Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

Navigating the seed market and transforming agricultural productivity

At the heart of the agricultural sector, grain off-takers/processors play a crucial role in ensuring that farmers have access to quality seeds that can increase productivity and improve livelihoods. One such processor, AgriNet in Uganda, led by Paul Nyande is deeply involved in managing the complex dynamics of seed and grain production, market demand and variety turnover making a significant impact on both the farming community and the wider agricultural market. 

AgriNet is known for its role in grain and legume markets. The company buys a range of grains and legumes, including sorghum, finger millet, soybeans, and maize. After buying these commodities from farmers, the company adds value by processing and packaging them for a diverse market. Their customers range from markets that demand raw grain to high-end consumers who buy blended flour for products such as porridge. AgriNet operates its own milling facility, enabling it to efficiently meet the needs of these different markets efficiently.  

Variety turnover is central to the processor’s work. Over time, crop varieties that have been in use for 30 or 40 years become less relevant as new research leads to the development of improved varieties. These newer varieties are better suited to evolving market needs, offering traits that align with current preferences for drought tolerance, disease resistance, and higher yields. 

Paul Nyande leads AgriNet, a company involved in managing seed and grain production (Photo: Marion Aluoch/CIMMYT)

“We have definitely seen situations where the market asked for a particular variety, and we have worked with research institutions such as National Semi-Arid Resources Research Institute (NaSARRI) to fulfill that demand. This collaboration has led to shifts in what seed companies produce to keep pace with changing agricultural conditions and market needs,” explains the processor. 

For example, through stakeholders’ interactions, AgriNet worked with NaSARRI, to communicate the market’s needs for crops such as maize and sorghum. NaSARRI produced foundation seeds based on these requirements, which the processor then marketed and distributed to specific farmers for production of certified seed that was given to grain producers. However, managing seed demand isn’t always straightforward, especially since the market can change rapidly.    

“We’ve had instances where the market suddenly surged with high demand for sorghum seeds, but we couldn’t meet it,” says Paul. “Sometimes these opportunities arrive unexpectedly, and we’re not fully prepared to supply the required volumes.” Paul notes that they still need to promote and improve productivity, as there are gaps in farming practices that hinder maximum yields. One persistent challenge is Striga, a parasitic weed that significantly reduces cereal yields. To tackle this, Paul promotes crop rotation and integration, to help farmers manage such issues. 

Despite these challenges, AgriNet has made strategic efforts to manage the risks associated with seed production. By working closely with partners like NaSARRI and using foundation seed, they have been able to balance supply and demand. The processor typically manages seed for one or two generations before reintroducing new varieties to keep up with changing market conditions. 

Paul with the CIMMYT and NaSARRI team at his office during their visit to learn more about AgriNet (Photo: Marion Aluoch/CIMMYT)
The role of technology and partnerships

A key part of AgriNet’s work is maintaining a robust supply chain. Using digital platforms, they have developed a system to profile farmers, track training sessions, monitor input distribution and communicate with farmers in real time via SMS. “We can send out information about market prices, weather updates, or available seeds. It’s a great tool, but maintaining the platform requires significant resources to maintain the platform,” says the processor. 

AgriNet currently works with around 2,000 farmers groups and have also developed an agent network to engage with these groups more effectively. Each agent works with multiple farmer groups, facilitating sales, input distribution, and grain purchases. This structure not only ensures efficient operations but also creates accountability by holding agents responsible for managing the process. 

However, one of the biggest challenges facing processors is capacity. They need to expand their storage and processing facilities to take in more grain, especially during the rainy season. Without sufficient storage and drying facilities, their ability to process large volumes of grain is limited, which in turn affects their ability to meet market demand. 

Balancing seed and grain markets

Paul emphasizes the difference between seed and grain. “For grain, we don’t face many issues. We can store it for a long time by fumigating it and keeping it safe. But seeds are different—you can’t keep them for long. They need to be used within a specific timeframe.” This dynamic adds complexity to the seed business, especially when the market shows a sudden spike in demand. 

Pricing is another challenge. “We used to think about getting seeds cheaply—from research and then to farmers. But there are costs involved, and you have to consider the seed market carefully and how it compares with others,” he says. It’s important to find the right balance between affordable prices for farmers and maintaining sustainable business operations. 

The way forward: Expanding capacity and supporting farmers

Paul is focused on expanding AgriNet’s storage and processing capabilities to better manage the supply chain and take in more grain during peak seasons. Increasing their capacity would allow them to meet the growing market demand more effectively. 

There’s also a strong need to support smallholder farmers, particularly in terms of access to quality seed. “We need to ensure that farmers have access to quality inputs at affordable prices,” he emphasizes. “Subsidizing seeds or finding sustainable ways to produce them for the most vulnerable farmers could encourage the adoption of improved varieties, which would increase yields and incomes.” 

Paul also acknowledges that improving farming practices is critical to achieving higher productivity. While they have good seed varieties available, the challenge lies in ensuring that farmers follow the correct management practices to fully realize the potential of these seeds. 

AgriNet’s efforts have not gone unnoticed. The company has been recognized as one of Uganda’s top 100 medium enterprises for 2017/2018 and 2018/2019, a testament to its commitment to quality, innovation, and market responsiveness. This recognition highlights AgriNet’s ability to navigate the complex agricultural landscape while continuously striving to improve its operations and support the farming community. 

In its mission to boost agricultural productivity, AgriNet benefits from key partnerships with NaSARRI, which works in collaboration with CIMMYT, through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, to ensure farmers have access to improved seed varieties. By aligning research with market demands and processor capacity, CIMMYT and NaSARRI are helping to bridge the gap between innovation and practical solutions that directly benefit farmers.

Conservation Agriculture Transforming Farming in Southern Africa

CIMMYT has been at the forefront of promoting conservation agriculture (CA) in Southern Africa, leveraging over 20 years of research to enhance food security and resilience to climate change. By introducing innovative mechanized tools like basin diggers, CIMMYT has significantly reduced labor demands, making CA more accessible for smallholder farmers. The organization collaborates with partners, including FAO, to integrate CA into national policies, such as Zambia’s mechanization strategy, while also providing education and technical support to farmers. CIMMYT’s efforts empower farmers to increase yields, improve soil health, and generate additional income, exemplifying its commitment to sustainable agriculture in the region.

Read the full story.

How Atubandike dialogues are redefining gender and youth inclusion in Zambian agriculture

Women and youth are essential drivers of agricultural and economic resilience in Zambia’s rural farming communities. However, they frequently encounter significant barriers such as restrictive social norms and inadequate access to vital resources which hinder their ability to participate fully in the economy.

Female youth sharing her views (Photo: Moono Seleketi).

Recognizing the critical roles of women and youth in shaping the present and future of Zambian agriculture, the ‘Atubandike’ approach, under CIMMYT’s USAID-funded Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub project, has been actively engaging with communities to address systemic barriers faced by these groups. This initiative combines digital tools with face-to-face interactions, creating spaces where community members can share their stories, challenges, and questions to co-create solutions.

Atubandike, which means ‘let’s have a conversation’ in the local Tongo language, was launched in Zambia in 2023 as an advisory service. The model represents a scalable, community-led approach that empowers marginalized groups, including women and youth, as active contributors and leaders in agriculture. With each interaction building upon the previous one, this ongoing work advances the broader mission of fostering inclusivity and resilience across Zambia’s agricultural sector.

To uncover and tackle the structural barriers faced by women and youth, the Atubandike team recently engaged over 1,700 farmers across 14 communities in Southern Zambia, gaining critical insights into the biases that persist in rural areas.

Stereotypes and structural barriers

The community conversations highlighted generational divides and deeply rooted stereotypes that cast youth as disengaged or disinterested in farming. Older community members opined that young people are more drawn to urban lifestyles and reluctant to take on the demanding labor associated with agriculture. One elderly farmer said: “Many youths prefer a comfortable lifestyle and quick money. They don’t have the patience for the hard work farming requires.”

In contrast, younger participants shared that this perception overlooks the genuine obstacles they face such as limited access to land, financing, training, and mentorship opportunities. They emphasized that their lack of involvement often stems from these barriers rather than a lack of motivation.

Young male farmer speaking (Photo: Moono Seleketi).

The consultations also underscored pervasive gender norms that limit women’s roles in agriculture. Despite their significant contributions to household food security, female farmers are often relegated to secondary roles, focusing on ‘women’s crops such as groundnuts, while men cultivate staple crops such as maize and cash crops such as soybean. A participant shared, “The community always perceives men as the real farmers because they are considered the heads of the household.” This perception frequently limits women’s access to critical resources and their decision-making power within the agricultural sphere.

However, through Atubandike’s sessions, communities are beginning to confront these entrenched norms, shedding light on the vital contributions of women and youth in agriculture. This shift is laying the groundwork for a more equitable approach, where both men and women, young and old, are recognized as essential to farming success and household resilience. As these conversations grow, Atubandike is paving the way for solutions that promise meaningful and lasting change for both women and youth in agriculture.

Community-driven solutions

  • Building youth capacity through skills and leadership: Many community members expressed a strong desire to see more youth involved in agricultural activities, emphasizing the importance of hands-on training. “We need to get the youth involved in actual farming [tasks] such as irrigation and crop management. It keeps them busy and teaches them valuable skills,” shared one local leader.

To support this vision, Atubandike is training young community members as digital champions, equipping them with both technical expertise and leadership skills that allow them to mentor their peers and encourage youth participation in agriculture. These digital champions not only extend the reach of Atubandike’s initiatives but also serve as relatable role models, inspiring other young people to engage in agriculture as well as see it as a viable and rewarding path.

  •  Towards a more inclusive future for Zambian agriculture
    The Atubandike initiative – by fostering open community dialogue, empowering digital champions, and promoting household-level collaboration – lays the foundation for a more inclusive future for Zambian agriculture. As each community engagement builds momentum, CIMMYT, through the AID-I project, creates a cycle of empowerment and growth that ensures women and youth are not only heard but also empowered to lead.
Women celebrating at community meeting (Photo: Moono Seleketi).

Amidst the challenges of erratic weather patterns and economic constraints, building resilience through cross-generational and gender-inclusive collaboration is crucial. Atubandike is addressing these geographic and social challenges and paving the way for a future where every farmer, regardless of age or gender, plays a pivotal role in Zambia’s agricultural success.

Enhancing agricultural research with FAO’s AGRIS and AGROVOC programs: A conversation with CIMMYT’s knowledge management team

Farmer examines wheat seed (Photo: CIMMYT).

In a recent series of conversations with CGIAR knowledge management teams, Sara Jani and Valentina De Col interviewed Jesús Herrera de la Cruz, CIMMYT’s Deputy Director of Knowledge Management and Information Technologies. They discussed CGIAR’s collaboration with the Food and Agriculture Organization of the United Nations (FAO) on AGRIS and AGROVOC – two key resources in agricultural research. AGRIS is a comprehensive bibliographic database focusing on agriculture and nutrition, while AGROVOC is a multilingual thesaurus covering a wide range of agricultural terms.

Benefits of being in AGRIS

CIMMYT has shared its knowledge products with AGRIS and plans to do so more. What are the benefits of your center’s participation in AGRIS?

Jesús: When I think about it, there’s one clear benefit: projection. AGRIS allows CIMMYT to be part of one of the most important databases in our field, if not the most important. This link allows us to showcase our work on a global scale. Another critical benefit is trust. AGRIS is a trusted source of accurate and reliable information. In today’s age, where the internet is flooded with information, having a trusted source like AGRIS is invaluable. It ensures that CIMMYT’s contributions are part of a verifiable and respected database, which is crucial to maintaining the integrity and credibility of our work.

Importance for CGIAR of sharing research results through AGRIS

From a broader perspective, do you think it is important for CGIAR to share its research results with a wider community and global users through AGRIS? If so, why?

Jesús: Absolutely, and it’s not just important—it’s our mandate. As part of our commitment to make our public goods as accessible as possible, AGRIS is one of the main channels we use to fulfill this mandate. The more we share our scientific outputs, the better we fulfil our mission. This sharing aligns with our goals and enhances our ability to collaborate and fulfil our mission.

CIMMYT’s knowledge content: content types and topics  

How would you describe the knowledge content produced by your center and made available through your repository? In which specific research areas does your center publish?

Jesús: CIMMYT focuses primarily on maize and wheat improvement, genetic resources and conservation agriculture. Recently, CIMMYT has expanded its research into other crops, although these newer projects are not yet strongly reflected in our repository. We expect this to change in the coming years as new research results becomes available. In addition to our scientific content, our repository includes institutional documents, such as financial reports and other forms of historical memory. These items are often overlooked, but they provide a richer understanding of the history of our work by offering insights into the context in which our research took place.

Importance of AGRIS for agricultural research institutions such as CGIAR

Do you think it is important for agricultural research institutions or networks such as CGIAR, to have access to a comprehensive bibliographic database such as AGRIS? If so, what are the specific benefits of having access to such a database?

Jesús: As I mentioned earlier, having access to AGRIS is more than important— it is essential. AGRIS is a cornerstone for ensuring we remain compliant with our mandate. It’s a trusted source that provides control and guarantees the credibility of the content within it. This reliability is invaluable to researchers and readers alike. AGRIS is a source of truth and its role in maintaining the integrity of our scientific output cannot be overstated.

Improving searchability and interoperability with AGROVOC

CGIAR contributes to and uses AGROVOC as a common vocabulary. How does this collaboration affect the discoverability and interoperability of your data?

Jesús: Absolutely. AGROVOC significantly enhances the discoverability and interoperability of our data. By using controlled vocabularies such as AGROVOC, we can ensure consistent and accurate data exchange across platforms. AGROVOC is the definitive controlled vocabulary in our field, and it plays a crucial role in maintaining the standardization necessary for seamless interoperability. For us, it’s not just a tool, it’s a cornerstone of our data management strategy, and it’s essential that it continues to be the standard.

The discussion focused on the role of AGRIS in increasing the visibility and accessibility of CIMMYT’s research results. By continuing to strengthen links with the AGRIS and AGROVOC programs, the CGIAR is well placed to increase the global impact of its research and ensure that vital agricultural knowledge reaches those who need it most around the world.

For more info on the CGIAR and FAO collaboration:

Report: https://hdl.handle.net/10568/116236

Brief: https://hdl.handle.net/10568/116448

Webinar: https://youtu.be/0klZSY1c0UU?si=mlVvEQSpF1KNFSvG

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

CIMMYT and Novo Nordisk Foundation expand collaboration to drive sustainable agriculture

Building on the success of their initial project, CropSustaiN, CIMMYT and the Novo Nordisk Foundation are proud to announce an expanded partnership aimed at tackling agriculture’s biggest challenges. This enhanced collaboration will broaden efforts to transform farming practices, reduce environmental impacts, and support farmers worldwide.

From specific solutions to a broader vision:
The initial partnership focused on developing innovative wheat varieties through Biological Nitrification Inhibition (BNI), significantly reducing the need for nitrogen fertilizers. Now, this expanded collaboration sets a foundation for exploring a wider range of initiatives, including:

  • Climate-smart crop systems with reduced greenhouse gas emissions.
  • Advanced agricultural technologies for greater resilience and sustainability.
  • Inclusive tools to empower farmers globally.

Bram Govaerts, CIMMYT’s director general, said:
“This partnership exemplifies how collaboration and science can transform agriculture, addressing both food security and environmental sustainability on a global scale.”
This next phase reflects a shared commitment to creating a sustainable future by turning scientific innovation into actionable, real-world impact for millions of farmers worldwide.

Strengthen the soil, strengthen the future of agri-food systems: The Economics of Healthy Soils for Sustainable Food Systems

Soil health is not just a medium for healthy crop production; it’s also a vital pillar to support sustainable food production and ultimately a nation’s economy. In India, where over 45% of the population works in agriculture, soil health underpins household and national food security, rural incomes and the economy at large. Despite this dependence, the ratio of agricultural production to the national income, i.e. GDP has fallen from 35% in 1990 to 15% in 2023, a decline driven by low productivity, shrinking farm incomes, and environmental degradation (Government of India, 2023).

A tractor operates in an agricultural field in India (Photo: CIMMYT).

India faces an annual economic loss of  ₹2.54 trillion annually—about 2% of its GDP—due to land degradation and unsustainable land-use practices (TERI, 2018). For smallholder farmers, soil degradation is a silent economic burden that reduces yields and increases input costs. In Bihar, studies by the Cereal Systems Initiative for South Asia (CSISA) show that droughts have a lasting impact on soil quality and agricultural productivity, with increasing frequency and severity exacerbating vulnerabilities in states like of Bihar and its neighboring states (Nageswararao et al., 2016; Singh et al., 2022).

The frequency of these drought conditions pushes farmers into a vicious cycle of low productivity, high costs for irrigation, and a growing dependence on non-farm income sources exacerbating the state’s vulnerability to drought (Kishore et al., 2014).

“CIMMYT India scientists greatly value the opportunity to collaborate with colleagues from ICAR and other NARES partners in supporting farmers to enhance soil health and achieve sustainable productivity”, said Alison Laing, CSISA project lead in India. “We are proud of the contribution we make alongside the Indian national systems to improving farmers’ livelihoods”, she added

Investing in solutions for soil resilience

Addressing soil degradation and climate challenges requires investment in climate-resilient agricultural technologies, and robust agronomic research. Evidence-based policies are critical to sustain agriculture, improve farmer well-being and ensure food and economic security.

A promising innovation is the Soil Intelligence System (SIS), launched in 2019 under CSISA. Initially operational in Andhra Pradesh, Bihar, and Odisha, SIS generates high-quality soil data and digital maps to provide farmers with precise agronomic recommendations. These recommendations help reduce fertilizer and water overuse, improving efficiency and reducing greenhouse gas emissions. By empowering smallholder farmers with data-driven decision-making, SIS exemplifies how technology can enhance productivity and sustainability.

SIS’s success extends beyond the farm. Data-driven insights have influenced policies like the Andhra Pradesh State Fertilizer and Micronutrient Policy, demonstrating the potential of soil health management to drive systemic agricultural reforms.

Working in Andhra Pradesh, Bihar and Odisha, SIS uses soil spectroscopy and digital mapping to improve sustainable soil management, reduce costs and increase productivity for smallholder farmers. (Photo: CIMMYT)

The 3M Framework: measure, monitor and manage

This year’s World Soil Day theme, “Caring for Soils: Measure, Monitor, Manage,” highlights the importance of data driven soil management. By measuring key indicators like organic carbon levels and erosion rates, and monitoring changes overtime, policymakers can develop sustainable strategies for soil restoration.

Scaling initiatives like SIS is crucial. Robust soil monitoring programs can inform better alignment between subsidies and sustainable practices. Together with state and central governments, NGOs, and other research organizations, CIMMYT is actively collaborating with farmers to measure, monitor and manage soil health for long-term sustainability and resilience.

 

References:

  1. Government of India (2023). Contribution of agriculture in GDP. Department of Agriculture & Farmers Welfare. Accessed online.
  2. TERI (2018). Economics of Desertification, Land Degradation and Drought in India, Vol I. The Energy and Resources Institute. Accessed online.
  3. Nageswararao, M.M., Dhekale, B.S., & Mohanty, U.C. (2016). Impact of climate variability on various Rabi crops over Northwest India. Theoretical and Applied Climatology, 131(503–521). https://doi.org/10.1007/s00704-016-1991-7.
  4. Singh, A. & Akhtar, Md. P. (2022). Drought-like situation in Bihar: Study and thought of sustainable strategy. IWRA (India) Journal, 11(1). Accessed online.
  5. Kishore, A., Joshi, P.K., & Pandey, D. (2014). Droughts, Distress, and Policies for Drought Proofing Agriculture in Bihar, India. IFPRI Discussion Paper 01398. https://ssrn.com/abstract=2545463.

The other revolution that was born in Mexico: The legacy of sustainable transformation and its new roots

Members of the Maíz Criollo Kantunil group next to a plot of land cultivated using sustainable practices (Photo: Jenifer Morales/CIMMYT)

The Mexican Revolution was not the only transformative movement to emerge in Mexico. Another profound transformation began in the Mexican countryside, and today, far from guns, today it continues to drive a more peaceful and resilient society through the integration of science, innovation and ancestral knowledge. 

In the 1960s, Mexico set a precedent for global agricultural change. Today, that movement has evolved into a sustainability approach that responds to today’s challenges: climate change, biodiversity loss and the need to ensure food security. Under CIMMYT’s leadership, the Hub model has established itself as a key tool for delivering scientific solutions to producers, strengthening resilient and sustainable agricultural systems. 

At CIMMYT, we believe that ensuring food security means not only producing healthier food but also conserving natural resources such as soil and water and promoting the well-being of farmers and their communities. Through the Hub model, we have promoted practices such as the sustainable management of staple crops such as maize and related crops, and the use of strategies to strengthen the seed system to meet the challenges of the agricultural sector. 

A clear example of this approach is the Maíz Criollo Kantunil group in Yucatán. Led by Edgar Miranda, this collective of eight families has adopted innovative practices such as regenerative agriculture, efficient water use and agroecological pest management. By linking with the Hub model, the group has been able to conserve native seeds, strengthen local agroecology and generate social and productive benefits for their community. 

“Our main objective is that the next generations will have seeds available to meet their food needs,” said Edgar Miranda. “We work with sustainable practices that allow us to conserve our resources and produce healthy crops,” he added. 

In addition to supporting producers, the Hub model fosters associativity and community participation, essential pillars for building inclusive and resilient food systems. These activities are in line with national initiatives such as strengthening production chains, but also reflect CIMMYT’s commitment to a global approach to sustainable development. 

CIMMYT’s strategy in Mexico not only supports producers in transforming their agricultural systems, but also promotes strategic alliances with public and private actors. These collaborations strengthen the integration of scientific solutions and sustainable practices, stimulate innovation in rural communities, and promote resilience to the challenges of climate change. With an approach based on science, inclusiveness and continuous learning, CIMMYT continues to contribute to building a more equitable, sustainable and prosperous future for Mexico and the world. 

Agro fair in Kailali rejuvenates farmers

In May, CIMMYT, in collaboration with the local government, organized an Agriculture Fair in Janaki Rural Municipality, Kailali district, Nepal, introducing farmers to modern farming techniques and machinery. The event inspired farmers like Ramfal Badayak, chairman of Biz Briddhi Krishak Cooperative, to adopt advanced tools, leading his cooperative to purchase two plant cultivators that now save time and labor for all members. With over 40 stalls and more than 4,000 daily visitors, the fair also benefited local suppliers by enabling direct sales to farmers, reducing costs by eliminating middlemen. This transformative event exemplified the potential of such platforms to modernize agriculture and support local communities.

Read the full story.

Training the next generation of plant breeders with VACS

The foundation for a Vision for Adapted Crops and Soil (VACS) is capacity building: to boost adoption of opportunity crops, for nutritional security, diverse and climate-resilient cropping systems, to build healthy soils, a cohort of researchers and professionals is being supported to improve opportunity crops in Africa. Launched in October 2024 in Nairobi, Kenya, the VACS Capacity Project aims to train scholars and professionals in the latest plant breeding technologies. Professor Julia Sibiya, VACS Capacity Project Lead at CIMMYT, elaborates on how the project aims to contribute to the promotion, development and delivery of improved “crops that nourish” people, and the planet.

As part of the VACS Capacity Project, 30 Master and PhD students will be mentored by prominent experts in plant breeding. What support will they receive?

The students will be exposed to the latest technologies in plant breeding but will also learn from their mentors to deliver the VACS vision on opportunity crops and healthy soils.

The project also includes training of 40 mid-careers professionals. We want them to master the latest technologies and be able to apply them to develop improved opportunity crop varieties that will be used by farmers.

To achieve this goal, the VACS Capacity Project is supported by three hubs to facilitate the training by matching the scholars and professionals with appropriate mentors and institutes where they will be exposed to the latest research and technologies. The selected hubs are the International Institute of Tropical Agriculture (IITA-Nigeria), the West Africa Centre for Crop Improvement (WACCI) in Ghana, and the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) in Kenya. The hubs have “support entities” through Iowa State University and Cornell University.

For maximum and long-term impact, the CIMMYT Academy, with the support of the Sustainable Agrifood Systems program, is developing gender-aware mentoring and curriculum on a wide range of topics, to directly address priorities of the 70 scholars and professionals. Expertise is being sourced at institutions such as Iowa State University, CIMMYT and African universities for robust e-learning modules on the entire plant breeding pipeline and seed systems, with materials updated and designed for the African continent.

What gaps does the VACS Capacity Project aim to address?

Today, in Africa, very few plant breeders and scientists working on plant improvement are focusing on the opportunity crops identified by VACS, such as finger millet, bambara groundnut, and amaranth. Most breeders focus on the main staples. This is why we want to build a critical mass of scientists who work on opportunity crops that are vital for food security and nutrition under climate change.

Besides increasing the critical mass of researchers working on the opportunity crops, we also want to bring up-to-date the skills of professionals in the breeding sector, which is a sector where technologies are evolving very quickly. Most of the approaches to crop improvement used today differ greatly from approaches used ten years ago, hence the request by many professionals to upgrade their skills.

In addition to the long-term training fellowships for Master and PhD students, we will provide targeted skills training to professionals, with short-term placements between one and six months in institutions where they can learn cutting-edge techniques that they will apply to opportunity crops.

The project is also designed to build networks and communities of practice around these crops, so people can collaborate in breeding and scaling efforts that are requested by farmers and consider market intelligence for impact pathways. This is in addition to exchanging knowledge and germplasm.

How does this project differ from other plant breeding capacity building projects?

The difference is that we will place professionals into institutions where they will be provided with hands-on training. We will work with universities, international research institutes, and the private sector, including seed companies. This is like offering internships to mid-career professionals who want to upgrade their skills or learn new ones.

Our approach also includes mentorships for both scholars and professionals. Mentors will be recruited from all over the world to assist the fellows in various aspects of their research journey. Last but not least, we hope to see researchers working with farmers so they can learn from each other.

What are the expected outcomes of reaching a “critical mass of plant breeders”?

The objective is to have sufficient breeders to implement crop breeding programs designed for opportunity crops. We also want to encourage them to apply modern techniques to improve opportunity crops and, this way, to contribute to the development of more nutritious plants that are grown in healthy soils. As I mentioned earlier, besides empowering scientists themselves, we also aim to create the conditions for effective collaboration and partnerships for the successful delivery of improved opportunity crop varieties, and this delivery will be accelerated by reducing the breeding cycle. Overall, it will allow us to scale up efforts towards opportunity crops worldwide.

Improving Ethiopia’s Agricultural Systems Through Collaborative Research

The collaborative long-term experiments (LTEs) established by CIMMYT and Ambo University on the Guder Mano Mezemer campus, specifically at the Abebech Gobena Agricultural Research Center (Photo: CIMMYT)

A collaboration effort between CIMMYT and Ambo University has positioned CIMMYT as the national leader in implementing high-impact technologies to improve the quality and quantity of cereal crop production in Ethiopia. This partnership, established over three decades ago at national and regional levels, has become a vital element in driving innovations and advancements in the agricultural sector.

A recent field visit to the LTEs, which were established three years ago, at the Abebech Gobena Agricultural Research Center in Guder, West Shewa Zone of the Oromia Region, demonstrated the importance of collaboration between research and development partners. The LTEs were established to study three main climate-smart interventions: nutrient management (including organic, inorganic, and residue-based practices), crop rotation, and intercropping, over an extended period of time. The event highlighted CIMMYT’s ongoing efforts to improve Ethiopia’s agricultural production, particularly by testing agronomic practices that increase yields and enhance soil health through the use of different organic fertilizers along with inorganic fertilizer and proper cereal-legume rotation over the past two years at the center and in farmers’ fields.

Focus areas of research

Research will focus on developing the best combination of locally available organic inputs with inorganic fertilizer, together with appropriate cereal-legume rotation on LTE plots, to monitor yield and soil health parameters such as organic matter accumulation over time, improve resource use efficiency, and enhance soil health. The main crops involved are:

  • Maize (Zea Mays): Jibat variety 
  • Wheat (Triticum aestivum): Wane variety 
  • Teff (Eragrostis teff): Quncho variety 
  • Legumes: Faba bean, soybean, haricot bean, and pigeon pea 

The LTE sites have served as demonstration and learning platforms for local communities. The cropping system in the area has traditionally been dominated by continuous monocropping of cereals for decades. In response, this collaborative LTE initiative has introduced four legume crops into rotation and intercropping systems, three of which are new to the area. Some of these new crops have been well received by farmers, who have selected the most promising options to try on their fields as “baby trials,” with the LTE plots referred to as “mother trials.” These efforts have been accompanied by training and resources for farmers and extension workers.

Community engagement and outcomes

The initiative has involved 55 farmers from three villages, with a focus on optimizing crop yields and promoting sustainable agriculture. Dr. Tesfaye Sida, an Agronomist/Sustainable Agrifood Systems at CIMMYT, highlighted the importance of these trials in improving food security and soil health in the intervention areas. He added, “This streamlined client-based collaboration, based on capacity development and knowledge transfer, is helping us to drive the pathways for climate-resilient, sustainable, and inclusive agricultural development for food and nutrition security in Ethiopia.”

A diverse group of stakeholders visiting the collaborative research trial sites (Photo: CIMMYT)

On September 23, 2024, a significant stakeholder gathering, including academic professionals, research and development partners, and farmers, as well as local government decision-makers, visited the trial sites to observe the research activities and progress at the Guder Mano Mezemer campus in Birbirsa village, where CIMMYT and Ambo University are conducting collaborative research. During the event, Dr. Gizachew Kebede, a soil scientist at CIMMYT, highlighted the dual focus of the research: crop rotation and soil nutrient management. “Despite farmers’ familiarity with crop rotation, they often face challenges in identifying the best companion crops and appropriate sequences. We are addressing this by rotating cereals such as maize, wheat, and teff with legumes such as soybean and pigeon pea, some of which are new to the system and likely to improve soil fertility and system resilience. The other fascinating part of the research is the testing of both organic and non-organic fertilizers, an intelligent approach to determining best practices for soil health and productivity, with a particular focus on understanding long-term effects, with plans extending for at least a decade. This kind of knowledge transfer is crucial to improving agricultural productivity and sustainability in the community, and we have seen great results from the trials so far.”

Dr. Tesfaye Shiferaw, an agronomist/Sustainable Agrifood Systems emphasizes the model. “Initially these were long-term experiments (LTEs), which mainly established the long-term impacts of interventions (nutrient management, crop rotation, intercropping, etc.) on climate change effects, productivity, and soil health. However, during the demonstrations of these LTEs, local farmers expressed interest in trying the agricultural technology/intervention/practice of their choice. We then added potential other technologies that could be options and allowed them to conduct their own mini-trials (called baby trials) to increase the number of alternatives. In this context, the LTEs can now be referred to as “mother trials.”

Research collaborators also echoed this sentiment. Dr. Nigusie Bekele, Director of Guder Mezemer Campus, highlighted Ambo University’s pride in hosting trials and major events related to their research collaboration with CIMMYT. He emphasized the university’s commitment to multidisciplinary research and service to the community, noting that their partnership with CIMMYT is instrumental in this regard, particularly in promoting productive, inclusive, and resilient food systems in Ethiopia. Dr. Nigusie described their joint action research and innovation efforts as transformative, benefiting not only the local community but also the wider Ethiopian population dependent on smallholder agriculture.

New launch of common beans and farmer insights
Farmer Shelema Hirpasa proudly displays a thriving crop of haricot beans grown after receiving seeds from CIMMYT. This image highlights the positive impact of research and support in increasing agricultural productivity and empowering local farmers (Photo: CIMMYT)

The photo features young farmer Shelema Hirpasa proudly displaying a thriving crop of haricot beans grown after receiving seeds from CIMMYT. This image highlights the positive impact of research and support in increasing agricultural productivity and empowering local farmers.

The introduction of soybean and pigeon pea in the intervention villages has generated considerable interest among farmers, leading to increased participation and positive results. Farmer Shelema Hirpasa from Tuke Kutaye District was enthusiastic about the exceptional performance of these new crops, noting a stark contrast with the traditional varieties he had previously grown. Highlighting the advantages of crop diversification, he said: “I have been involved in farming since my childhood but have never seen such performance in my crops.” This reflects the transformative impact of these new agricultural practices on local farming communities.

CIMMYT researcher gives visitors a detailed briefing on the ongoing activities at the demonstration sites (Photo: CIMMYT)

This interaction highlights the importance of knowledge sharing and engagement in agricultural research, as stakeholders learn about innovative practices and advances being implemented in the field. The gathering also reflects the commitment of the various partners in the initiative, showcasing their shared interest in advancing agricultural research and promoting food security through collaboration between CIMMYT and Ambo University.

Media coverage and future directions

The collaboration and field visits have drawn media attention, with coverage from outlets such as the Oromia Broadcasting Network (OBN). This initiative, implemented by CIMMYT and Ambo University with support from One CGIAR’s Excellence in Agronomy (EIA) and Ukama Ustawi initiatives, is paving the way for sustainable and resilient agricultural practices in Ethiopia.

Through continued partnership and innovation, CIMMYT and Ambo University are not only transforming agricultural practices in the region but also contributing to the broader goal of food and nutrition security throughout Ethiopia.

Aisha Siddique

Aisha Siddique is the Research and Development, Partners Management Specialist at CIMMYT.

CIMMYT at Borlaug Dialogue 2024: Building Tomorrow’s Resilient Food Systems Today

Borlaug Dialogue (Photo: WFPF/Jon Lemons 2024)

Each year, the Borlaug Dialogue in Des Moines, Iowa, becomes a dynamic platform where global leaders in agriculture, policy, research, and youth come together to address the critical issues surrounding global food security. The event is marked by the World Food Prize ceremony, which celebrates groundbreaking achievements that improve the accessibility, quality, and availability of food around the world. This year, CIMMYT’s role was significant, reflecting its unwavering commitment to reimagine the future of food and agriculture. CIMMYT’s presence was impactful and deeply resonant, representing its dedication to sustainable agricultural solutions for vulnerable communities. The following highlights capture these pivotal moments and showcase our role in promoting science and innovation for a food- and nutrition-secure world.

DialogueNEXT Mexico: Fostering Global Collaboration and Resilience

This year’s DialogueNEXT Mexico, themed “Nurturing Farmer Resilience,” celebrated the power of uniting leaders from across continents to address the urgent need for sustainable, resilient food systems. The event focused on innovative strategies to empower farmers and ensure food security in the face of climate challenges and resource constraints. Key initiatives presented included CIMMYT’s Vision for Adapted Crops and Soils (VACS), which provides farmers with improved crop varieties and conservation techniques. Expanded to Africa through the Accelerated Innovation Delivery Initiative (AID-I), these programs exemplify CIMMYT’s commitment to building resilience and reducing poverty through sustainable agriculture.

DialogueNext Mexico Session at Borlaug Dialogue (Photo: WFPF/Scott Morgan 2024
CIMMYT Experts Honored on the 2024 TAP List

A standout moment came with the recognition of Sylvanus Odjo and Marianne Banziger among the 2024 Top Agri-food Pioneers (TAP), honoring their invaluable contributions to sustainable agriculture. Their work embodies CIMMYT’s mission to empower communities and advance resilient food systems. This honor celebrates their contributions to building resilient, equitable food systems worldwide.

TAP List (Photo: WFPF/Scott Morgan 2024
Empowering Future Innovators and Expanding Global Alliances

CIMMYT showcased its commitment to sustainable agriculture through key initiatives and partnerships. The Global Maize Program Director, B.M. Prasanna, led an engaging session on the CIMMYT Academy’s role in shaping the next generation of plant breeders by equipping young scientists to tackle food security challenges with innovation, ensuring that CIMMYT’s mission will continue to advance with adaptability. Prasanna’s session underscored the vital role of mentorship and capacity-building in securing food systems for future generations.

One of the Dialogue’s highlights was the “Realizing Borlaug 2.0” event, where CIMMYT, USAID, and USDA launched the Feed the Future Global Wheat Health Alliance. This initiative aims to protect wheat from climate-related threats such as fusarium, wheat blast, and rust. Announced with a call for additional partners, this foundational investment marks a global commitment to protect wheat and strengthen food security. By linking research and breeding programs, the Alliance will accelerate the discovery and deployment of disease-resistant wheat varieties, ensuring a resilient future for one of the world’s staple crops.

In the footsteps of Dr. Borlaug Session (Photo:WFPF/Scott Morgan 2024)
Strengthening Global Alliances for Climate-Smart Agriculture

At the Borlaug Dialogue 2024, CIMMYT highlighted its commitment to sustainable agriculture and climate resilience through several impactful partnerships and collaborations. In a key session with the VACS partnership, CIMMYT addressed the urgent need for adaptable crops and resilient soils in the face of climate change, emphasizing the importance of global cooperation to secure food systems against environmental stresses. CIMMYT furthered its mission by establishing a groundbreaking partnership with the Secretariat of Agriculture and Livestock (SAG) of Honduras to strengthen food security and promote sustainable agricultural growth in Latin America.

Strategic discussions with FAO and the African Development Bank Group reinforced CIMMYT’s commitment to scaling climate-smart initiatives across regions, creating a powerful network of allies in building resilient food systems. The Dialogue also honored award winners Cary Fowler and Geoffrey Hawtin, whose work on crop biodiversity aligns with CIMMYT’s core mission of conserving agricultural diversity and improving food security worldwide.

Geoffrey Hawtin and Cary Fowler (Photo: WFPF/Scott Morgan 2024)

Through its contributions to the Dialogue, CIMMYT underscored its role as a global leader in transforming agri-food systems. Guided by a vision of a food-secure future, CIMMYT continues to empower farmers and build resilient communities around the world.

Positioning Nepal as a future seed production hub in South Asia

MoU signing event between Nepal and Bangladesh seed companies (Photo: Sirish Shrestha/CIMMYT)

In August 2024, four Nepalese seed companies and six international seed companies from India, Bangladesh, Japan and Thailand signed a memorandum of understanding (MoU) for custom seed production of cereals and vegetables in Nepal, opening up game-changing economic opportunities in South Asia. This agreement will allow international seed companies to produce seed in a suitable agroecology in Nepal and export to international markets. To support this, the Government of Nepal has agreed to exempt variety registration for export-oriented custom seed production and expedite the process with added incentives to attract more international seed companies. This move aims to position Nepal as a future regional seed production hub. 

The signing of the MoU was the pinnacle of an international seed conference organized by CIMMYT in collaboration with Seed Quality Control Center (SQCC), the Nepal Agricultural Research Council (NARC), and Seed Entrepreneurs Association of Nepal (SEAN) in Kathmandu from August 22-24, 2024, focusing on innovation, partnership, and policy.  

The conference attracted over 150 participants from 11 countries, including Bangladesh, Ethiopia, India, Japan, Kenya, Nepal, Pakistan, Singapore, Switzerland, Thailand, and the USA, representing research centers, civil society organizations, private seed companies, and national agricultural research systems (NARS). The event was organized under the USAID’s Nepal Seed and Fertilizer (NSAF) project which aims to foster Nepal’s seed market systems through the enhancement of stakeholders’ capacity in seed research, quality seed production, as well as the creation of an enabling environment that links seed companies with input and output markets. 

Enhancing seed market systems in South Asia  

The MoU is expected to enhance the seed market system in the region, create new economic opportunities for Nepal, boost agricultural exports, and generate income for farmers. It will also facilitate the transfer of advanced seed technology and foster stronger partnerships between seed companies in the region and beyond. Mr. M Anis Ud Dowla, Board Chairman of Advanced Chemical Industries (ACI) Limited, one of the largest business conglomerates in Bangladesh, expressed optimism about the partnership, citing Nepal’s favorable conditions for producing seeds of cool-season crops and the potential benefits for farmers in Nepal and Bangladesh.  

In addition, ACI signed MoUs with Gorkha Seed Company and SEAN Seed Service Center, for the production of cereals and vegetable seeds, demonstrating growing confidence in Nepal’s seed sector where CIMMYT and its partners played a key role to enhance the capacity of the seed stakeholders for the past several years. “About 10 or 12 years ago, I had the opportunity to interact with the seed stakeholders in Nepal and at that time the seed sector was not viable, and the role of the private sector was insignificant. Now, I am impressed to see such seed sector transformation initiatives in Nepal,” says Manesh Patel, President of Asia and Pacific Seed Association (APSA) while acknowledging the effort made by CIMMYT and other seed stakeholders. He added that “it is time for Nepalese private seed companies to become a member of APSA to leverage regional opportunities.” 

Untapped potential 

Nepal’s diverse agroecology, encompassing tropical, subtropical, and temperate environments, provides an ideal condition for seed production of cereals, fruits, and vegetables. However, this potential remains largely untapped due to limitations within the country’s formal seed sector. The informal system dominates, leaving farmers with insufficient access to quality seeds. In 2023, the formal sector only met 25% of the total 180,000 metric ton requirement for cereal seeds. Consequently, Nepal heavily relies on imported seeds, particularly hybrid varieties of rice and maize, costing nearly half a billion dollars annually when accounting for both cereal seeds and grain imports. 

Several factors hinder the development of Nepal’s seed sector: limited availability of high-yielding varieties that are tolerant to major biotic and abiotic stresses; a lack of farmer awareness regarding quality certified seeds and modern technologies; inadequate infrastructure for improved storage and road access; vulnerability to climate change impacts; insufficient incentives for private sector investment; and limited human and institutional capacity across the seed value chain. 

To tackle these challenges and seize opportunities, the Government of Nepal has outlined key interventions through the National Seed Policy, National Seed Vision, and Agricultural Development Strategy (ADS). These policies aim to create seed roadmaps and foster an enabling environment to attract private sector participation. Recently, the government of Nepal approved the issuance of research and development licenses to private seed companies, allowing them to develop and deploy new seed varieties. Collaborative efforts by the Nepal Agricultural Research Council (NARC), Seed Quality Control Center (SQCC), and CIMMYT under the USAID-supported Nepal Seed and Fertilizer (NSAF) project are also leading to local seed companies producing hybrid seeds for rice, maize, and vegetables across various districts. However, this is at budding stage, and it needs to be scaled up further. 

The nexus of seed security and resilient agrifood systems  

The interplay between seed security and resilient agrifood systems is crucial for enhancing food security, particularly amidst climate change and global challenges. This relationship underscores the importance of robust seed systems that can adapt to various stresses while ensuring sustainable food production. “Seed systems are complex networks involving farmers, seed companies, service providers, and authorities, all working together to ensure high-yielding and resilient seeds reach farmers’ fields as quickly as possible,” said Bram Govaerts, Director General of CIMMYT, while addressing conference participants. He further emphasized that demand-oriented and effective seed systems help to harness the benefits of crop improvement.  

The conference brought together prominent figures from South Asia and beyond, who shared their insights. “A well-functioning seed system guarantees seed security for all farmers,” noted BM Prasanna, Director of the Global Maize Program at CIMMYT, during his keynote address. He highlighted the critical nexus between seed security and resilient agrifood systems, emphasizing the need for technical, organizational, and institutional innovations. Prasanna also called for continuous public-private-producer collaboration to develop and strengthen seed systems in the global south.  

Linking global and regional seed industry practices to fit into local conditions  

The Hon. Minister of Agriculture and Livestock Development of Nepal, Ram Nath Adhikari, inaugurated the conference, welcoming delegates and emphasizing the event’s significance to Nepal’s agricultural sector. Benu Prasad Prasai, Chief of SQCC, shared emerging trends in Nepal’s seed industry, highlighting efforts to engage the private sector and reduce seed import dependency. “We need to harmonize and link seed policies across South Asia and beyond to fully capture the benefits of plant breeding gains,” said Prasai, while emphasizing Nepal’s potential for seed business and investment. Dyutiman Choudhary, NSAF project lead, echoed these sentiments, emphasizing the importance of international and regional partnerships in developing a vibrant seed market. He highlighted the need for enabling seed policies and regulations that facilitate market system development.  

The discussions resulted in high-level recommendations to further augment Nepal’s seed sector: strengthening public-private partnerships in research and development to transform Nepal’s seed industry into a viable, resilient, and sustainable seed system; collaboration with foreign counterparts for joint research and technology exchange is vital to strengthening Nepal’s seed R&D and promoting custom seed production; legal frameworks must be developed and executed to create an enabling environment that strengthens public and private sector seed R&D efforts. 

Panel discussion on creating an enabling environment for private sector engagement in seed and varietal R&D (Photo: Sirish Shrestha/CIMMYT)
Official opening session of the International Seed Conference in Nepal (Photo: Deepa Woli/CIMMYT).

CIMMYT’s Matthew Reynolds receives 2024 China Friendship Award

Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at CIMMYT, is the recipient of the 2024 China Friendship Award. This recognition highlights his cutting-edge research to enhance the climate resilience and yield of wheat cropping systems, as well as his dedication to fostering collaboration between CIMMYT and China.

Researcher, Innovator, Collaborator, Mentor

During his 35-year tenure at CIMMYT, Reynolds has played a pivotal role in developing a new generation of advanced wheat lines based on physiological breeding approaches. This work has led to the creation of more resilient wheat varieties from diverse gene pools, significantly boosting yield potential.

Reynolds is the eighth CIMMYT scientist to receive the China Friendship Award. His numerous accolades include being an elected member of the Mexican Academy of Sciences and earning fellowships with the American Society of Agronomy and the Crop Science Society of America (CSSA), the latter representing the society’s highest individual honor. He has also been honored with the prestigious 2024 International Crop Science Award by CSSA.

A prolific author in crop physiology and genomics, Reynolds actively promotes international collaboration among wheat scientists, tapping expertise and emerging technologies that enhance plant science. He provides young scientists with mentorship and opportunities to engage in agricultural research. He also leads key initiatives, such as the International Wheat Yield Partnership (IWYP) and the Heat and Drought Wheat Improvement Consortium (HEDWIC), which leverage collective expertise and innovations to improve yields and climate resilience.

About the China Friendship Award

The China Friendship Award is the highest honor given by the Chinese government to foreign experts who have made outstanding contributions to China’s economic and social progress. It was established in 1991 by the State Administration of Foreign Experts Affairs under the authorization of the State Council of the People’s Republic of China. As of September 2024, a total of 1,998 experts from over 80 countries and regions have received this award.

Photo: CIMMYT