein, O. In: World Development Perspectives v. 13, p. 1-9.
  20. Wealth, education and cooking-fuel choices among rural households in Pakistan. 2019. Rahut, D.B., Ali, A., Mottaleb, K.A., Aryal, J.P. In: Energy Strategy Reviews v. 24, p. 236-243.
  21. Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. 2019. Nan Wang, Bojuan Liu, Xiaoling Liang, Yueheng Zhou, Song, J., Jie Yang, Hongjun Yong, Jianfeng Weng, Degui Zhang, Mingshun Li, Nair, S.K., San Vicente, F.M., Zhuanfang Hao, Zhang, X, Xinhai Li. In: Molecular Breeding v. 39, no. 8, art. 113.
  22. Wildlife trade and consumer preference for species rarity: an examination of caged-bird markets in Sumatra. 2019. Krishna, V.V., Darras, K., Grass, I., Mulyani, Y.A., Prawiradilaga, D.M., Tscharntke, T., Qaim, M. In: Environment and Development Economics v. 24, no. 4, p. 339-360.
  23. Correction to: high-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. 2019. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J., Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant methods v. 15, art. 52.
  24. Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India. 2019. Singh, B., McDonald, A., Srivastava, A., Gerard, B. In: Nature Sustainability v. 2 no. 7, p. 580-583.

Blast and rust forecast

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.