Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

Nepal launches digital soil map

A new digital soil map for Nepal provides access to location-specific information on soil properties for any province, district, municipality or a particular area of interest. The interactive map provides information that will be useful to make new crop- and site-specific fertilizer recommendations for the country.

Produced by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Nepal Agricultural Research Council’s (NARC) National Soil Science Research Center (NSSRC), this is the first publicly available soil map in South Asia that covers the entire country.

The Prime Minister of Nepal, K.P. Sharma Oli, officially launched the digital soil map at an event on February 24, 2021. Oli highlighted the benefits the map would bring to support soil fertility management in the digital era in Nepal. He emphasized its sustainability and intended use, mainly by farmers.

CIMMYT and NSSRC made a live demonstration of the digital soil map. They also developed and distributed an informative booklet that gives an overview of the map’s major features, operation guidelines, benefits, management and long-term plans.

The launch event was led by the Ministry of Agriculture and Livestock Development and organized in coordination with NARC, as part of the Nepal Seed and Fertilizer (NSAF) project, implemented by CIMMYT. More than 200 people participated in the event, including government officials, policymakers, scientists, professors, development partner representatives, private sector partners and journalists. The event was also livestreamed.

Better decisions

Immediately after the launch of the digital soil map, its CPU usage grew up to 94%. Two days after the launch, 64 new accounts had been created, who downloaded different soil properties data in raster format for use in maps and models.

The new online resource was prepared using soil information from 23,273 soil samples collected from the National Land Use Project, Central Agricultural Laboratory and Nepal Agricultural Research Council. The samples were collected from 56 districts covering seven provinces. These soil properties were combined with environmental covariates (soil forming factors) derived from satellite data and spatial predictions of soil properties were generated using advanced machine learning tools and methods.

The platform is hosted and managed by NARC, who will update the database periodically to ensure its effective management, accuracy and use by local government and relevant stakeholders. The first version of the map was finalized and validated through a workshop organized by NSSRC among different stakeholders, including retired soil scientists and university professors.

Ivan Ortiz-Monasterio, principal scientist at CIMMYT, shared his remarks in a video message. (Photo: Shashish Maharjan/CIMMYT)
Ivan Ortiz-Monasterio, principal scientist at CIMMYT, shared his remarks in a video message. (Photo: Shashish Maharjan/CIMMYT)

“The ministry can use the map to make more efficient management decisions on import, distribution and recommendation of appropriate fertilizer types, including blended fertilizers. The same information will also support provincial governments to select suitable crops and design extension programs for improving soil health,” said Padma Kumari Aryal, Minister of Agriculture and Livestock Development, who chaired the event. “The private sector can utilize the acquired soil information to build interactive and user-friendly mobile apps that can provide soil properties and fertilizer-related information to farmers as part of commercial agri-advisory extension services,” she said.

“These soil maps will not only help to increase crop yields, but also the nutritional value of these crops, which in return will help solve problems of public health such as zinc deficiency in Nepal’s population,” explained Ivan Ortiz-Monasterio, principal scientist at CIMMYT, in a video message.

Yogendra Kumar Karki, secretary of the Ministry of Agriculture and Livestock Development, presented the program objectives and Deepak Bhandari, executive director of NARC, talked about the implementation of the map and its sustainability. Special remarks were also delivered by USAID Nepal’s mission director, the secretary of Livestock, scientists and professors from Tribhuwan University, the International Fertilizer Development Center (IFDC) and the International Centre for Integrated Mountain Development (ICIMOD).

K.P. Sharma Oli (left), Prime Minister of Nepal, and Padma Kumari Aryal, Minister of Agriculture and Livestock Development, launch the digital soil map. (Photo: Shashish Maharjan/CIMMYT)
K.P. Sharma Oli (left), Prime Minister of Nepal, and Padma Kumari Aryal, Minister of Agriculture and Livestock Development, launch the digital soil map. (Photo: Shashish Maharjan/CIMMYT)

Benefits of digital soil mapping

Soil properties affect crop yield and production. In Nepal, access to soil testing facilities is rather scarce, making it difficult for farmers to know the fertilizer requirement of their land. The absence of a well-developed soil information system and soil fertility maps has been lacking for decades, leading to inadequate strategies for soil fertility and fertilizer management to improve crop productivity. Similarly, existing blanket-type fertilizer recommendations lead to imbalanced application of plant nutrients and fertilizers by farmers, which also negatively affects crop productivity and soil health.

This is where digital soil mapping comes in handy. It allows users to identify a domain with similar soil properties and soil fertility status. The digital platform provides access to domain-specific information on soil properties including soil texture, soil pH, organic matter, nitrogen, available phosphorus and potassium, and micronutrients such as zinc and boron across Nepal’s arable land.

Farmers and extension agents will be able to estimate the total amount of fertilizer required for a particular domain or season. As a decision-support tool, policy makers and provincial government can design and implement programs for improving soil fertility and increasing crop productivity. The map also allows users to identify areas with deficient plant nutrients and provide site-specific fertilizer formulations; for example, determining the right type of blended fertilizers required for balanced fertilization programs. Academics can also obtain periodic updates from these soil maps and use it as a resource while teaching their students.

As digital soil mapping advances, NSSRC will work towards institutionalizing the platform, building awareness at the province and local levels, validating the map, and establishing a national soil information system for the country.

Nepal’s digital soil map is readily accessible on the NSSRC web portal:
https://soil.narc.gov.np/soil/soilmap/

Revisiting the inverse size-productivity relationship

Field workers in Ethiopia weight the grain. (Photo: Hailemariam Ayalew/CIMMYT)
Field workers in Ethiopia weight the grain. (Photo: Hailemariam Ayalew/CIMMYT)

Quantifying agricultural productivity relies on measures of crop production and land area. Those measures need to be accurate, but it is often difficult to source reliable data. Inaccurate measurements affect our understanding of the relationship between agricultural productivity and land area.

Researchers examined the sensitivity of empirical assessments of this relationship to alternative measurement protocols. Scientists from the International Maize and Wheat Improvement Center (CIMMYT), Trinity College Dublin and the International Food Policy Research Institute (IFPRI) analyzed different methods of plot-level production and area measurement.

The study, to be published, is said to be the first to evaluate errors along the two dimensions —production and area — in all available measurement techniques.

Researchers found that errors from both production and area measurements explain the estimated inverse productivity-size relationship. When using a combination of the most accurate measures for yield and area — full plot harvest and total station — the inverse relationship vanishes. Consistent with previous studies, the study also shows that addressing one of the other sources of error — for example, either production or area estimates — does not eliminate the bias associated with measurement error.

For this study, the research team collected and used a unique dataset on maize production from Ethiopia, addressing measurement issues commonly found in other datasets that hinder accurate estimation of the size-productivity relationship. Specifically, the researchers considered six alternative land area measures: farmers’ self-reported estimates; estimates from low-cost old generation consumer-grade dedicated GPS receivers that have frequently been used in field data collection by research organizations over the past decade; estimates from single- and dual-frequency mobile phone GPS receivers; compass-and-rope estimates; and total station theodolite measurement.

An enumerator in Ethiopia measures grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)
An enumerator in Ethiopia measures grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)

Most cost-effective measurement methods

The study also provides a cost-effectiveness analysis of the different measurement methods. According to the researchers, the most expensive combination to use is full harvest yield with total station measurement. The cost is potentially prohibitively high for traditional surveys involving large samples.

It concludes that the optimal combination is crop-cut random quadrant measurements coupled with GPS measurement. This offers the best value for money of all the methods considered, since the results for the productivity-size regressions are like what is found when the gold-standard for yield and area measurement protocols are used.

Investment in maize for Africa pays off

Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)
Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)

Between 1995-2015, nearly 60% of all maize varieties released in 18 African countries were CGIAR-related. At the end of this period, in 2015, almost half of the maize area in these countries grew CGIAR-related maize varieties. All that was accomplished through modest, maximum yearly investment of about $30 million, which showed high returns: in 2015, the aggregate yearly economic benefits for using CGIAR-related maize varieties released after 1994 were estimated to be between $660 million and $1.05 billion.

These are just some of the key findings of Impacts of CGIAR Maize Improvement in sub-Saharan Africa, 1995-2015 a new, comprehensive review of the two decades of longstanding, CGIAR-led work on improved maize for Africa.

A staple concern

Since its introduction to Africa in the 16th century, maize has become one of the most important food crops in the continent.

It accounts for almost a third of the calories consumed in sub-Saharan Africa. And it’s grown on over 38 million hectares in the region, mostly by rainfall-dependent smallholder farmers.

Climate change poses an existential threat to the millions who depend on the crop for their livelihood or for their next meal. Already 65% of the maize growing areas in sub-Saharan Africa face some level of drought stress.

Long-term commitment

Through the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), CGIAR has been working alongside countless regional partners since 1980s to develop and deploy climate-smart maize varieties in Africa.

This work builds on various investments including Drought-Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA). Support for this game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. Throughout, the determination to strengthen the climate resilience of maize agri-food systems in Africa has remained the same.

To understand the impact of their work — and how to build on it in the coming years — researchers at CIMMYT and IITA took a deep dive into two decades’ worth of this work across 18 countries in sub-Saharan Africa. These findings add to our understanding of the impact of work that today benefits an estimated 8.6 million farmers in the region.

Big challenges remain. But with the right partnerships, know-how and resources we can have an outsize impact on meeting those challenges head on.

Fighting the stress

East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.

Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farms’ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.

With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. “Such challenges diminish crop production and the grain quality thereby, lessening farmers’ profitability,” says Rogers Mugambi, Chief Operating Officer of East African Seed Company.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Top-notch research trickles down to farmers

Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.

“Our collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,” Mugambi says.

Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.

As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.

The company has contracted large- and small-scale growers across the country to meet its seed production targets.

“Most of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,” Mugambi explains.

A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT's Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)

Out with the drought

Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids,  HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)’s regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.

The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.

As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).

To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.

“Additionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,” Mugambi says.

A knowledge revolution

Agricultural knowledge management framework for innovation (AKM4I) in agri-food systems. (Graphic: CIMMYT)
Agricultural knowledge management framework for innovation (AKM4I) in agri-food systems. (Graphic: CIMMYT)

The key to transforming food production systems globally lies in knowledge management processes, according to a team of researchers from the International Maize and Wheat Improvement Center (CIMMYT).

The challenge is to combine traditional knowledge with state-of-the-art scientific research: to meet regional needs for improvement in farming systems with knowledge networks fostering innovative practices and technologies that increase yields and profits sustainably.

A group of CIMMYT researchers led by Andrea Gardeazábal, Information and Communications Technology for Agriculture Monitoring and Evaluation Manager, recently published a proposal for a new knowledge management framework for agri-food innovation systems: Agricultural Knowledge Management for Innovation (AKM4I).

“We are proposing a knowledge management framework for agricultural innovation that addresses the need for more inclusive and environmentally sustainable food production systems that are able to provide farmers and consumers with affordable and healthy diets within planetary boundaries,” Gardeazábal said.

The AKM4I framework was designed to help agricultural development practitioners understand how farming skills and abilities are developed, tested and disseminated to improve farming systems in real-life conditions.

Following systems theory principles, the model empirically describes how information is created, acquired, stored, analyzed, integrated and shared to advance farming knowledge and produce innovative outcomes that effectively contribute to: collaboratively building local capacities for developing joint problem-solving abilities and integrated-knowledge solutions; empowering farmers with site-specific knowledge; co-creating technology and conducting participatory community-based research; and bridging innovation barriers to drive institutional change.

Knowledge access for systems transformation

Schematic illustration of CIMMYT's knowledge and technology development networks, or hubs, for sustainable maize and wheat production systems. (Graphic: CIMMYT)
Schematic illustration of CIMMYT’s knowledge and technology development networks, or hubs, for sustainable maize and wheat production systems. (Graphic: CIMMYT)

The framework builds on CIMMYT’s learnings from MasAgro, a bilateral project with Mexico that relies on participatory research and knowledge and technology development networks for sustainable maize and wheat production systems.

This CIMMYT project was recently acknowledged with the 2020 Innovative Applications in Analytics Award for developing groundbreaking monitoring, evaluation, accountability and learning (MEAL) systems and tools for publicly funded researchers and field technicians who advise more than 150,000 farmers in Mexico.

“Through the outlined principles and processes, the AKM4I framework can assist in closing the cycle of continually re-creating knowledge, evaluating and iterating upon innovations, building coalitions to democratize knowledge access and utilization, and using MEAL to facilitate course-correction of all stages of knowledge management,” concludes the study.

Bram Govaerts, CIMMYT Chief Operating Officer, Deputy Director General for Research and Integrated Development Program Director, believes the AKM4I framework should be the cornerstone of agri-food systems transformation, including the current reformation of CGIAR’s partnerships, knowledge, assets, and global presence.

“The MasAgro hub and knowledge management model will become the operational model of many regional initiatives of CGIAR,” Govaerts said.

Read the study:
Knowledge management for innovation in agri-food systems: a conceptual framework

Development of Smart Innovation through Research in Agriculture (DeSIRA)

The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.

CIMMYT’s role is focused on the following project outputs:

  • Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
  • Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.

Power steering

Protected from the harsh midday sun with a hat, Pramila Mondal pushes behind the roaring engine of a two-wheel tractor. She cultivates a small plot of land with her husband in the small village of Bara Kanaibila, in the Rajbari district of Bangladesh, near the capital Dhaka.

Using this machine, she also provides planting services to farmers who need to sow wheat, maize, mungbean, mustard and jute, earning her between $600 and $960 in each planting season.

Mondal and her husband first heard about this technology five years ago, when they attended an event to promote agricultural mechanization, organized by the International Maize and Wheat Improvement Center (CIMMYT). After seeing a demonstration, they were convinced that the power-tiller-operated seeder could form the basis for a business.

Ultimately, Mondal bought the machine. She got training on how to operate and maintain it, as part of the Cereal Systems Initiative for South Asia – Mechanization Irrigation and Mechanization Extension Activity (CSISA-MI and CSISA-MEA) project, supported by USAID through Feed the Future.

Let’s get it started

Pramila Mondal activates the self-starting mechanism on her power-tiller-operated seeder. (Photo: Shahabuddin Shihab/CIMMYT)
Pramila Mondal activates the self-starting mechanism on her power-tiller-operated seeder. (Photo: Shahabuddin Shihab/CIMMYT)

Mondal became the only woman in her area who could operate a seeder of this type, making her locally famous. After seeing the results of her business, others followed suit.

Eight more women in her area expressed interest in operating power-tiller-operated seeders and also went on to become service providers.

They all faced a similar problem: power tillers are hard to start. Pulling the starting rope or turning the hand crank requires a lot of strength.

The CSISA-MEA project team worked with a local engineering company to introduce a self-starting mechanism for power tiller engines. Since then, starting diesel engines is no longer a problem for women like Mondal.

Glee for the tillerwoman

Almost all of the 11 million hectares of rice planted every year in Bangladesh are transplanted by hand. It is becoming increasingly difficult to find people willing to do this type of backbreaking work. New machines are being introduced that transplant rice mechanically, but they require rice seedling to be raised in seedling mats.

As this new service is required, Mondal jumped at the opportunity. With support from CIMMYT through the CSISA-MEA project, she is now raising seedlings for this new type of rice transplanters.

CIMMYT facilitated training for machinery service providers on mat type seedling production, in partnership with private companies. Mondal and other women who were also trained produced enough seedlings to plant 3.2 hectares of land with a rice transplanter they hired from a local owner.

Mondal and her husband now have big dreams. They intend to buy a rice transplanter and a combine harvester.

“With our effort we can make these changes, but a little support can make big difference, which the CSISA-MEA project did,” she said.

Consider the seed

Seed viability test at the CIMMYT genebank. (Photo: Alfonso Cortés/CIMMYT)
Seed viability test at the CIMMYT genebank. (Photo: Alfonso Cortés/CIMMYT)

The conservation of plant genetic diversity through germplasm conservation is a key component of global climate-change adaptation efforts. Germplasm banks like the maize and wheat collections at the International Maize and Wheat Improvement Center (CIMMYT) may hold the genetic resources needed for the climate-adaptive crops of today and tomorrow.

But how do we ensure that these important backups are themselves healthy and not potential vectors of pest and disease transmission?

This was the question that animated “Germplasm health in preventing transboundary spread of pests and pathogens,” the second webinar in Unleashing the Potential of Plant Health, a CGIAR webinar series in celebration of the UN-designated International Year of Plant Health.

“Germplasm refers to the source plants of either specific cultivars or of unique genes or traits that can be used by breeders for improved cultivars,” program moderator and head of the Health and Quarantine Unit at the International Potato Center (CIP) Jan Kreuze explained to the event’s 622 participants. “If the source plant is not healthy, whatever you multiply or use it for will be unhealthy.”

According to keynote speaker Saafa Kumari, head of the Germplasm Health Unit at the International Center for Agricultural Research in the Dry Areas (ICARDA), we know of 1.3 thousand pests and pathogens that infect crops, causing approximately $530 billion in damages annually. The most damaging among these tend to be those that are introduced into new environments.

Closing the gap, strengthening the safety net

The CGIAR has an enormous leadership role to play in this area. According to Kumari, approximately 85% of international germplasm distribution is from CGIAR programs. Indeed, in the context of important gaps in the international regulation and standards for germplasm health specifically, the practices and standards of CGIAR’s Germplasm Health Units represent an important starting point.

“Germplasm health approaches are not necessarily the same as seed and plant health approaches generally,” said Ravi Khaterpal, executive secretary for the Asia-Pacific Association of Agricultural Research Institutions (APAARI). “Best practices are needed, such as CGIAR’s GreenPass.”

In addition to stronger and more coherent international coordination and regulation, more research is needed to help source countries test genetic material before it is distributed, according to Francois Petter, assistant director for the European and Mediterranean Plant Protection Organization (EPPO). Head of the CGIAR Genebank Platform Charlotte Lusty also pointed out the needed for better monitoring of accessions in storage. “We need efficient, speedy processes to ensure collections remain healthy,” she said.

Of course, any regulatory and technological strategy must remain sensitive to existing and varied social and gender relations. We must account for cultural processes linked to germplasm movement, said Vivian Polar, Gender and Innovation Senior Specialist with the CGIAR Research Program on Roots, Tubers and Bananas (RTB). Germplasm moves through people, she said, adding that on the ground “women and men move material via different mechanisms.”

“The cultural practices associated with seed have to be understood in depth in order to inform policies and address gender- and culture-related barriers” to strengthening germplasm health, Polar said.

The event was co-organized by researchers at CIP and the International Institute of Tropical Agriculture (IITA).

The overall webinar series is hosted by CIMMYT, CIP, the International Food Policy Research Institute (IFPRI), IITA, and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).

The third of the four webinars on plant health, which will be hosted by CIMMYT, is scheduled for March 10 and will focus on integrated pest and disease management. 

Capacitating farmers and development agents through radio

Representing CIMMYT, Kinde Tesfaye (on the left) took part in the live radio programs. (Photo: CIMMYT)

The continuing increase in the number of farming families has led to a growing emphasis on approaches on how to reach more people at a time. Among others, individual, group and mass-media approaches to agricultural extension and advisory services have been used concurrently.

This year, the global COVID-19 pandemic presented yet another challenge to the agriculture sector due to travel restrictions and limited face-to-face interactions. This has obstructed capacity building for farmers as well as development agents to deliver seasonal and intra-seasonal agroclimate advisories for farmers to support farm decisions.

Realizing the importance of mass media in extension, the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Ministry of Agriculture, the Ethiopian Institute of Agricultural Research (EIAR) and Climate Change, Agriculture and Food Security (CCAFS)-EA used live show radio program on Sunday mornings to provide climate advisories on the 2020 Kiremt (main cropping) season to farmers and extension workers on a two-weekly basis between June and November. The live show also allows listeners to call in and ask questions and provide feedback. Besides the climate agro-advisories, COVID-19 alerts and precautionary measures were provided to the radio audience.

Extremely low climate induced risk perception

CIMMYT-CASCAID II project baseline assessment indicates that the rural communities in the project intervention areas have an extremely low climate induced risk perception and are also quite resistant to change. The areas are also highly prone to recurring droughts. Erratic rainfall distribution and dry spells are common. Large areas of barren and uncultivable land, water shortage, poor soil quality, soil erosion due to high run off rate are adversely affecting the farming systems. Research shows that simple adaptation actions such as watershed management, changing planting dates and crop varieties could greatly reduce the climate variability and change impacts. However, communities being poorly linked to scientists and policy makers lack information about climate change adaptation options and government schemes related to the same. There are also challenges of communicating scientific research in simplified ways that are appropriate to local stakeholder needs.

In recent years, the use of improved technologies has been increasing due to the progressive national agricultural development policy and strategy that is in place coupled with advisories provided to help farmers to make timely and appropriate farm level decisions and practices.

Agroclimate advisory – the fourth production factor

The provision of agroclimate advisory is considered as the fourth production factor after labor, land, and capital and critical to the agricultural sector as climate and its associated adverse effects can negatively affect agricultural activities and productivities. Thus, ensuring the accessibility of relevant time sensitive forecast based advisory information to farming communities helps improve productivity and yields higher returns.

The advice will also assist smallholder farmers to manage climate risks through informed decisions such as identifying optimum planting time/sowing windows, planting density at the start of the rainy season, while at the same time managing fertilizer application. Moreover, it also benefits farmer decisions and practices on soil water, weeds, diseases, and pest management throughout the growing season. By monitoring weather and crop growth during the season, the same forecast information can assist in predicting crop yields well in advance of crop maturity and to allow farmers to decide whether to sell the product immediately after harvest or store it until it commands better prices later in the year.

Radio for disseminating agroclimate information

In Ethiopia, the use of ICT for the accumulation and dissemination of agroclimate information and other agricultural updates is still low. Radio transmission covers a large percentage of the country with most of the households own a radio. This makes the use of radio programs one of the most cost-effective channels for conveying weather forecast information and agricultural knowledge to rural communities which ultimately facilitate informed decision-making and adoption of new technologies and practices.

In collaboration with its partners, the CIMMYT-CASCADE II project through Fana FM radio implemented a six-month (June-November 2020) live radio program providing seasonal advisories at the start of the main season in June using seasonal forecast from the National Meteorology Agency which was downscaled to Woreda/Kebele level by EIAR, CCAFS-EA and CIMMYT. This was followed by a biweekly or monthly Wereda specific agro-climate advisories which focus on fertilizer application, weeding, crop protection, soil and water management and climate extremes such as flood and droughts.

The program also included experts from the Ministry of Agriculture, EIAR, and CGIAR Centers to provide professional explanations and updates from the perspective of in situational readiness to support issues coming from the radio audience. The program created an opportunity for the federal government to prepare in time on some activities like importing agricultural inputs such as pesticides and fungicides to control the outbreak of pests and diseases (e.g., desert locust infestation and wheat rust outbreak). The platform also provided an opportunity to reach to millions of farmers to convey COVID-19 prevention messages such as physical distancing, use of masks, handwashing and other precautions that need to be taken while working in groups.

Crop nutrient management using digital tool improves yield, reduces greenhouse gas emissions: Study

The use of field-specific fertiliser in the Indo-Gangetic Plains (IGP) can increase grain yield, reduce greenhouse gas emissions compared to traditional farmer fertilization practices (FFP), and lead to reduced costs and increased incomes for farmers.

These were the findings of a study conducted between 2013 and 2017 by the International Maize and Wheat Improvement Centre (CIMMYT) and published in Nature Scientific Report in January 2021.

Read more: https://www.downtoearth.org.in/news/agriculture/crop-nutrient-management-using-digital-tool-improves-yield-reduces-greenhouse-gas-emissions-study-75793

Researchers identify optimal strategy to maximize genomic estimated breeding values

Alinda Sarah shows a maize cob due for harvest on the farm she owns with her husband in Masindi, mid-western Uganda. (Photo: Joshua Masinde/CIMMYT)
Alinda Sarah shows a maize cob due for harvest on the farm she owns with her husband in Masindi, mid-western Uganda. (Photo: Joshua Masinde/CIMMYT)

The ultimate challenge for crop breeders is to increase genetic gain of a crop: literally, to increase the crop’s yield on farmers’ fields. Wheat and maize breeders from the International Maize and Wheat Improvement Center (CIMMYT) and partner institutions are working to achieve this in record time, developing new varieties tailored for farmers’ needs that are also pest- and disease-resistant, climate-resilient, and nutritious.

This work is part of the Accelerating Genetic Gain in Maize and Wheat for Improved Livelihoods (AGG) project. Among other methods, breeders are using state-of-the-art novel tools such as genomic selection to achieve this ambitious goal.

In genomic selection, breeders use information about a plant’s genetic makeup along with data on its visible and measurable traits, known as phenotypic data, to “train” a model to predict how a cross will turn out — information known as “genomic estimated breeding values (GEBV)” — without having to plant seeds, wait for them to grow, and physically measure their traits. In this way, they save time and costs by reducing the number of selection cycles.

However, research is still ongoing about the best way to use genomic selection that results in the most accurate predictions and ultimately reduces selection cycle time. A recent publication by CIMMYT scientist Sikiru Atanda and colleagues has identified an optimal genomic selection strategy that maximizes the efficiency of this novel technology. Although this research studied CIMMYT’s maize breeding programs, AGG scientists working on wheat genetic gain and zinc nutritional content see cross-crop impacts.

Shortening a lengthy process

In the typical breeding stages, breeders evaluate parental lines to create new crosses, and advance these lines through preliminary and elite yield trials. In the process, thousands of lines are sown, grown and analyzed, requiring considerable resources. In the traditional CIMMYT maize breeding scheme, for example, breeders conduct five stages of testing to identify parental lines for the next breeding cycle and develop high yielding hybrids that meet farmers’ needs.

In the current scheme using genomic selection, breeders phenotype 50% of a bi-parental population to predict the GEBVs of the remaining un-tested 50%. Though this reduces the cost of phenotyping, Atanda and his co-authors suggest it is not optimal because the breeder has to wait three to four months for the plant to grow before collecting the phenotypic data needed to calibrate the predictive model for the un-tested 50%.

Atanda and his colleagues’ findings specify how to calibrate a model based on existing historical phenotypic and genotypic data. They also offer a method for creating “experimental” sets to generate phenotypic information when the models don’t work due to low genetic connectedness between the new population and historical data.

This presents a way forward for breeders to accelerate the early yield testing stage based on genomic information, reduce the breeding cycle time and budget, and ultimately increase genetic gain.

Regional maize breeding coordinator for Africa Yoseph Beyene explained the leap forward this approach represents for CIMMYT’s maize breeding in Africa.

“For the last 5 years, CIMMYT’s African maize breeding program has applied genomic selection using the ‘test-half-and-predict-half’ strategy,” he said.  “This has already reduced operational costs by 32% compared to the traditional phenotypic selection.”

“The prediction approach shown in this paper — using historical data alone to predict untested lines that go directly to stage-two trials — could reduce the breeding cycle by a year and save the cost of testcross formation and multi-location evaluation of stage-one testing. This research contributes to our efforts in the AGG project to mainstream genomic selection in all the product profiles.”

Effective for maize and wheat

Atanda, who now works on the use of novel breeding methods to enhance grain zinc content in CIMMYT’s wheat breeding program, believes these findings apply to wheat breeding as well.

“The implications of the research in maize are the same in wheat: accelerating early testing stage and reducing the breeding budget, which ultimately results in increasing genetic gain,” he said.

CIMMYT Global Wheat Program director Alison Bentley is optimistic about the crossover potential. “It is fantastic to welcome Atanda to the global wheat program, bringing skills in the use of quantitative genetic approaches,” she said. “The use of new breeding methods such as genomic selection is part of a portfolio of approaches we are using to accelerate breeding.”

CIMMYT’s wheat breeding relies heavily on a time-tested and validated method using managed environments to test lines for a range of growing environments — from drought to full irrigation, heat tolerance and more — in CIMMYT’s wheat experimental station in Ciudad Obregón, in Mexico’s state of Sonora.

According to CIMMYT senior scientist and wheat breeder Velu Govindan, using the approaches tested by Sikiru can make this even more efficient. As a specialist in biofortification — using traditional breeding techniques to develop crops with high levels of micronutrients — Govindan is taking the lead mainstreaming high zinc into all CIMMYT improved wheat varieties.

“This process could help us identify best lines to share with partners one year earlier — and it can be done for zinc content as easily as for grain yield.”

If this study seems like an excellent fit for the AGG project’s joint focus on accelerating genetic gain for both maize and wheat, that is no accident.

“The goal of the AGG project was the focus of my research,” Atanda said.  “My study has shown that this goal is doable and achievable.”

Read the study:
Maximizing efficiency of genomic selection in CIMMYT’s tropical maize breeding program

Bill Gates highlights CIMMYT’s innovation in latest climate book

Global thought leader, philanthropist and one of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR’s most vocal and generous supporters, Bill Gates, wrote a book about climate change and is now taking it around the world on a virtual book tour to share a message of urgency and hope.

With How to Avoid a Climate Disaster, Gates sets out a holistic and well-researched plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Part of this plan is to green everything from how we make things, move around, keep cool and stay warm, while also considering how we grow things and what can be done to innovate agriculture to lower its environmental impact.

Interviewed by actor and producer Rashida Jones, Gates explained his passion for action against climate change: “Avoiding a climate disaster will be one of the greatest challenges us humans have taken on. Greater than landing on the moon, greater than eradicating smallpox, even greater than putting a computer on every desk.”

“The world needs many breakthroughs. We need to get from 51 billion tons [of greenhouse gases] to zero while still meeting the planet’s basic needs. That means we need to transform the way we do almost everything.”

Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.
Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.

Innovations in agriculture

When a book tour event attendee asked about the role of agriculture research in improving farmers’ livelihoods, Gates linked today’s challenge to that of the Green Revolution more than half a century ago. “There’s nothing more impactful to reduce the impacts of climate change than working on help for farmers. What we can do this time is even bigger than that. […] The most unfunded thing in this whole area is the seed research that has so much potential,” he said.

One such innovation and one of Gates’ favorite examples of CGIAR’s work is featured in Chapter 9 of his climate book – “Adapting to a warmer world” – and has been the source of generous funding from the Bill & Melinda Gates Foundation: drought-tolerant maize. “[…] as weather patterns have become more erratic, farmers are at greater risk of having smaller maize harvests, and sometimes no harvest at all. So, experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them,” writes Gates.

We at CIMMYT are very proud and humbled by this mention as in collaboration with countless partners, CIMMYT and the International Institute of Tropical Agriculture (IITA) developed and promoted these varieties across 13 countries in sub-Saharan Africa and contributed to lifting millions of people above the poverty line across the continent.

For example, in Zimbabwe, farmers who used drought-tolerant maize varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — enough for nine months for an average family of six — than farmers who sowed conventional varieties.

The world as we know it is over and, finally, humanity’s fight against climate change is becoming more and more mainstream. CIMMYT and its scientists, staff, partners and farmers across the globe are working hard to contribute to a transformation that responds to the climate challenge. We have a unique opportunity to make a difference. It is in this context that CGIAR has launched an ambitious new 10-year strategy that echoes Gates’s hopes for a better environment and food security for the generations to come. Let’s make sure that it ticks the boxes of smallholder farmers’ checklists.

Out with the old, in with the new

A shop attendant displays drought-tolerant maize seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: Florence Sipalla/CIMMYT)
A shop attendant displays drought-tolerant maize seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: Florence Sipalla/CIMMYT)

For several decades, the International Maize and Wheat Improvement Center (CIMMYT) has worked with partners and farmers to improve maize and wheat varieties. Packed with “upgrades” such as tolerance to environmental stresses, tolerance to diseases and pests, boosted nutrient content, higher yield potential and storage capabilities, and improved efficiency in using water and fertilizers, these seeds are rolled out by CIMMYT and its partners to create new opportunities for easier and better lives for farmers.

Together with national research partners, farmers, local governments and seed companies, CIMMYT’s work in seed systems has reaped results. Its experts are eager to put this experience into further action as CGIAR embarks on the next ten years of its journey to transform food, land, and water systems in a climate crisis. And rightly so: investments in CGIAR research — mainly through their contributions to enhancing yields of staple food crops — have returned ten-fold benefits and payoffs for poor people in terms of greater food abundance, lower prices of food, reduced food insecurity and poverty and reduced geographical footprint of agriculture. A large part of this impact is the result of CIMMYT’s day to day efforts to create a better world.

A Bangladeshi woman cuts up feed for her family's livestock. They did not previously have animals, but were able to buy them after her husband, Gopal Mohanta, attended a farmer training from CIMMYT and its partners, which gave him access to better seed, technologies, and practices. Mohanta planted a wider range of crops, and in 2005 he planted maize for the first time, using improved seed based on CIMMYT materials. (Photo: S. Mojumder/Drik/CIMMYT)
A Bangladeshi woman cuts up feed for her family’s livestock. They did not previously have animals, but were able to buy them after her husband, Gopal Mohanta, attended a farmer training from CIMMYT and its partners, which gave him access to better seed, technologies, and practices. Mohanta planted a wider range of crops, and in 2005 he planted maize for the first time, using improved seed based on CIMMYT materials. (Photo: S. Mojumder/Drik/CIMMYT)

Replacing old varieties, not as easy as it sounds

Slow variety turnover — that of more than ten years — makes farmers vulnerable to risks such as climate change and emerging biotic threats. On the other hand, planting improved varieties that match farmers’ needs and the geography they work in, can increase productivity gains and improve the nutritional status of smallholders and their families. This, in turn, contributes to increased household incomes. Indirectly, the benefits can reach the surrounding community by providing increased employment opportunities, wage increases and affordable access to food.

Despite its tremendous benefits, varietal turnover is no small feat.

When it comes to seeds, detailed multi-disciplinary research is behind every new variety and its deployment to farmers. Just as the production of a new snack, beverage or a car requires an in-depth study of what the customer wants, seed systems also must be demand-driven.

Socioeconomists have to work hand-in-hand with breeders and seed system specialists to understand the drivers and bottlenecks for improved varietal adoption, market needs, and gender and social inclusion in seed delivery. Bottlenecks include the lack of access by farmers — especially for resource-poor, socially-excluded ones — to reliable information about the advantages of new varieties. Even if farmers are aware of new varieties, seeds might not be available for sale where they live or they might be too expensive.

Possibly the most complex reason for slow variety turnover is risk vulnerability: some farmers simply can’t afford to take the risk of investing in something that might be good but could also disappoint. At the same time, seed companies also perceive a certain risk: they might not be interested in taking on an improved variety that trumps the seeds from older but more popular varieties they have on stock. For them, building and marketing a new brand of seeds requires significant investments.

Agricultural seed on sale by a vendor near Islamabad, Pakistan. For improved crop varieties to reach farmers, they usually must first reach local vendors like these, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)
Agricultural seed on sale by a vendor near Islamabad, Pakistan. For improved crop varieties to reach farmers, they usually must first reach local vendors like these, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)

New approaches are yielding results

Despite the complexity of the challenge, CIMMYT has been making progress, especially in Africa where slow variety turnover is creating roadblocks for increased food security and poverty alleviation.

Recent analysis of the weighted average age of CIMMYT-related improved maize varieties in 8 countries across eastern and southern Africa reveals that the overall weighted average age has decreased from 14.6 years in 2013 to 10.2 years in 2020. The remarkable progress in accelerating the rate of variety turnover and deploying the improved genetics — with climate resilience, nutritional-enhancement and grain yield — are benefiting more than eight million smallholders in Africa.

In Ethiopia, CIMMYT, EIAR and ICARDA’s work led to the adoption of improved rust-resistant varieties, corresponding productivity gains and economic benefits that, besides the urgent need to fight against the damaging rust epidemic, depended on a combination of enabling factors: pre-release seed multiplication, pro-active policies and rust awareness campaigns. The estimated income gain that farmers enjoyed due to adopting post-2010 varieties in 2016/2017 reached $48 million. For the country itself, the adoption of these varieties could save $65 million that otherwise would be spent on wheat imports.

Bill Gates echoes this in Chapter 9 of his new climate book, How to Avoid a Climate Disaster, as he describes CIMMYT and IITA’s drought-tolerant maize work: “[…] experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them.”

Bidasem director general María Ester Rivas (center) stands for a photo with her seed processing team. Bidasem is a small seed company based in the city of Celaya in the central Mexican plains region known as the Bajío. Despite their small size, Bidasem and similar companies play an important role in reaching small farmers with improved seed that offers them better livelihoods. (Photo: X. Fonseca/CIMMYT)
Bidasem director general María Ester Rivas (center) stands for a photo with her seed processing team. Bidasem is a small seed company based in the city of Celaya in the central Mexican plains region known as the Bajío. Despite their small size, Bidasem and similar companies play an important role in reaching small farmers with improved seed that offers them better livelihoods. (Photo: X. Fonseca/CIMMYT)

Holistic action needed if we are to reach farmers with genetic innovations

Now more than ever, with increased frequency and intensification of erratic weather events on top of the complications of the COVID-19 pandemic, successful seed systems require the right investments, partnerships, efforts across disciplines, and enabling policies.

Varietal release and dissemination systems rely greatly on appropriate government policies and adoption of progressive seed laws and regulations. CGIAR’s commitment to farmers and the success of national seed systems is described in the recently launched 10-year strategy: “CGIAR will support effective seed systems by helping national governments and private sector companies and regulators build their capacities to play their roles successfully. New initiatives will be jointly designed along the seed distribution chain, including for regional seed registration, import and export procedures, efficient in-country trialing, registration and release of new varieties, and seed quality promotion through fit-for-purpose certification.”

In line with CGIAR’s ambitious goals, to provide farmers with a better service, small- and medium-size seed companies need to also be strengthened to become more market-oriented and dynamic. According to SPIA, helping local private seed dealers learn about new technology increases farm-level adoption by over 50% compared to the more commonly used approach, where public sector agricultural extension agents provide information about new seed to selected contact farmers.

CIMMYT socioeconomics and market experts are putting this in practice through working with agrodealers to develop retail strategies, such as targeted marketing materials, provision of in-store seed decision support and price incentives, to help both female and male farmers get the inputs that work best.

Within the new CGIAR, CIMMYT scientists will continue to work with partners to strongly improve the performance of wheat and maize in smallholder farmers’ fields. Concerted efforts from all actors conforming the entire seed system are essential to achieve our vision: to transform food systems for affordable, sufficient and healthy diets produced within planetary boundaries. Wheat and maize seed systems will form the basis to fulfill that vision and provide a tried and tested roadmap for other crops, including legumes, vegetables and fruits. Together, we can keep a finger on the pulse of farmers’ needs and build healthy diets for a better tomorrow from the ground up.

New publications: Doubled haploids in maize — development, deployment and challenges

Haploids  which are produced naturally in maize  were first identified in the crop about a century ago. Today they are used widely in different breeding programs, particularly in the development of doubled haploids, which are highly uniform, genetically pure and stable. Doubled-haploid technology has simplified logistics to make the maize breeding process more efficient and intuitive, facilitated studies at the molecular and genomic level, and increased genetic gains in different breeding programs.  

In a recent review article, scientists from the International Maize and Wheat Improvement Center (CIMMYT) examine strategies for haploid induction and identification, chromosome doubling and production of doubled haploid seed through self-fertilization. They also discuss the potential applications and key challenges linked with doubled haploid technology in maize, and suggest future research directions for people involved in fast-track maize breeding, the seed industry, and academia.  

Extensive studies of haploids and doubled haploids have increased our understanding of the genetic basis and mechanisms involved in haploid induction, the factors that affect haploid induction, different markers to identify putative haploids, and different chemicals agents that can be used for chromosome doubling.  

The technology is useful because the resulting plants are free from different social issues and legal regulations associated with transgenic crops. It maximizes genetic gains in breeding programs, is one of the fastest tools available for developing large numbers of inbred lines quickly and reduces the cost of breeding programs. 

“Deployment of doubled haploid technology is much needed for commercial hybrid maize breeding programs to make them more efficient and economical,” says article co-author Abdurahman Beshir, a maize seed systems specialist based in Nepal. “The technology is also useful to have accelerated varietal turnover and a higher maize seed replacement rate in different market segments.”  

Many multinational seed companies have adopted doubled haploid technology for the wide-scale production of inbred lines. The development of novel techniques for haploid induction and the subsequent production of doubled haploid plants holds significant potential for the management of genetic resources, germplasm enhancement and the development of novel plant populations. Researchers at CIMMYT have also made significant efforts to help national breeding programs adopt this technology, especially in South Asia, where the organisation has shared haploid inducers with numerous partners in Pakistan 

But, while this technology can accelerate maize breeding, it still faces challenges at each step of doubled haploid line development and the authors argue there is a need to extensively explore the genetic potential of this technology to continue increasing the genetic gains associated with different breeding programs.  

Read the full article: Doubled haploids in maize: Development, deployment, and challenges

Cover image: A mixture of doubled haploid maize kernels seen in close-up at CIMMYT’s Agua Fria experimental station in Mexico. (PhotoAlfonso Cortés/CIMMYT)

Read more new publications from CIMMYT researchers: 

  1. Choudhary, M., Meena, V. S., Panday, S. C., Mondal, T., Yadav, R. P., Mishra, P. K., Bisht, J. K., & Pattanayak, A. (2021). Long-term effects of organic manure and inorganic fertilization on biological soil quality indicators of soybean-wheat rotation in the Indian mid-HimalayaAppl. Soil Ecol.157. 
  2. Costa-Neto, G., Fritsche-Neto, R., & Crossa, J. (2021). Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trialsHeredity126(1), 92-106.  
  3. Jat, H. S., Datta, A., Choudhary, M., Sharma, P. C., & Jat, M. L. (2021). Conservation Agriculture: Factors and drivers of adoption and scalable innovative practices in Indo-Gangetic plains of India – a reviewInternational Journal of Agricultural Sustainability19(1), 40-55.  
  4. Jena, P. R., De Groote, H., Nayak, B. P., & Hittmeyer, A. (2021). Evolution of Fertiliser Use and its Impact on Maize Productivity in Kenya: Evidence from Multiple SurveysFood Sec.13(1), 95-111.  
  5. Krishna, V. V., & Kubitza, C. (2021). Impact of oil palm expansion on the provision of private and community goods in rural IndonesiaEcol. Econ.179, 106829.  
  6. Novotny, I. P., Fuentes-Ponce, M. H., Tittonell, P., Lopez-Ridaura, S., & Rossing, W. A. H. (2021). Back to the people: The role of community-based responses in shaping landscape trajectories in Oaxaca, MexicoLand Use Policy100, 104912.  
  7. Romero-Salas, E. A., Navarro-Noya, Y. E., Luna-Guido, M., Verhulst, N., Crossa, J., Govaerts, B., & Dendooven, L. (2021). Changes in the bacterial community structure in soil under conventional and conservation practices throughout a complete maize (Zea mays L.) crop cycleAppl. Soil Ecol.157, 103733.  
  8. Simtowe, F., & De Groote, H. (2021). Seasonal participation in maize markets in Zambia: Do agricultural input subsidies and gender matter? Food Sec.13(1), 141-155.  
  9. Simtowe, F., Makumbi, D., Worku, M., Mawia, H., & Rahut, D. B. (2021). Scalability of Adaptation strategies to drought stress: The case of drought tolerant maize varieties in KenyaInternational Journal of Agricultural Sustainability19(1), 91-105.  
  10. Sserumaga, J. P., Makumbi, D., Oikeh, S. O., Otim, M., Machida, L., Anani, B. Y., Nhamucho, E., Beyene, Y., & Mugo, S. (2021). Evaluation of early-generation tropical maize testcrosses for grain-yield potential and weevil (Sitophilus zeamais Motschulsky) resistanceCrop Protection139, 105384.  

Groundwater depletion in India could reduce winter cropped acreage significantly in years ahead

Water pumped from a deep irrigation well, called a tube well, at a wheat farm in west India's Gujarat state. (Photo: Meha Jain)
Water pumped from a deep irrigation well, called a tube well, at a wheat farm in west India’s Gujarat state. (Photo: Meha Jain)

India is the world’s second-largest producer of wheat and rice and is home to more than 600 million farmers. The country has achieved impressive food-production gains since the 1960s, due in part to an increased reliance on irrigation wells, which allowed Indian farmers to expand production into the mostly dry winter and summer seasons.

But those gains have come at a cost: The country that produces 10% of the world’s crops is now the world’s largest consumer of groundwater, and aquifers are rapidly becoming depleted across much of India. Indian government officials have suggested that switching from groundwater-depleting wells to irrigation canals, which divert surface water from lakes and rivers, is one way to overcome projected shortfalls.

In a study published in the journal Science Advances, scientists conclude that a switch to canal irrigation will not fully compensate for the expected loss of groundwater in Indian agriculture.

The authors estimate that if Indian farmers lose all access to groundwater in overexploited regions, and if that irrigation water is not replaced with water from other sources, then winter cropped acreage could be reduced by up to 20% nationwide. However, that scenario seems highly unlikely and was included in the study only as an upper-bound estimate.

It seems more likely that any future groundwater shortfalls would be at least partially offset by increases in canal irrigation. But even if all Indian regions currently using depleted groundwater switch to canal irrigation, winter cropped acreage could still decline by 7% nationwide and by 24% in the most severely affected locations, according to the researchers.

Water alternatives needed

“Our results highlight the critical importance of groundwater for Indian agriculture and rural livelihoods, and we were able to show that simply providing canal irrigation as a substitute irrigation source will likely not be enough to maintain current production levels in the face of groundwater depletion,” said study lead author Meha Jain, an assistant professor at the University of Michigan’s School for Environment and Sustainability.

“We need coordinated efforts to solve this water availability and food security issue, which should be supported by science-led policy decisions on what strategies and technology solutions to scale out to improve irrigation efficiency,” said co-author Balwinder Singh, a Cropping Systems Simulation Modeler at the International Maize and Wheat Improvement Center (CIMMYT).

The study analyzed high-resolution satellite imagery and village-level census data and focused on winter cropped acreage. While nearly all Indian farmers plant crops during the monsoon to take advantage of seasonal rains, winter agriculture is mainly reliant on groundwater irrigation and now accounts for 44% of the country’s annual cropped acreage for food grains.

“These findings suggest that other adaptation strategies, in addition to canal expansion, are needed to cope with ongoing groundwater losses,” Jain said.

The possibilities include switching from winter rice to less water-intensive cereals, increased adoption of sprinklers and drip irrigation to conserve water in the fields, and policies to increase the efficiency of irrigation canals.

While groundwater depletion is becoming a global threat to food security, and the extent of current and projected groundwater depletion are well documented, the potential impacts on food production remain poorly quantified. The study is the first to use high-resolution empirical data, including census data about the irrigation methods used in more than 500,000 Indian villages, to estimate the crop production losses that may occur when overexploited groundwater is lost.

“Understanding the complex relationship between food security and water availability is crucial as we prepare for future rainfall variability due to global climate change,” said co-author Gillian Galford of the University of Vermont.

The proliferation of deep (>30 meters) irrigation wells called tube wells since the 1960s has enabled Indian farmers to increase the number of seasons when crops are planted in a given year. This increase in “cropping intensity” is credited for much of the country’s food-production gains.

Maps showing state-by-state Indian winter cropped area loss estimates due to groundwater depletion in coming decades, with and without replacement by canals. Darker shades of pink and red indicate greater projected losses. The map on the left (A) shows projected winter cropped acreage losses if all critically depleted groundwater is lost, with no replacement. The map on the right (B) shows projected winter cropped acreage losses if groundwater irrigation is replaced with canals, using national-level regression coefficients. (Graph: Jain et al. in Science Advances 2021)
Maps showing state-by-state Indian winter cropped area loss estimates due to groundwater depletion in coming decades, with and without replacement by canals. Darker shades of pink and red indicate greater projected losses. The map on the left (A) shows projected winter cropped acreage losses if all critically depleted groundwater is lost, with no replacement. The map on the right (B) shows projected winter cropped acreage losses if groundwater irrigation is replaced with canals, using national-level regression coefficients. (Graph: Jain et al. in Science Advances 2021)

Big data for food security

The researchers used satellite data to measure Indian winter cropped area, a key determinant of cropping intensity. They then linked the satellite data to census information about the three main types of irrigation infrastructure in India: shallow “dug wells,” deeper tube wells and canals that divert surface water.

Linking the two datasets allowed them to determine the relative efficacy of each irrigation method. That, in turn, enabled them to estimate potential future acreage losses and the ability of canal expansion to fill the gap.

The study’s worst-case scenario found that winter cropped area could decrease by up to 20% nationwide and by 68% in the most severely affected regions, if farmers lose all access to groundwater and if that irrigation water is not replaced from another source. The expected losses would largely occur in northwest and central India, according to the study.

The researchers also found that increased distance from existing irrigation canals is strongly associated with decreased acreage planted with winter crops. In the future, a greater reliance on canals could increase inequities related to irrigation access, according to the authors.

“This suggests that while canals may be a viable form of irrigation for those who live near canals, they may lead to more unequal access to irrigation across villages compared to wells, with negative impacts for those who live farther from canals,” the authors wrote.

In addition, the lakes and rivers that feed irrigation canals rise and fall in response to rainfall variability, unlike deep groundwater wells. So, a greater reliance on canal irrigation in the future would result in increased sensitivity to year-to-year precipitation fluctuations, as well as any long-term trends due to human-caused climate change.

The authors of the Science Advances study, in addition to Jain and Galford, are Ram Fishman of Tel Aviv University; Pinki Mondal of the University of Delaware; Nishan Bhattarai of the U-M School for Environment and Sustainability; Shahid Naeem, Upmanu Lall and Ruth DeFries of Columbia University; and Balwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT).

The work was funded by a NASA New Investigator Award to Jain and two NASA Land Cover and Land Use Change grants, one awarded to R.S. DeFries and one to Jain.

——

RELATED RESEARCH PUBLICATIONS:

Groundwater depletion will reduce cropping intensity in India

INTERVIEW OPPORTUNITIES:

Balwinder Singh – Cropping Systems Simulation Modeler, CIMMYT

Meha Jain – Assistant Professor, University of Michigan

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Rodrigo Ordóñez – Communications Manager, CIMMYT. r.ordonez@cgiar.org

Jim Erickson – Lead Public Relations Representative, University of Michigan. ericksn@umich.edu