Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

Mechanization takes off

In a small workshop in Ethiopia’s Oromia region, mechanic Beyene Chufamo and his technician work on tractor repairs surrounded by engines and spare machinery parts.

Established in Meki in 2019, Beyene’s workshop provides maintenance, repair and overhaul services for two-wheel tractors and their accessories, and it acts as a point of sale for spare parts and implements such as planters, threshers and water pumps. Beyene also works as a tractor operation instructor, providing trainings on driving, planter calibration and how to use threshers and shellers.

The city already had a well-established mechanics and spare parts industry based around four-wheel tractors and combine harvester hire services, as well as motorcycle and tricycle transportation services. But now, as market demand for two-wheel tractor hire services rises among smallholder farming communities and entrepreneurial youth race to become local service providers, business is booming.

A two-wheel tractor with an improved driver seat and hydraulic tipping trailer system sits in from of Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)
A two-wheel tractor with an improved driver seat and hydraulic tipping trailer system sits in from of Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)

Building a business

Beyene’s business has benefitted from support from the International Maize and Wheat Improvement Center (CIMMYT) and the German development agency GIZ since its formation. Beyene was initially trained as a mechanic through the Innovative Financing for Sustainable Mechanization in Ethiopia (IFFSMIE) project, which promotes small-scale mechanization in the area through demand creation, innovative financing mechanisms and the development of private sector-driven business. He went on to receive additional technical and business skills development training to enable him to run his own enterprise.

His ongoing association with the project and its new leasing scheme has helped Beyene establish connections with local service providers, while also improving his own skills portfolio. Currently, he helps maintain the smooth operation of machinery and equipment at CIMMYT project sites in Amhara, Oromia and Tigray. This involves everything from training other local mechanics and troubleshooting for service providers, to facilitating the delivery of aftersales services in project areas.

In addition to this, Beyene receives orders for maintenance, repair and overhaul services for two-wheel tractors and implements. He sources replacement parts himself, though the cost of purchase is covered by his clients. In some cases — and depending on the distance travelled — CIMMYT covers the transport and accommodation costs while Beyene services equipment from service providers and sources equipment from local distributors. When individual parts are not readily available, he often purchases whole two-wheel tractors from the Metals and Engineering Corporation (METEC) and breaks them down into individual parts.

Tools and spare machinery parts lie on the ground during at Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)
Tools and spare machinery parts lie on the ground during at Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)

The way forward for sustainable mechanization

“Mechanization take-off relies heavily on skilled staff and appropriate infrastructure to perform machinery diagnostics, repair and maintenance,” said Rabe Yahaya, a CIMMYT agricultural mechanization expert based in Ethiopia.

“Agricultural machinery should be available and functional any time a famer wants to use it — and a workshop can support this. Beyene’s work in Meki reflects the way forward for sustainable mechanization success in Ethiopia.”

Creating an agricultural machinery workshop from scratch was a challenging task, Rabe explained, but support and guidance from partners like CIMMYT and GIZ helped to make it happen. “Also, Beyene’s commitment and flexibility to travel to CIMMYT project sites anywhere and at any time — even on bad roads in difficult weather conditions — really helped him achieve his goal.”

A sign hangs on the entrance of Beyene Chufamo’s agricultural machinery workshop in Meki, Ethiopia. (Photo: CIMMYT)
A sign hangs on the entrance of Beyene Chufamo’s agricultural machinery workshop in Meki, Ethiopia. (Photo: CIMMYT)

Beyene is excited about how quickly the local two-wheel tractor market has grown in the past few years. He currently has 91 service providers as regular clients at CIMMYT project sites — up from just 19 in 2016.

Trends show that — with support from local microfinance schemes and the removal of domestic taxes on imported machinery — aftersales services will continue to evolve, and the number of service providers will rise alongside increased market demand for mechanization services, both at farm level and beyond.

With this in mind, Beyene aims to remain competitive by diversifying the services offered at his workshop and expanding his business beyond CIMMYT project sites. As a starting point he plans to hire more staff, altering his organizational structure so that each mechanic or technician is dedicated to working with a specific type of machinery. Longer term, he hopes to transform his workshop into one that can also service four-wheel tractors and combine harvesters, and establish a mobile dispatch service team that can reach more locations in rural Ethiopia.

For now, however, he simply remains grateful for CIMMYT’s support and investment in his business. “I am happy that I have been able to secure an income for myself, my family and my staff through this workshop, which has changed our lives in such a positive way.”

Cover photo: Workshop owner Beyene Chufamo (left) speaks to CIMMYT researcher Abrham Kassa during a visit to Meki, Ethiopia. (Photo: CIMMYT)

Multi-trait genomic-enabled prediction enhances accuracy in multi-year wheat breeding trials

A CIMMYT researcher and a field worker lay out wheat seed for planting at the center's headquarters in Texcoco, Mexico. In experimental trials, hundreds or thousands of wheat lines are planted for evaluation, each in small quantities, and so they are carefully laid out and sown by hand. (Photo: CIMMYT)
A CIMMYT researcher and a field worker lay out wheat seed for planting at the center’s headquarters in Texcoco, Mexico. In experimental trials, hundreds or thousands of wheat lines are planted for evaluation, each in small quantities, and so they are carefully laid out and sown by hand. (Photo: CIMMYT)

To help feed a growing world population, wheat scientists have turned to innovative technologies like genomic selection to hasten selection for positive traits — such as high grain yield performance and good grain quality — in varieties that are still undergoing testing. Instead of being shackled by the long duration of traditional breeding cycles, genomic selection allows scientists to make predictions regarding which traits will present when crossing two varieties; allowing breeders greater guidance and lessening potential time lost when crossing varieties that do not display potential for genetic gain. To reap the benefits of genomic selection, it is vital that the predictive models employed are as accurate as possible.

Currently, wheat breeders select characteristics like grain yield performance early in the breeding process, while selecting traits like good grain quality at a later stage in the breeding process.

In an article in the journal G3 Genes, researchers from the International Maize and Wheat Improvement Center (CIMMYT), and partners, led by CIMMYT scientist José Crossa along with Leonardo A. Crespo, Maria Itria Ibba and Alison R. Bentley, endeavored to determine if genomic prediction models could select for both characteristics simultaneously in the breeding process. This would improve selection accuracy in both early and later breeding stages, resulting a reduction in time and expense in delivering improved wheat varieties. They also tested the accuracy of a set of specific mathematical corrections applied to genomic predictions. These correction models identify correlations between genomic predictions and observed breeding values, such as increased yield or grain quality.

Considering two or more traits, like grain yield and good grain quality, is an example of a multi-trait model. The team examined this multi-trait model against a single trait model that improves one specific trait. Overall, the researchers found that prediction performance was highest using the multi-trait model.

However, the team also demonstrated that when breeding programs arrive at their genetic predictions, applying a specific correction method will account for differences between the predicted breeding value and the actual observed breeding value. Current correction models tend to underestimate that difference, which results in breeding programs not running as efficiently as possible.

By partnering selections from different stages in the breeding process and examining the resulting genetic predictions through a more appropriate correction model, the team has shown that breeding programs can use this to their benefit in developing and ultimately releasing improved wheat varieties that meet growing yield needs worldwide and respond to abiotic and biotic stressors.

CIMMYT scientists join 60th All India Wheat and Barley Research Workers’ Meet

Gyanendra Pratap Singh (center), Director of ICAR-IIWBR, presents at the 60th All India Wheat and Barley Research Workers’ Meet. (Photo: Courtesy of ICAR-IIWBR)
Gyanendra Pratap Singh (center), Director of ICAR-IIWBR, presents at the 60th All India Wheat and Barley Research Workers’ Meet. (Photo: Courtesy of ICAR-IIWBR)

The International Maize and Wheat Improvement Center’s (CIMMYT) legacy of work with the Indian Centre for Agricultural Research (ICAR) has once again produced more successful collaborations this year. This solid partnership resulted in the release of new varieties poised to bring new, superior yielding, disease-resistant, high-quality wheat varieties suitable for different production environments to Indian farms.

The National Variety Release Committee announced the release of nine new varieties at the 60th All India Wheat and Barley Research Workers’ Virtual Meet on August 23–24, 2021, hosted by the Indian Institute of Wheat and Barley Research (IIWBR) of ICAR. Of the nine new varieties identified, five were selected by national partners from CIMMYT international trials and nurseries.

At the event, ICAR-IIWBR director Gyanendra Pratap (GP) Singh highlighted the impressive growth trajectory of India’s wheat production, estimated at 109.52 million tons of wheat harvested in 2021, a figure which was 86.53 million tons in 2015 and less than 60 million tons in 1991. Singh highlighted that this success is dependent upon the deployment of superior wheat varieties, bridging yield and information gaps, strengthened seed value chain, supportive government policies and, of course, farmer support to adopt new varieties and technologies.

The CIMMYT-derived varieties announced at the meeting include DBW296, DBW327, DBW332, HUW296 and JKW261. A few days earlier, variety PBW869 was released by the Punjab Agricultural University for growing in Punjab State under conservation agriculture practices.

“An innovative and powerful feature of ICAR-CIMMYT collaboration has been the introduction of long-term (10-month) rotational involvement of Indian young scientists in CIMMYTs breeding program at Mexico as well as in wheat blast screening in Bolivia,” said Arun Joshi, CIMMYT Regional Representative for Asia and Managing Director, Borlaug Institute for South Asia (BISA). “In this way, the breeding program of CIMMYT is an excellent example of joint breeding program with national institutions.”

At the 60th All India Wheat and Barley Research Workers’ Meet, participants highlighted new varieties, production growth and strengthened collaboration. (Photo: CIMMYT)
At the 60th All India Wheat and Barley Research Workers’ Meet, participants highlighted new varieties, production growth and strengthened collaboration. (Photo: CIMMYT)

Beyond expectations

In addition to these important new wheat varieties, some CIMMYT-derived wheat varieties that were released in recent years have now been deemed suitable for regions beyond their initial region of cultivation, showing wide adaptation and yield stability.

Wheat variety DBW222, released in 2020 for the northwestern plain zone, has now been deemed suitable for cultivation in the northeastern plain zone. Similarly, DBW187, which was initially released for the northeastern plain zone, and then for northwestern plain zone as well for early sowing, is now also extended for sowing in the central zone, together representing 25 million hectares of the 31 million hectares of wheat grown in India.

“Farmers prefer these types of varieties that give them flexibility during sowing time, and have high, stable yields, and disease resistance,” GP Singh said at the meeting.

A major achievement discussed at this year’s event was that three of the new varieties — DBW187, DBW303 and DBW222 — achieved record-high demand in Breeders Seed Indent, with first, second and seventh ranks, respectively. This is a reflection and indirect measure of popularity and demand for a variety. IIWBR’s innovative strategy to implement pre-release seed multiplication and create demand for seeds from new varieties has led to a faster turnover of improved varieties.

According to Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement at CIMMYT, the collaborators are “further expanding our partnership through the support from the Accelerating Genetic Gains in Maize and Wheat (AGG) and zinc-mainstreaming projects, to expand testing of larger sets of elite lines in targeted populations of environments of the four South Asian countries where various IIBWR-affiliated institutions shall expand testing in the 2021–22 crop season.” CIMMYT looks forward to continuing ongoing and new collaborations with the ICAR-IIWBR programs to deliver even faster genetic gain for yield and grain zinc levels in new varieties, he explained.

Speaking during the meeting Alison Bentley, Director of CIMMYT’s Global Wheat Program, highlighted the collaborative efforts underway as part of the AGG project to accelerate breeding progress. “Innovations and discoveries in breeding approaches are being rapidly made — with further investment needed — to quickly and equitably accumulate and deploy them to farmers,” she said.

Understanding decision support

Given the very heterogeneous conditions in smallholder agriculture in sub-Saharan Africa, there is a growing policy interest in site-specific extension advice and the use of related digital tools. However, empirical ex ante studies on the design of this type of tools are scant and little is known about their impact on site-specific extension advice.

In partnership with Oyakhilomen Oyinbo and colleagues at KU Leuven, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have carried out research to clarify user preferences for tailored nutrient management advice and decision-support tools. The studies also evaluated the impact of targeted fertilizer recommendations enabled by such tools.

Understanding farmers’ adoption

A better understanding of farmers’ and extension agents’ preferences may help to optimize the design of digital decision-support tools.

Oyinbo and co-authors conducted a study among 792 farming households in northern Nigeria, to examine farmers’ preferences for maize intensification in the context of site-specific extension advice using digital tools.

Overall, farmers were favorably disposed to switch from general fertilizer use recommendations to targeted nutrient management recommendations for maize intensification enabled by decision-support tools. This lends credence to the inclusion of digital tools in agricultural extension. The study also showed that farmers have heterogeneous preferences for targeted fertilizer recommendations, depending on their resources, sensitivity to risk and access to services.

The authors identified two groups of farmers with different preference patterns: a first group described as “strong potential adopters of site-specific extension recommendations for more intensified maize production” and a second group as “weak potential adopters.” While the two groups of farmers are willing to accept some yield variability for a higher average yield, the trade-off is on average larger for the first group, who have more resources and are less sensitive to risk.

The author recommended that decision-support tools include information on the riskiness of expected investment returns and flexibility in switching between low- and high-risk recommendations. This design improvement will help farmers to make better informed decisions.

Community leaders talk to researchers in one of the villages in norther Nigeria which took part in the study. (Photo: Oyakhilomen Oyinbo)
Community leaders talk to researchers in one of the villages in norther Nigeria which took part in the study. (Photo: Oyakhilomen Oyinbo)
Members of the survey team participate in a training session at Bayero University Kano, Nigeria. (Photo: Oyakhilomen Oyinbo)
Members of the survey team participate in a training session at Bayero University Kano, Nigeria. (Photo: Oyakhilomen Oyinbo)
One of the sites of nutrient omission trials, used during the development phase of the Nutrient Expert tool in Nigeria. (Photo: Oyakhilomen Oyinbo)
One of the sites of nutrient omission trials, used during the development phase of the Nutrient Expert tool in Nigeria. (Photo: Oyakhilomen Oyinbo)

Extension agents go digital

While farmers are the ultimate recipients of extension advice, extension agents are most often the actual users of decision-support tools. In another study, the authors provided ex ante insights on the potential uptake of nutrient management decision-support tools and the specific design features that are more (or less) appealing to extension agents in the maize belt of northern Nigeria.

Using data from a discrete choice experiment, the study showed that extension agents were generally willing to accept the use of digital decision-support tools for site‐specific fertilizer recommendations. While extension agents in the sample preferred tools with a more user‐friendly interface that required less time to generate an output, the authors also found substantial preference heterogeneity for other design features. Some extension agents cared more about the outputs, such as information accuracy and level of detail, while others prioritized practical features such as the tool’s platform, language or interface.

According to the authors, accounting for such variety of preferences into the design of decision-support tools may facilitate their adoption by extension agents and, in turn, enhance their impact in farmars’ agricultural production decisions.

Interface of the Nutrient Expert mobile app, locally calibrated for maize farmers in Nigeria.
Interface of the Nutrient Expert mobile app, locally calibrated for maize farmers in Nigeria.

Impact of digital tools

Traditional extension systems in sub-Saharan African countries, including Nigeria, often provide general fertilizer use recommendations which do not account for the substantial variation in production conditions. Such blanket recommendations are typically accompanied by point estimates of expected agronomic responses and associated economic returns, but they do not provide any information on the variability of the expected returns associated with output price risk.

Policymakers need a better understanding of how new digital agronomy tools for tailored recommendations affect the performance of smallholder farms in developing countries.

To contribute to the nascent empirical literature on this topic, Oyinbo and colleagues evaluated the impact of a nutrient management decision-support tool for maize – Nutrient Expert — on fertilizer use, management practices, yields and net revenues. The authors also evaluated the impacts of providing information about variability in expected investment returns.

To provide rigorous evidence, the authors conducted a three-year randomized controlled trial among 792 maize-producing households in northern Nigeria. The trial included two treatment groups who are exposed to site-specific fertilizer recommendations through decision-support tools — one with and another one without additional information on variability in expected returns — and a control group who received general fertilizer use recommendations.

Overall, the use of nutrient management decision-support tools resulted in greater fertilizer investments and better grain yields compared with controls. Maize grain yield increased by 19% and net revenue increased by 14% after two years of the interventions. Fertilizer investments only increased significantly among the farmers who received additional information on the variability in expected investment returns.

The findings suggest including site-specific decision support tools into extension programming and related policy interventions has potential benefits on maize yields and food security, particularly when such tools also supply information on the distribution of expected returns to given investment recommendations.

The research-for-development community has tried different approaches to optimize fertilizer recommendations. In Nigeria, there are several tools available to generate location-specific fertilizer recommendations, including Nutrient Expert. As part of the Taking Maize Agronomy to Scale in Africa (TAMASA) project, CIMMYT has been working on locally calibrated versions of this tool for maize farmers in Ethiopia, Nigeria and Tanzania. The development was led by a project team incorporating scientists from the African Plant Nutrition Institute (APNI), CIMMYT and local development partners in each country.

Next steps

Some studies have shown that dis-adoption of seemingly profitable technologies — such as fertilizer in sub-Saharan Africa — is quite common, especially when initial returns fall short of expectations or net utility is negative, producing a disappointment effect.

In the context of emerging digital decision-support tools for well-targeted fertilizer use recommendations, it remains unclear whether farmers’ initial input use responses and the associated economic returns affect their subsequent responses — and whether the disappointment effect can be attenuated through provision of information about uncertainty in expected returns.

Using our three-year randomized controlled trial and the associated panel dataset, researchers are now working on documenting the third-year responses of farmers to site-specific agronomic advice conditional on the second-year responses. Specifically, they seek to better document whether providing farmers with information about seasonal variability in expected investment returns can reduce possible disappointment effects associated with their initial uptake of site-specific agronomic advice and, in a way, limit dis-adoption of fertilizer.

Cover photo: A farmer shows maize growing in his field, in one of the communities in northern Nigeria where research took place. (Photo: Oyakhilomen Oyinbo)

Building resilient and sustainable irrigation for food security in Nepal

An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)
An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)

In Nepal, agriculture contributes to a third of gross domestic product and employs about 80% of the rural labor force. The rural population is comprised mostly of smallholder farmers whose level of income from agricultural production is low by international standards and the countrys agricultural sector has become vulnerable to erratic monsoon rains. Farmers often experience unreliable rainfall and droughts that threaten their crop yields and are not resilient to climate change and water-induced hazard. This requires a rapid update of the sustainable irrigation development in Nepal. The Cereal Systems Initiative for South Asia (CSISA) Nepal COVID Response and Resilience short-term project puts emphasis on identifying and prioritizing entry points to build more efficient, reliable and flexible water services to farmers by providing a fundamental irrigation development assessment and framework at local, district and provincial levels.

Digital groundwater monitoring system and assessment of water use options

Digital system of groundwater data collection, monitoring and representation will be piloted with the government of Nepal to facilitate multi-stakeholder cooperation to provide enabling environments for inclusive irrigation development and COVID-19 response. When boosting the irrigation development, monitoring is fundamental to ensure sustainability. In addition, spatially targeted, ex-ante assessments of the potential benefits of irrigation interventions provide insights by applying machine-learning analytics and constructing data-driven models for yield and profitability responses to irrigation. Furthermore, a customized set of integrated hydrological modeling and scenario analyses can further strengthen local, district and provincial level assessment of water resources and how to build resilient and sustainable water services most productively from them.

Toward a systemic framework for sustainable scaling of irrigation in Nepal

Through interview and surveys, the project further builds systemic understanding of the technical, socioeconomic and institutional challenges and opportunities in scaling water access and irrigation technologies. This will contribute to the construction of a comprehensive irrigation development framework, achieved by the collective efforts from multiple stakeholders across different line ministries, levels of government and local stakeholders and water users. Together with the technical assessments and monitoring systems, the end goal is to provide policy guidelines and engage prioritized investments that ensure and accelerate the process of sustainable intensification in irrigation in Nepal.

This blog was originally published in Agrilinks.

Tracing the evolution of 50 years of maize research in CGIAR

CGIAR turned 50 in 2021. To mark this anniversary, two independent and highly reputed experts have authored a history of CGIAR maize research from 1970 to 2020.

The authors, Derek Byerlee and Greg Edmeades, focused on four major issues running through the five decades of CGIAR maize research: the diversity of maize-growing target environments, the role of the public and private sectors in maize research in the tropics, the approaches adopted in reaching smallholder farmers in stress-prone rainfed tropical environments with improved technologies, and the need for maintaining strong financial support for international maize research efforts under the CGIAR.

The work of the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA) and the CGIAR Research Program on Maize (MAIZE) and its partners features prominently in this account. The authors also reviewed the history of maize policy research undertaken by the International Food Policy Research Institute (IFPRI).

The authors bring a unique perspective to the challenging task of tracing the evolution of maize research in CGIAR as both “insiders” and “outsiders.” While they worked as CIMMYT researchers in the 1990s, and later on as reviewers of various projects/programs, both are currently unaffiliated with CIMMYT. Byerlee is affiliated with the School of Foreign Service at Georgetown University, Washington DC, USA, and Edmeades is an independent scholar based in New Zealand.

“A clear-eyed and unbiased appreciation of our past — both successes and missteps — can only enrich our efforts, make better progress, and effectively meet the challenges of the present and the future,” wrote B.M. Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program MAIZE , in the foreword.

According to Prasanna, “The challenges to the maize-dependent smallholders in the tropics are far from over. Optimal, stable and long-term investment in international maize improvement efforts is critical.”

Disclaimer: The CGIAR Research Program MAIZE supported only the review, formatting, and online publication of this document. The findings and conclusions are completely of the authors, and do not necessarily represent the institutional views of CIMMYT, IITA, IFPRI or CGIAR and its partners.

Nitrogen-efficient wheats can provide more food with fewer greenhouse gas emissions, new study shows

An international collaboration has discovered and transferred to elite wheat varieties a wild-grass chromosome segment that causes roots to secrete natural inhibitors of nitrification, offering a way to dial back on heavy fertilizer use for wheat and to reduce the crop’s nitrogen leakage into waterways and air, while maintaining or raising its productivity and grain quality, says a new report in the Proceedings of the National Academy of Sciences of the United States of America.

Growing wheat varieties endowed with the biological nitrification inhibition (BNI) trait could increase yields in both well-fertilized and nitrogen-poor soils, according to G.V. Subbarao, researcher at the Japan International Research Center for Agricultural Sciences (JIRCAS) and first author of the new report.

“Use of wheat varieties that feature BNI opens the possibility for a more balanced and productive mix of nitrogen nutrients for wheat fields, which are currently dominated by highly-reactive nitrogen compounds that derive in large part from synthetic fertilizers and can harm the environment,” Subbarao said.

The most widely grown food crop on the planet, wheat is consumed by over 2.5 billion people in 89 countries. Nearly a fifth of the world’s nitrogen-based fertilizer is deployed each year to grow wheat but, similar to other major cereals, vegetables, and fruits, the crop takes up less than half of the nitrogen applied.

Much of the remainder is either washed away, contaminating ground waters with nitrate and contributing to algae blooms in lakes and seas, or released into the air, often as nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide.

The study team first homed in on the chromosome region associated with the strong BNI capacity in the perennial grass species Leymus racemosus and moved it from the grass, using “wide crossing” techniques, into the cultivar Chinese Spring, a wheat landrace often used in genetic studies. From there, they transferred the BNI chromosome sequence into several elite, high-yielding wheat varieties, leading to a near doubling of their BNI capacity, as measured through lab analyses of soil near their roots.

The new wheats — elite varieties from the International Maize and Wheat Improvement Center (CIMMYT) into which the BNI trait was cross-bred — greatly reduced the action of soil microbes that usually convert fertilizer and organic nitrogen substances into ecologically-harmful compounds such as nitrous oxide gas, according to Hannes Karwat, a CIMMYT post-doctoral fellow and study co-author.

“The altered soil nitrogen cycle was even reflected in the plants’ metabolism,” Karwat said, “resulting in several responses indicative of a more balanced nitrogen uptake in the plants.”

The scientists involved said BNI-converted wheats in this study also showed greater overall biomass and grain yield, with no negative effects on grain protein levels or breadmaking quality.

“This points the way for farmers to feed future wheat consumers using lower fertilizer dosages and lowering nitrous oxide emissions,” said Masahiro Kishii, a CIMMYT wheat cytogeneticist who contributed to the research. “If we can find new BNI sources, we can develop a second generation of elite wheat varieties that require even less fertilizer and that better deter nitrous oxide emissions.”

A recent PNAS paper by Subbarao and Princeton University scientist Timothy D. Searchinger mentions BNI as a technology that can help foster soils featuring a more even mix of nitrogen sources, including more of the less-chemically-reactive compound ammonium, a condition that can raise crop yields and reduce nitrous oxide emissions.

CIMMYT researcher Masahiro Kishii examines wheat plants in a greenhouse. (Photo: CIMMYT)
CIMMYT researcher Masahiro Kishii examines wheat plants in a greenhouse. (Photo: CIMMYT)

Scale out to slow global warming?

The present study comes just as the Intergovernmental Panel on Climate Change (IPCC) has released its Sixth Assessment Report, which among other things states that “… limiting human-induced global warming … requires limiting cumulative CO2 emissions … along with strong reductions in other greenhouse gas emissions.”

Globally, 30% of greenhouse gas emissions come from agriculture. BNI-enabled wheat cultivars can play an important role to reduce that footprint. Wheat-growing nations that have committed to the Paris Climate Accord, whose provisions include reducing greenhouse gas emissions 30% by 2050, could be early adopters of the BNI technology, together with China and India, the world’s top two wheat producers, according to Subbarao.

“This work has demonstrated the feasibility of introducing BNI-controlling chromosome segments into modern wheats, without disrupting their yields or quality,” said Subbarao. “To realize the technology’s full potential, we need to transfer the BNI feature into many elite varieties adapted to diverse wheat growing areas and to assess their yield in many farm settings and with varying levels of soil pH, fertilization and water use.”

A project to establish nitrogen-efficient wheat production systems in the Indo-Gangetic Plains using BNI has recently been approved by Japan and is under way, with the collaboration of JIRCAS, the Indian Council of Agricultural Research (ICAR), and the Borlaug Institute of South Asia (BISA). Under the project, BNI-converted wheat lines developed from JIRCAS-CIMMYT partnerships will be tested in India and the BNI trait transferred to popular national wheat varieties.

“The BNI-technology is also featured in Green Technology, a Japanese government policy document for moving towards a zero-carbon economy,” said Osamu Koyama, President of JIRCAS, which has also posted a note about the new PNAS study. JIRCAS and CGIAR BNI research is co-funded by the Ministry of Agriculture, Forestry and Fisheries of Japan.

“Adaptation and mitigation solutions such as BNI, which help lessen the footprint of food production systems, will play a large role in CGIAR research-for-development, as part of One CGIAR Initiatives starting in 2022,” said Bram Govaerts, CIMMYT Director General.


RELATED RESEARCH PUBLICATIONS:

Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution

INTERVIEW OPPORTUNITIES:

Hannes Karwat – Postdoctoral Fellow, Nitrogen Use Efficiency, International Maize and Wheat Improvement Center (CIMMYT)

Masahiro Kishii – Wheat Cytogenetics, Wide Crossing, International Maize and Wheat Improvement Center (CIMMYT)

Victor Kommerell – Program Manager, CGIAR Research Program Wheat (WHEAT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

New CIMMYT maize hybrids available from Latin America breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in the tropical lowlands of Latin America and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities. In some countries, depending on the applicable regulatory framework for commercial maize seed, successful applicants may first need to sponsor the products through the national registration / release process prior to commercialization.

The deadline to submit applications to be considered during the first round of allocations is September 17, 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits Trial summary
Latin America Product Profile 1A

(LatAM-PP1A)

CIM19LAPP1A-11 Early-maturing, white, high-yielding, drought tolerant, resistant to MLB, TSC and ear rots FSR, GLS Appendix 1
CIM19LAPP1A-13

 

CIMMYT Latin America Stage 4 and Stage 5 Trials: Results of the 2019 and 2020 Trials and Product Announcement

Appendix 1: CIMMYT maize hybrids available under LatAM-PP1A

Appendix 2: Information on Latin America trial locations and management

Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal in English or Spanish.

APPLY FOR A LICENSE

Alternatively, applications may be submitted via email to GMP-CIMMYT@cgiar.org using the PDF forms available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. (Please be sure to use these current versions of the application forms.)

FORM A – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO A – Solicitud para asignación de productos mejorados de maíz del CIMMYT)

FORM B – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO B – Solicitud para asignación de productos mejorados de maíz del CIMMYT)

 

Preventing and protecting against wheat blast

A blast-blighted stalk of wheat. (Photo: Chris Knight/Cornell)

Every year, the spores of the wheat blast fungus lie in wait on farms in South America, Bangladesh, and beyond. In most years, the pathogen has only a small impact on the countries’ wheat crops. But the disease spreads quickly, and when the conditions are right there’s a risk of a large outbreak — which can pose a serious threat to the food security and livelihood of farmers in a specific year.

To minimize this risk, an international partnership of researchers and organizations have created the wheat blast Early Warning System (EWS), a digital platform that notifies farmers and officials when weather conditions are ideal for the fungus to spread. The team, which began its work in Bangladesh, is now introducing the technology to Brazil — the country where wheat blast was originally discovered in 1985.

The International Maize and Wheat Improvement Center (CIMMYT), the Brazilian Agricultural Research Corporation (EMBRAPA),  Brazil’s University of Passo Fundo (UPF) and others developed the tool with support from USAID under the Cereal Systems Initiative for South Asia (CSISA) project.

Although first developed with the help of Brazilian scientists for Bangladesh, the EWS has now come full circle and is endorsed and being used by agriculture workers in Brazil. The team hopes that the system will give farmers time to take preventative measures against the disease.

Outbreaks can massively reduce crop yields, if no preventative actions are taken.

“It can be very severe. It can cause a lot of damage,” says Maurício Fernandes, a plant epidemiologist with EMBRAPA.

Striking first

In order to expand into a full outbreak, wheat blast requires specific temperature and humidity conditions. So, Fernandes and his team developed a digital platform that runs weather data through an algorithm to determine the times and places in which outbreaks are likely to occur.

If the system sees a region is going to grow hot and humid enough for the fungus to thrive, it sends an automated message to the agriculture workers in the area. These messages — texts or emails — alert them to take preemptive measures against the disease.

More than 6,000 extension agents in Bangladesh have already signed up for disease early warnings.

In Brazil, Fernandes and his peers are connecting with farmer cooperatives. These groups, which count a majority of Brazilian farmers as members, can send weather data to help inform the EWS, and can spread  alerts through their websites or in-house applications.

Wheat blast can attack a plant quickly, shriveling and deforming the grain in less than a week from the first symptoms. Advance warnings are essential to mitigate losses. The alerts sent out will recommend that farmers apply fungicide, which only works when applied before infection.

“If the pathogen has already affected the plant, the fungicides will have no effect,” Fernandes says.

A blast from the past

Because wheat had not previously been exposed to Magnaporthe oryzae,  most wheat cultivars at the time had no natural resistance to Magnaporthe oryzae, according to Fernandes.  Some newer varieties are moderately resistant to the disease, but the availability of sufficient seed for farmers remains limited.

The pathogen can spread through leftover infected seeds and crop residue. But its spores can also travel vast distances through the air.

If the fungus spreads and infects enough plants, it can wreak havoc over large areas. In the 1990s — shortly after its discovery — wheat blast impacted around three million hectares of wheat in South America. Back in 2016, the disease appeared in Bangladesh and South Asia for the first time, and the resulting outbreak covered around 15,000 hectares of land. CGIAR estimates that the disease has the potential to reduce the region’s wheat production by 85 million tons.

In Brazil, wheat blast outbreaks can have a marked impact on the country’s agricultural output. During a major outbreak in 2009, the disease affected as many as three million hectares of crops in South America. As such, the EWS is an invaluable tool to support food security and farmer livelihoods. Fernandes notes that affected regions can go multiple years between large outbreaks, but the threat remains.

“People forget about the disease, then you have an outbreak again,” he says.

Essential partnerships

The EWS has its roots in Brazil. In 2017 Fernandes and his peers published a piece of research proposing the model. After that, Tim Krupnik, a senior scientist and country representative with CIMMYT in Bangladesh, along with a group of researchers and organizations, launched a pilot project in Bangladesh.

There, agriculture extension officers received an automated email or text message when weather conditions were ideal for wheat blast to thrive and spread. The team used this proof of concept to bring it back to Brazil.

According to Krupnik, the Brazil platform is something of a “homecoming” for this work. He also notes that cooperation between the researchers, organizations and agriculture workers in Brazil and Bangladesh was instrumental in creating the system.

“From this, we’re able to have a partnership that I think will have a significant outcome in Brazil, from a relatively small investment in research supplied in Bangladesh. That shows you the power of partnerships and how solutions can be found to pressing agricultural problems through collaborative science, across continents,” he says.

Read more: Towards an early warning system for wheat blast: epidemiological basis and model development

Can you help shape the future of plant disease detection?

Artificial Intelligence (AI) and Machine Learning (ML) are increasingly being applied across a diverse range of disciplines. Many aspects of our lives and work are now benefiting from these technologies. Disease recognition, for both human and plant health, is no exception. Ever more powerful AI/ML techniques are now opening up exciting opportunities to improve surveillance, monitoring and early warning for disease threats.

Scientists from Penn State University/PlantVillage, working with CGIAR centers, FAO and national country partners, are at the forefront of AI/ML technology development applied to crop pest and disease recognition. Development of the “PlantVillage Nuru” mobile app has provided an accurate and simple automated disease diagnostic tool that can be used by non-experts, including farmers. A recent paper published in Frontiers of Plant Science demonstrated that Nuru could diagnose symptoms of cassava diseases at higher accuracy than agricultural extension agents or farmers.

“The value of tools like PlantVillage Nuru is that we can greatly increase the coverage and speed of surveillance,” says CIMMYT scientist and disease surveillance expert Dave Hodson. “Trained pathologists can only visit a limited number of fields at fixed times in the season. With tools like Nuru, extension agents and farmers can all contribute to field surveys. This can result in much faster detection of disease outbreaks, better early warning and improved chances of control”.

New advances in AI/ML technology are now promising even greater improvements in these already powerful tools. CIMMYT scientists have had a long-standing partnership with the PlantVillage group, working to try and develop improved diagnostics for important wheat diseases such as rusts and blast. Considerable progress in developing automated diagnostics for wheat diseases has already been made, but the introduction of advanced image segmentation and tiling techniques promises to be a major leap forward.

“Advances in computer science are constantly happening and this can benefit the mission of CGIAR and PlantVillage,” explains David Hughes, Dorothy Foehr Huck and J. Lloyd Huck Chair in Global Food Security at Penn State and founder of PlantVillage.

“Image segmentation and tiling techniques are a great example. They used to require intensive computing requirements. Now due to advances in computer science these powerful techniques are becoming more accessible and can be applied to plant disease problems like wheat rusts.”

By using these image segmentation and tiling techniques the developers at PlantVillage are now seeing a major improvement in the ability to automatically and accurately detect wheat rusts from in situ photos. “We could not identify rusts with the older approaches but this segmentation and tiling tool is a game changer. The computer goes pixel by pixel across the images which is well suited to diseases like rusts that can be spread across the leaf or stem of the plant. The computer now has a much more powerful search algorithm.”

The team led by Pete McCloskey, lead A.I. engineer at Plant Village, actually used a multi-step process. First they removed the background to help the machine focus in on the leaf. They then digitally chopped the leaf into segments giving the AI a further helping hand so it can focus in and find the rust. Then the whole leaf is stitched together and the rust is highlighted to help humans working in the PlantVillage cloud system.

Fig: Examples of manual, hand labelled images (top rows) compared to AI generated images using segmentation and tiling (bottom rows) for stem rust (upper image panel) and stripe rust (lower image panel).

This exciting new development in rapid, accurate field detection of wheat rusts now needs validation and improvement. As with all AI/ML applications, numbers of images included in the models really improve the quality of the final predictions. “The success of any machine learning model is rooted in the quality and quantity of the data it is trained on,” notes McCloskey. “Therefore, it is critical to source vast and diverse amounts of high-quality images from around the world in order to develop a global wheat rust recognition system.” In this aspect we hope that the CIMMYT global wheat community can help drive the development of these exciting new tools forward.

CIMMYT and PlantVillage are hoping to expand the current wheat rust image dataset and as a result produce an even more valuable, public good, disease detection tool. Given the extensive field work undertaken in wheat fields around the world by CIMMYT staff and partners, we hope that you can help us. Any photos of wheat rusts (stem, stripe and leaf rust) in the field would be valuable.

We would like to have images with one infected leaf or stem per image, it should be vertical in the image so you can see the whole leaf or stem segment. The leaf or stem needs to be in focus and should be roughly centered in the image. It helps to hold the tip of the leaf away from the stem, so it is outstretched and flat. Ideally for training data, the leaf should have only one type of rust and no other disease symptoms. It is okay to have other leaves/stems/soil/sky in the background. It is also okay to have hands and other body parts in the image.

Below are some example images. Any images can be uploaded here.

Sample images show a variety of wheat rusts (stem, stripe and leaf rust) in the field. (Photos: CIMMYT)

For more information contact Dave Hodson, CIMMYT (d.hodson@cgiar.org) or Pete McCloskey, PlantVillage (petermccloskey1@gmail.com). 

New solutions for chopping fodder

It is a laborious and time-consuming process: chopping plant matter by hand to feed to livestock. In Cox’s Bazar district, in eastern Bangladesh, it is common practice. A mechanized fodder chopper can do the job more quickly and efficiently — yet this simple but effective machine has not seen much use in the region.

To address this, a collaboration between the International Maize and Wheat Improvement Center (CIMMYT) and aid organizations in the region is creating networks between farmers, agriculture service providers and the businesses that make and distribute the machines.

The Cox’s Bazar region is host to around 900,000 Rohingya refugees who were displaced from Myanmar. The influx of refugees has put a strain on resources in the region. This collaborative effort took place near the camps, in an effort to support capacity and economic development in the host communities nearby.

Though this collaboration has only been around for a few months, it has already seen early success, and received an award from the United States Agency for International Development (USAID). The award recognized the organizations’ “outstanding collaboration that contributed to increased and efficient livestock production through mechanization in the host communities impacted by the influx of Rohingya refugees.”

Mechanization and livestock collaboration

The project — funded by USAID — is a partnership between two existing efforts.

The first is Cereal Systems Initiative for South Asia – Mechanization Extension Activity (CSISA-MEA), which aims to boost the country’s private agricultural machinery industry while supporting local farmers. This initiative supports the mechanization of agriculture in Bangladesh, through increased capacity of the private sector to develop, manufacture and market innovative new technologies. CSISA-MEA is implemented by the International Maize and Wheat Improvement center (CIMMYT) in partnership with iDE and Georgia Institute of Technology.

The second is the Livestock Production for Improved Nutrition (LPIN) Activity, which works to improve nutrition and income generation among rural households in the region.

“We made a great collaboration with LPIN,” said Jotirmoy Mazumdar, an agriculturalist working with CSISA-MEA. “We’re very happy that our initiative helped us achieve this award. In this short time period, a new market opportunity was created.”

Nonstop chop

There are numerous benefits to using fodder choppers, according to Muhammad Nurul Amin Siddiquee, chief of party of LPIN. For one, having access to the choppers can save farmers around $7 (600 Bangladeshi taka) in labor costs per day, and reduce the amount of feed wasted by 10–15%. On average, a farmer can hand-chop 500 kg of forage or fodder each day, while the machines can process around 1,000 kg of the material per hour.

According to Siddiquee, giving chopped feed to livestock improves their productivity. One farmer’s herd of 17 crossbreed cows produced 115 liters of milk per day — he expects this to increase to 130 liters per day after feeding them fodder produced with a mechanized chopper.

“He can now save labor costs and four hours of his time per day by using the fodder chopping solutions,” he said, adding that the collaborative effort is “fostering increased livestock productivity and [farmer] incomes.”

However, Cox’s Bazar is far away from the center of Bangladesh, where most of these machines are produced. For example, there are more than 30 small engineering workshops in the more centrally located Khulna Division and they have cumulatively made 7,470 choppers.

“In Cox’s Bazar, it was almost impossible for those livestock farmers to get to know the chopper machines, and actually get access to them,” said Khaled Khan, team lead with iDE, who also aided in private-sector engagement.

So, the collaboration between CSISA-MEA and LPIN began connecting farmers and agriculture service providers with these fodder chopper producers and distributors. Moreover, it worked to increase knowledge of how to operate the machines among the farmers.

“Fodder choppers are an entirely new technology in Cox’s Bazar,” said Zakaria Hasan, CSISA team lead in the district.

Though it is still early days, the partnership has been met with a warm reception. Farmers and agriculture service providers cumulatively purchased 12 of the choppers within two weeks — each machine can support its owner and five other farmers — and three dealers are now selling the machines to meet farmer demand. In the region, 60 dairy farms are now purchasing chopped fodder for their livestock.

According to Khan, engaging the private sector in this project was essential. He explained that increasing the connectivity between the buyers and the sellers will help make the market larger and more stable.

“We found the perfect opportunity of supply and demand because their partners are demanding our partners’ service. The role of the private sector was the most important for the sustainability of this marriage of demand and supply,” Khan said.

“We want to establish a linkage between these two private entities. Our project’s job is to facilitate that, so that even after the project is over this networking continues in the future.”

Cover photo: Farmer Hosne Ara uses a mechanized fodder chopper to prepare feed for livestock in Bangladesh. (Photo: Ashraful Alam/CIMMYT)

Genome-wide association study puts tan spot-resistant genes in the spotlight

Tan spot disease, caused by the fungus Pyrenophora tritici-repentis, may be less well-known than other pathogens of wheat such as rust and blast, but its potential to become a major threat to wheat-growing regions worldwide is a serious concern.

In Kazakhstan, one of the main wheat growing nations in Central Asia, farmers have struggled with tan spot epidemics since the 1980s. During epidemic years, Kazakh farmers have reported losing nearly half of their harvest to the disease.

A recent study published in Frontiers in Genetics has unlocked a promising new weapon against tan spot disease. Scientists at the Institute of Plant Biology and Biotechnology (IPBB) in Kazakhstan and the International Maize and Wheat Improvement Center (CIMMYT) conducted a genome-wide association study (GWAS) which found new sources of genetic resistance to tan spot disease.

“Bread wheat is the most important crop in Central Asia directly linked to food security. 45-60% of daily calories come from wheat,” said Alma Kokhmetova, Professor and Head of the Genetics and Breeding Laboratory at IPBB, who partnered with CIMMYT on this project.

Evaluation of tan spot disease resistance in a greenhouse. (Photo: IPBB)
Evaluation of tan spot disease resistance in a greenhouse. (Photo: IPBB)

Creative approaches to challenging, global issues

Global agriculture is repeatedly tested and threatened by emerging pests and diseases.

Fungicides and pesticides are not a one-stop, sustainable solution to controlling outbreaks. In addition to being unaffordable to much of the world’s smallholder population, they have also been found to have some negative environmental and health side effects. But crop breeders will argue that there is a more efficient path to resilience: through genetics.

For example, some wheat varieties are naturally resistant to diseases such as tan spot — it is in their DNA. If breeders can figure out what genes hold the code to tan spot disease resistance, in this case, they can cross and breed future varieties to be naturally immune to the disease. It is a much cleaner, cheaper and greener solution than dousing the world’s crops in fungus- and bug-killing chemicals.

A figure from the genome-wide association study shows novel genomic associations — especially here on chromosome 6A — that display resistance to both races of the tan spot fungus. (Figure: CIMMYT and IPBB)
A figure from the genome-wide association study shows novel genomic associations — especially here on chromosome 6A — that display resistance to both races of the tan spot fungus. (Figure: CIMMYT and IPBB)

Finding the needle in the haystack

Working together, CIMMYT and IPBB were able to find some important and novel genetic associations with resistance to tan spot for the two main races of the disease, race 1 and race 5, which are the most prevalent in Kazakhstan. The research centers assembled a panel with 191 samples of wheat having different levels of resistance from Kazakhstan, Russia and CIMMYT, through the International Winter Wheat Yield Partnership (IWWYP).

In order to conduct the genome-wide association study, the scientists used a genotyping platform called DArTseq to sequence the entries in the panel, a device that CIMMYT houses in its global headquarters in Mexico. The DArTseq method sequences the genome representations on the Next Generation Sequencing platforms and generates high-density single nucleotide polymorphisms (SNPs) data in a cost-effective manner.

Using the SNPs generated by DArTSeq and the phenotypic scoring of resistance to tan spot at the seedling and adult plant stages in Kazakhstan, the scientists were able to mark genomic regions associated with resistance to the disease. Novel regions on chromosomes 3BS, 5DL and 6AL were all found to have some promising traits of resistance, especially 6AL, which appears to be superior in protecting plants from both of the races of the pathogen.

Tan spot, caused by Pyrenophora tritici-repentis on susceptible wheat cultivar Steklovidnaya 24. (Photo: IPBB)
Tan spot, caused by Pyrenophora tritici-repentis on susceptible wheat cultivar Steklovidnaya 24. (Photo: IPBB)
Tan spot-resistant wheat cultivar Tyngysh. (Photo: IPBB)
Tan spot-resistant wheat cultivar Tyngysh. (Photo: IPBB)

The next steps

This discovery of a new source of genetic resistance to tan spot is exciting to breeders, researchers, donors, national agricultural systems, seed companies and, ultimately, farmers both in and outside of Kazakhstan. Essentially, any country that struggles with race 1 and race 5 of tan spot disease will benefit from this discovery.

“For breeding purposes, 25 lines with the best allele combinations of novel and known genes identified in this study are currently being used in different crossing programs in Kazakhstan,” said Deepmala Sehgal, CIMMYT wheat geneticist. The next stage of this project will also be a collaborative effort with CIMMYT, where the results will be validated in other in genetic backgrounds.

“Once the results are validated, their sequence information will be updated in a genotyping platform called Intertek, which has been designed to assist breeders in genotyping their germplasm with gene-based markers,” added Sehgal

More impact together

“Thanks to the exchange of wheat materials between CIMMYT, Turkey and ICARDA (IWWIP), we have selected and produced disease-resistant advanced wheat lines. These wheat entries now are being evaluated in the different stages of the breeding process,” said Kokhmetova.

The early success of this study and partnership between CIMMYT and IPBB has led to another round of funding approved by the Kazakhstan government to bring this research to the next stage. Additionally, more projects that seek to find sources of genetic resistance to leaf rust and yellow rusts have recently been approved.

“Due to this previous successful collaboration done between IPBB and CIMMYT, two more projects have been funded to our national agricultural research system partner Professor Alma,” said Sehgal.

Although the story of tan spot-resistant wheat is still unfolding, major strides will continue to follow in the footsteps of this exceptional discovery.

Cover photo: Scientists from IPBB evaluate wheat infected with tan spot and wheat rusts in Kazakhstan. (Photo: IPBB)

An example of best practice

A MasAgro-supported farmer in Mexico holds up a selection of maize varieties. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) is contributing to make Mexico’s agriculture more productive, sustainable and resilient, according to a new report by The Economist Intelligence Unit and Barilla Foundation.

The study focuses on food loss and waste, sustainable agriculture, and nutritional challenges to assess how sustainable and resilient are the food systems of the 20 largest and most advanced economies of the world, which could lead the way to achieve the United Nation’s Sustainable Development Goals (SDGs) by 2030.

Fixing Food 2021: An opportunity for G20 countries to lead the way” argues that global food systems are instrumental to meet all SDGs, and seeks to answer if and how G20 countries are making food sustainability a priority.

The authors discuss the intricacies between national food systems and progress towards SDGs as a cross-cutting issue: “The challenge for the agricultural sectors in the G20 countries is to make their production processes more efficient so that they are growing sufficient food for their populations and their exporters, but doing so in a way that is decoupled from resource use, repairs the damage that has already been done to the planet, helps to raise nutritional standards, and in the wake of the pandemic, rebuilds our resilience to the emergence of diseases.”

Against this backdrop, the data systems of CIMMYT’s MasAgro project are identified as an innovation or best practice that helps cut agriculture’s carbon footprint in Mexico. Under Masagro, CIMMYT monitors over 150,000 farmers and more than 500 variables of the growing cycle per farming plot.

“Farmers can then access data analysis via an app which provides them with a range of information to help them improve productivity, use more sustainable practices and access markets,” the report states.

Women farmers in Mexico attend a MasAgro field day. (Photo: CIMMYT)

The authors conclude that G20 leaders still have a narrow opportunity to adopt a systems approach to reducing food loss and waste, mitigating the impact of food production on the environment, and increasing the nutritional content of global diets to achieve the SDGs by 2030.

However, the policy responses needed to trigger a transformational change in global food systems require political will and leadership. “Involving different stakeholders in improving the sustainability of agriculture is key, according to Bram Govaerts of the International Maize and Wheat Improvement Center (CIMMYT),” reads the report.