Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

For women in Ivory Coast, processing cassava no longer has to be a grind

Attieke is the national dish of Ivory Coast. Served with fried fish or a vegetable stew, this tangy, fermented side is the heart and soul of Ivorian cuisine. And because it’s made from cassava, attieke is gluten free. So, in addition to its status as an iconic food of hospitality from Abidjan to Yamoussoukro, attieke has the potential to catch on in distant locales.

Producing attieke is complicated—transforming tubers in the ground into a delicious bowl of couscous-like cassava involves harvesting, peeling, grinding, fermenting, pressing, and effectively storing the processed crop. And in Ivory Coast, this work is traditionally performed almost entirely by women.

A cooperative member processes cassava using a manual grinder. (Photo: Sylvanus Odjo/CIMMYT)

A grueling process

Traditional methods for processing cassava, however, are very slow and extremely laborious. “We had to use a wooden plank with nails [to grind cassava]”, said N’Zouako Akissi Benedicte, president of the local agricultural cooperative in Mahounou, Nanafoue, about 30 kilometers from the capital, Yamoussoukro. To remove the liquid from the ground cassava, Ivorian women used “a kind of screw press” that required so much strength that “it caused us pain in the chest.”

In addition to being painful and grueling, these manual methods are terribly inefficient, generating about 30 kilograms of product per hour. Benedicte said a worker could process very little cassava in a day’s work using this traditional approach. Limited physically by this hard manual labor and struggling to generate enough income to establish financial independence, women working in cassava production in Ivory Coast face difficult challenges.

Hydraulic cassava press. (Photo: Sylvanus Odjo/CIMMYT)

Lightening the load

Three years ago, things started to change for Benedicte and other women working in cassava production in her area. At that time, her cooperative partnered with the Green Innovation Centers for the Agriculture and Food Sector (GIC) of Ivory Coast to receive training to use hydraulic-powered cassava grinders and presses. These machines, which GIC helped design and adapt for the climate and cultural context of Ivory Coast, promised to significantly increase speed of production while making all aspects of cassava work more accessible to women. For instance, the grinding capacity of the equipment is around 600 kg/hr.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative, ONE WORLD no hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

Beyond helping Benedicte’s cooperative finance the purchase of the new machines and providing instruction in their use, GIC offered the agricultural cooperative a broad range of seminars on topics including selecting seed varieties, soil preparation, processing, and commercialization. This comprehensive approach set the women of Mahounou, Nanafoue up for success.

Gas powered mechanical cassava grinder in Mahounou, Ivory Coast. (Photo: Sylvanus Odjo/CIMMYT)

A message for my sisters

For Benedicte, the new grinder and press are making a huge difference. “The press with the hydraulic system is very efficient and we no longer need to use so much effort to remove the juice,” she said. According to Benedicte, workers in the cooperative are now processing up 1,000% more cassava per day and are only limited by the availability of raw material.

Better yield is also generating financial improvements for these women. “A woman who is working can buy her own machine and earn money that can be used for the education of her children,” Benedicte said. “I have a message for my sisters: a woman cannot solely depend on her husband and expect him to provide everything.”

GIC is working with 32 other groups like Benedicte in Ivory Coast, and the mechanization program has impacted the work of 1,000 women so far.

Taking the next step

There are still hurdles to overcome. In Mahounou, women producing cassava are relying on men to ignite the machines, and when a grinder or a press breaks down, it can be difficult to find spare parts. Benedicte believes electric machines could help solve both problems and take their business to the next level. “We would like to increase our production and sell it at an international level,” she said. “We would like to have a small processing unit here for women that could be used to produce high quality products for the international markets.”

GIC also has plans for a technology transfer that could reproduce this successful program in Malawi. Ivorian staff are collaborating with colleagues there to develop a cassava grinder and press for the Malawian context.

For Benedicte, there is more than food and income at stake in the success of these efforts. “It is important to be autonomous in taking charge of our own expenses,” she said. “This is being a woman. So, please, I invite my sisters to work.”

Cover photo: N’Zouako Akissi Benedicte, president of the local agricultural cooperative, with cooperative members and mechanical cassava grinders. (Photo: Sylvanus Odjo/CIMMYT)

Seven new CIMMYT maize hybrids available from Southern Africa Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce seven new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM21SAPP1-14 Intermediate-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB, and ear rots
CIM21SAPP1-10
CIM21SAPP1-01 Late-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to MSV, TLB, and ear rots
CIM21SAPP1-08
CIM21SAPP2-12 Early-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB
CZH1815A Early-maturing, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CZH1805A
Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019, 2021, and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 10 January 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2021/22 Southern Africa Stage 5 Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Smallholder farmers embrace climate-smart seed and mechanization fairs

Farmers pose with the drought-tolerant seed of their choice at a seed fair in Masvingo district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

The long-term climate outlook for sub-Saharan Africa predicts more erratic rainfalls and higher temperatures. For this reason, the rapid uptake of measures to adapt to climate change within seed systems is of paramount importance. In Zimbabwe, the adoption of “climate-smart seed varieties”, environmentally-sustainable and scale-appropriate mechanization is critical to reaching zero hunger in the face of climate change. Farmers in Zimbabwe’s Masvingo district appear to have embraced this goal. More than 1,000 farmers participated in recent R4/Zambuko climate smart seed and mechanization fairs held in the region on October 11 and 12, respectively.

The fairs were organized by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with Zimbabwe’s Ministry of Lands, Agriculture, Fisheries, Water and Rural Development. Financial support was provided by the United States Agency of International Development (USAID), the Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP). With the onset of the 2022/2023 cropping season, the new OneCGIAR Ukama Ustawi initiative will build upon this work to reach thousands more farmers in the area.

One highlight of the fairs was a strong focus on smallholder mechanization, which saw Zimbabwean and international mechanization companies displaying their products. Each demonstrated two-wheel tractors and a range of attachments, from trailers to crop production and harvesting implements. In the words of the District Development Coordinator (DDC) Kenneth Madziva, “It’s important that farmers own machinery that is appropriate to their context as we now need to move into an era of high productivity and efficient post-harvest processing. We also see some of the machinery on display quite relevant for conservation agriculture practices which aligns with the government’s Pfumvudza program.” Mechanizing the manual basin planting system in Pfumvudza to ripline seeding will dramatically reduce the farm labor usually needed to dig the basins while maintaining the key principles of conservation agriculture: no-tillage, crop residue retention and crop diversification.

According to Madziva, “Such initiatives from partners are very welcome, as rural livelihoods are predominantly agriculturally based. There is need to rapidly transition our farmers from a donor dependence to self-sufficiency, hence I am impressed with the number of farmers I have seen buy seed with their own hard-earned money.” The fairs generally strive to achieve two goals: first, ensuring that farmers are well-informed about climate adapted varieties able to withstand climate challenges such as in-season dry-spells and/or heat stress, and, second, that they buy the improved seed directly from private sector partners.

Farmers observe a two-wheel tractor engine being used to power a maize sheller. (Photo: Tawanda Hove/CIMMYT)

It is hoped that increasing famers’ exposure to scale-appropriate mechanization will translate into increased purchases of the equipment and a move away from the drudgery of both draft or manual production and processing systems. Robin Vikström, the donor representative from WFP also stated that it is high time for smallholder farmer systems be intensified, and mechanization is one of the essential triggers of intensification.

Vikström, speaking on the significance of the events said, “Such initiatives are part of a broader national resilience building strategy where our intention is to enable smallholder farmers to deal with climate shocks and stresses through capacity development trainings, diversified crop production systems, effective and well-governed Income Savings and Lending groups (ISALS) and improved livestock. This is a step forward from our tradition of distributing food, which is still necessary in certain contexts, but has to be progressed to self-reliance. The seed and mechanization fairs facilitate stronger interactions between the farmers and the private sector and furthermore the procurement of the right seed and mechanization for their ecological region. More interaction translates to better product development and increased sales which is a win-win for all stakeholders concerned. This is a major step towards sustainable achievement of food and nutrition security.”

Concerning the long-term plan of the intervention, Vikström added, “The initiative is currently set to run until 2025 with plans already underway to expand to more wards and districts as the development strategy is proving to be yielding significant results.” The seed fairs resulted in the sale of approximately 1.9 metric tons of improved white and orange maize seed, generating over $6,000 in revenue for participating private sector vendors.

Christian Thierfelder, Principal Cropping Systems Agronomist at CIMMYT and Principal Investigator for the program said, “As we expanded this year to different wards, our objective was to first create an educational platform for farmers where farmers could learn more about the various stress-tolerant seed varieties with improved genetics available from the private sector. Secondly, we wanted to create a selling platform for the private sector where various companies could have their products made much more easily accessible to the smallholder farmers. I am happy that the private sector talked about conservation agriculture, which is an important new narrative. Farmers need to grow the right seed in a good agronomic environment for the crop to succeed.”

Although this crop season’s outlook is yet to be officially communicated to farmers, there is high anticipation for a bumper harvest through improved varieties and efficient, mechanized operations and farmers were eager to buy the right seed to reap the benefits of science in their own homestead.

CIMMYT scientists rank in top 1% of highly cited papers

Jill Cairns in front of CIMMYT headquarters. (Photo: Sam Storr/CIMMYT)

Three scientists from the International Maize and Wheat Improvement Center (CIMMYT) are included in Clarivate’s 2022 Analysis of the most highly cited academic papers.

Maize Physiologist Jill Cairns, Distinguished Scientist and Head of Wheat Physiology Matthew Reynolds, and Biometrician José Crossa, all from CIMMYT, were recognized in the 2022 analysis.

Jose Crossa chairing a session on adding value to phenotypic data. (Photo: Alfonso Cortés/CIMMYT)

This year, 7,255 Highly Cited Researcher (HCR) designations were issued to 6,938 individuals globally. The award is given to scientists with papers that rank in the top 1% by citations. Matthew was awarded for his contribution to scientific literature in plant and animal sciences, while José and Jill were awarded for their contributions to scientific literature across several fields of research (cross fields).

Of the world’s population of scientists and social scientists, Highly Cited Researchers are 1 in 1,000.

The analysis highlights disparities in the locations of top cited scientists. For example, 82.9% of recipients are from just ten countries and regions, out of a possible 70, and 71.4% are from the United States of America, China, the United Kingdom, Germany, or Australia. While the recognition is only given to individual scientists, Matthew, José, and Jill’s success is related to strong scientific collaborations worldwide.

Matthew Reynolds at IWC9 in Sydney, Australia. (Photo: Julie Mollins)

Opening the door to commercial fodder production

The paired challenges of population growth and climate change have put smallholder farmers in Zambia in a squeeze. In the Southern Province, the center of agricultural production for the nation, smallholder dairy farmers struggle to increase their production of fodder to commercially viable levels in the face of a long dry season that climate change is intensifying.

Smallholder farmers looking to support their families, enhance the local food supply, and sustain economic growth in their areas are at a distinct disadvantage because agriculture in Zambia is dominated by massive commercial operations with plentiful capital, large tracts of land, and expensive machinery, with most of their output marked for export.

The International Maize and Wheat Improvement Center (CIMMYT) is partnering with the German development agency Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the University of Hohenheim to identify key barriers and sustainable pathways to smallholder farmer success through a mechanization working group. This work is being carried out through the global initiative One World No Hunger, which launched Green Innovation Centers for the Agriculture and Food Sector (GIC) in 15 member countries in 2014.

“Mechanization is a critical aspect of responding to these problems and the core business of the GIC is to develop knowledge,” said Chimuka Mulowa, a GIC cooperative development advisor based in Choma, Zambia. “Our efforts provide training to smallholder farmers with a focus on adaptive mechanization as a critical ingredient in a holistic approach. Projects in the past have purchased equipment, but we integrate knowledge with existing infrastructure.”

Smallholder homestead with irrigation and fencing to protect developed pasture, Namwala, Southern Province, Zambia. (Photo: Vuyo Maphango)

In Zambia, the GIC works with 22 cooperatives to reach 10,000 small-scale farmers with training sessions on fencing land to grow grass, climate smart breeding, irrigation, and more. The GIC has reached their training goal, but implementation of new practices has been more difficult, with only about half the farmers adopting what they have learned so far.

To better understand the challenges smallholder farmers face in Zambia, Mulowa and the GIC partnered with researcher Vuyo Maphango, who was completing his master’s degree in agricultural economics at the University of Hohenheim under the supervision of Lennart Woltering, a senior scientist at CIMMYT. Woltering developed a tool called Scaling Scan which analyzes barriers to growth for successful innovations in the pilot stage and brings focus to key ingredients for expansion.

Mulowa and Maphango used Scaling Scan to assess the progress of the GIC efforts in Zambia. As they expected, for smallholder farmers trying to get into commercial fodder production, financing was a challenge. At $35,000 USD for a machinery like hay balers used once per year, it can take a farmer up to a decade to recoup such an investment. But Scaling Scan also identified surprising challenges, such as a lack of collaboration and uneven dissemination of knowledge and skills.

Tractor carrying hay bales, Choma, Southern Province, Zambia. (Photo: Vuyo Maphango)

“There was a lot of progress coming out of the Scaling Scan process,” Maphango said. “Growing the cooperatives of farmers is a critical GIC focus now, and this helps with the finance issues as well. Where farmers can’t afford to buy or develop high-quality seed, they can come together, share which seeds are working best for them, and help each other adopt best practices. Staying close as a cooperative also gives farmers stronger bargaining power with the ability to pool together finances.”

More affordable equipment will also help. Smaller, less expensive choppers and chuff cutters ($1500-2000 USD) are already available for silage production, but there is not a well-established tradition of employing silage production in Zambia, and farmers there have struggled to adopt it. Similar machines are making their way onto the market for fodder production and will require farmers to develop a new set of technical skills.

Mulowa and Maphango are also rethinking approaches to training. As an incentive, non-government organizations (NGOs) often pay participants for their time when they attend training sessions, but government ministries can’t sustain this practice beyond the end of a project due to lack of funding. For a deeper level of skill and knowledge development, GIC wants to help farmers see the benefit of training as providing its own incentive–continuing professional education will pay off, both in terms of better agricultural and business practices, and better financial outcomes. The key to this transition is results. When farmers see their yield improving because of skills and practices they developed in training, they will be hungry for more.

Success, for Zambian smallholders, is a door that is opening slowly but surely. “Early adopters are making progress,” Maphango said. “Some are growing their own grass, others are fencing their land and developing irrigation.” As these practices take root, and farmers share victories with cooperative members; the value of ongoing training becomes clear, and the door may open further for others to walk through.

Cover photo: Hay bales on a commercial farm, Chisamba, Central Province, Zambia. (Photo: Vuyo Maphango)

The democratization of innovation

When the Norwegian Red Cross hired Kristian Wengen and his consulting firm Tinkr to launch a “Scaling for Success” initiative, he found himself at a crossroads. From international aid projects aiming to address the UN Sustainable Development Goals (SDGs) to private companies seeking to expand their market, everyone was talking about the challenges of scaling up – expanding and sustaining successful programs to reach a greater number of people – but there were few clear paths to solutions.

Wengen worked with CIMMYT to adapt the Scaling Scan. (Photo: Kristian Wengen)

The Scaling Scan has solutions to offer

But when Wengen came across a project using a tool called the Scaling Scan that identifies and analyzes 10 critical elements for assessing the scalability of any pilot project, he knew he had found a way forward. He was excited, but also worried because the project using the Scaling Scan had concluded.

Concerned he would lose access to the best tool he had found by far, Wengen connected with Lennart Woltering, who created the Scaling Scan for the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with a Dutch-supported project on private-public partnerships called the PPPLab. Woltering and Wengen began a dialogue regarding repurposing the Scaling Scan for Wengen’s context.

“What I like about the Scaling Scan is that it works on a very detailed level to produce systemic results,” said Wengen. “It brings a simple approach to the complex problems of scalability, which allow organizations to achieve efficient solutions, regardless of their geographic or demographic context.”

The Scaling Scan focuses attention on discrete components – from finance and business cases to technology and skills – which are necessary to successfully scale an innovation. But it also spurs insight into how each of these necessary ingredients complement each other as a project prepares to successfully transition, reproduce, and expand.

Wengen believes the most effective work of the Scaling Scan happens in team conversations, and it helps deliver clear feedback that can form the basis of discussions that go straight to the heart of the matter. While the challenges of scaling an innovation are complex, the Scaling Scan cuts through the noise and focuses attention on solving the most important problems, whether related to leadership, collaboration, or public sector governance.

Scaling the Scaling Scan

In their conversations, Wengen and Woltering identified opportunities for improving the Scaling Scan. For example, Wengen is building a digitized, web-based version that, like the original Scaling Scan, will be freely available. He calls it a scorecard, a smaller version which capitalizes on the ability of the Scan to promote productive dialogue that moves a project forward. “I am thrilled to help broaden the reach of the Scaling Scan, as making it available for a much wider audience will democratize innovation,” Wengen said.

“Kristian’s adaptations are exactly how I designed the Scaling Scan to work,” said Woltering. “I wanted it to be straightforward enough to be useful across a broad range of business and development applications and flexible enough to be tailored to the specific needs of a particular region, culture, or marketplace.” Seeing how Wengen has utilized the Scaling Scan across a variety of markets has spurred Wennart to develop the Scaling Scan website, where other interested practitioners can download the tool and share their own innovations. “The Scaling Scan truly has utility across the broadest geographies and socioeconomic ranges,” said Wennart.

Wengen is hoping his scaling scorecard will help drive success in a new collaboration he is undertaking with Innovation Norway, a state-owned organization that helps Norwegian businesses grow and export promising products and services. Wengen believes his scorecard will add immense value to a diverse set of projects ranging from business management software helping bakeries reduce waste and increase profits to zero-carbon ocean-going ships and virtual medical training systems.

This kind of transfer and growth shows that even the Scaling Scan itself can be scaled up from the tropics to the Arctic Circle, and Woltering can’t wait to see where the next successful adaptation will spring up.

From silver bullets to transition science in the CGIAR: reflections on the scalingXchange Call to Action

The origins of the CGIAR, the world’s largest publicly funded agricultural research consortium for the poor, are closely related to the Green Revolution; a revolution mostly told as the work of one Northern hero with a superior technology that saved the world from starvation. Only recently has the notion that the introduction of that superior technology was one of many investments and innovations that kicked off as the Revolution started to gain ground – and that these investments and innovations came from both the North and South. Scaling of innovation happens in a larger system, often one that feels resistant to whatever we try to scale or, like in the case of the Green Revolution, aligned with what was being scaled and thus led to a tipping point and a completely new way agriculture is produced. The Revolution changed our relation to food, from which there was no going back.

In my ten years at the CGIAR – from 2005 to 2010 at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and then from 2017 to now at the International Maize and Wheat Improvement Center (CIMMYT) – major shifts can be observed in how scaling is approached.

First, scaling equals large adoption during the project, stemming from strong confidence that “if we build it, they will come”, or we just show how good our innovation is and others will scale it. From my own experience developing scale-appropriate drip irrigation in the Sahel, North Africa, I can say that approach hardly worked. When I re-joined the CGIAR in 2017, there was much more attention to the context in which the intervention is being scaled – we need to “create an enabling environment” for the innovation, and multiple innovations need to scale alongside “our”, mostly technical, innovation. It was very interesting to see up close how more and more colleagues have started to question whether scaling is “good” in the first place and whether it should be about “our” innovations.

COVID-19 and the major energy transitions that are going on in Europe and some states in the United States of America (USA) seem to have awoken a much stronger systems view, the realization that change takes decades, and that there are winners and losers in that process. I think we did a great job in questioning the “silver bullet” and “transfer of technology” mindset and see the achievement of the UN Sustainable Development Goals (SDGs) as a transition process that requires radically different approaches and addresses multiple leverage points.

Scaling at One CGIAR

The major reform from 15 CGIAR centers to One CGIAR was the perfect opportunity to take scaling seriously as a science and an art. A range of methodologies have been developed, and informal networks of like-minded people have worked together a lot to push for a new paradigm on scaling. It is great that scaling is now well embedded in the One CGIAR strategy for the future. The big One CGIAR Initiatives have all reserved about 5 percent of their budgets to integrate scaling expertise. Also, scaling is very much recognized as a topic that requires a culture and mindset change within the organization to be much more effective.

Not surprisingly, the Call to Action from the Global South and its eight action points resonated a lot with me, especially since the following principles match really well:

  • It is not about reaching a target as fast as possible but about the whole environment for sustainability – more is not always better. Scaling can help us understand whether project outputs have contributed to something good (Action 1).
  • We need to reflect better on the viability of some innovations to go to scale – rather than promoting or selling our own solutions, supporting Southern solutions could increase viability (Action 7).
  • Problem owners should be in charge of scaling – scaling should be a locally owned process where those on the ground negotiate what is good and enough, and we, the research and development organizations, facilitate and support (Action 2).
  • The way projects are designed and implement set us up for failure. We create fake, highly controlled environments designed to prove that our innovation works – the gap with the reality on the ground could not be larger. The development community, with donors, need to rethink our approach (Action 5).
  • We need to invest in learning and the science of scaling. Organizations in the Global North need modesty in understanding that our role is not neutral and realize that there is so much we don’t know (Action 8).
  • Within organizations, scaling is a cultural issue tightly connected to change management. We need to shift mindsets and behaviors to allow better scaling to happen.

That this Call comes from researchers in the Global South is so powerful. It shows us that the current ways of working are not delivering and paints a picture of a better way of doing things, but at the moment, we are in uncertain limbo between the two. The guidance in the Call can help to incite momentum and change. I believe we are coming to a critical mass of people that can tip the scale and that the actions in the Call can become the new normal – so that the stories we tell in the future focus not just on external (Northern) innovations that lead to big change, but on the interplay between what is going in the South and how external “solutions” fit in.

Cover photo: Lead farmer Santa Bhandari harvests green maize for her buffaloes
Neulapur, Bardiya, Nepal. (Photo: Peter Lowe/CIMMYT)

New CIMMYT maize hybrids available from Latin America Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce four new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecological zones. Public- and private-sector organizations are hereby invited to apply for licenses to pursue national release and /or scale-up seed production and deliver these maize hybrids to farming communities.

Product Code Target agroecology Key traits
CIM20LAPP1A-11 Latin-American lowland tropics and similar agroecologies. Intermediate maturing, white, high yielding, drought tolerant, and resistant to TSC, MLB, and ear rots
CIM20LAPP1A-12
CIM20LAPP1C-9 Intermediate maturing, yellow, high yielding, drought tolerant, and resistant to MLB and ear rots
CIM20LAPP1C-10

 

Performance data Download the CIMMYT Latin America Stage 4 and Stage 5 Trials: Results of the 2020 and 2021 Trials and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 25 November 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids, CIM20LAPP1C-9, CIM20LAPP1C-10, CIM20LAPP1A-11 and CIM20LAPP1A-12, were identified through rigorous trialing and a stage-gate advancement process which culminated in the 2020 and 2021 CIMMYT Latin America Stage 4 and Stage 5 Trials. The products were found to meet the stringent performance criteria for CIMMYT’s LA-PP1A and LA-PP1C breeding pipelines. While there is variation between different products coming from the same pipeline, the LA-PP1A and LA-PP1C pipelines are designed around the target product profiles described below:

Product Profile Basic traits Nice-to-have / Emerging traits Target agroecologies
LatAM-PP1A

(Tropical Lowland White)

Intermediate maturing, white, high yielding, drought tolerant, and resistant to TSC, MLB, and ear rots GLS, Fusarium Stalk Rot Latin-American lowland tropics and similar agroecologies.
LatAM-PP1C

(Tropical Lowland Yellow)

Intermediate maturing, yellow, high yielding, drought tolerant, and resistant to MLB and ear rots GLS, Fusarium Stalk Rot Latin-American lowland tropics and similar agroecologies.
MLB: Maydis leaf blight; TSC: Tar spot complex; GLS: Grey leaf spot

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Is uptake of rust-resistant wheat linked to gender equality?

Sieg Snapp presents research on agroecological approaches to maize farming in Malawi and Zimbabwe at Tropentag 2022. (Photo: Ramiro Ortega Landa/CIMMYT)

Farmers, development practitioners and scientists gathered at Tropentag 2022 between September 14-16 to answer a question that will affect all our futures: can agroecological farming feed the world?

Tropentag is an annual interdisciplinary conference on research in tropical and subtropical agriculture, natural resource management and rural development, jointly organized by nine European universities and the Council for Tropical and Subtropical Agricultural Research (ATSAF e.V), in cooperation with the GIZ Fund International Agricultural Research (FIA).

This year’s event explored the potential of agroecology to contribute to improved nutrition, enhanced natural resource management and farm incomes.

Sieg Snapp, Director of the Sustainable Agrifood Systems (SAS) program at the International Maize and Wheat Improvement Center (CIMMYT) presented on agroecology approaches to enhance learning in a changing world based on experiences with maize-based cropping systems in southern Africa. Snapp suggested that accelerated learning and adaptative capacity are key to the local generation of suitable solutions to agricultural problems, and proposed agroecology as a foundational approach that emphasizes understanding principles, harnessing biological processes, and enhancing local capacity.

Snapp shared how an agroecology living laboratory in Malawi has supported farmer agency around soil health, crop diversification and sustainable intensification since 2013, while living labs are being established in “food territories” in Zimbabwe to support innovation and strategies for evaluating the benefits of farm-scale agroecology approaches. She also explored solutions for pest management, inclusive financing modalities and collaborative innovation generation between farmers and researchers.

Gender and disease-resistant varieties

Michael Euler, Agricultural Resource Economist at CIMMYT, presented in the conference session on technology adoption and dissemination for smallholder farms, which included contributions on the adoption and impact of improved forage production, use of biogas facilities, agroecological management practices, improved wheat seeds, and access to and use genetic diversity in gene banks.

Based on data from CIMMYT’s Accelerating Genetic Gains in Maize and Wheat (AGG) project in Ethiopia, Euler presented a study on how intra-household decision-making dynamics influence the adoption of rust-resistant wheat varieties.

By using questionnaires that were addressed separately to male and female spouses in the household, researchers obtained insights on perceived individual roles in decision-making and agreements. The study found that an increase in the role of the female spouse in household farming decisions is positively associated with the uptake of rust-resistant varieties.

Additional sessions from the event focused on crops and cropping systems, animal production systems, food security and nutrition, agroecology, and food processing and quality.

Annual Report 2021 launched

Today, the International Maize and Wheat Improvement Center (CIMMYT) is excited to share with you the Annual Report 2021: From Discovery to Scaling Up.

Read the CIMMYT Annual Report 2021Read the web version of the Annual Report 2021

Download the Annual Report 2021 in PDF format

Download the financial statements 2021

Our latest Annual Report captures the three ways in which CIMMYT science makes a difference:

  1. The scientific pathway from discovery and validation: In 2021, we embarked on an ambitious initiative to apply environmental genome-wide association methods to predict how today’s maize, rice, sorghum, cassava, groundnut, and bean varieties will perform in the future under climate scenarios, and help them succeed in three or four decades from now.
  2. Translating science to innovation: Last year, we made important strides in boosting the resilience of maize and wheat to a hotter and drier world — and to the threats of ever-evolving and invasive pests and diseases.
  3. Scaling up innovation for farmers and society: In collaboration with dozens of public- and private-sector partners in the countries where we work, in 2021 we scaled up sustainable technologies and farming practices for hundreds of thousands of farmers.

CIMMYT director general Bram Govaerts presented the current challenges: “A global food crisis fueled by conflict, trade disruptions, soaring commodity prices and climate change.” He also expressed CIMMYT is ready to respond to the immediate and long-term threats facing humanity. “We have solid, science-informed solutions, policy recommendations and proven methodologies that will help avert the global food security crisis that looms,” he said.

We want to thank all our funders and partners for their collaboration and support, year after year.

In Burkina Faso, a business model for mechanization is providing hope

Ouattara Ali grows rice and maize on a small parcel of land in a village on the outskirts of Bobo Dioulasso, Burkina Faso’s second-largest city.

In the eight years since he began farming, he has faced significant challenges because he depends on traditional practices. Other smallholders in the community are in a similar situation, which limits their ability to realize greater prosperity.

A steady trickle of young adults is leaving the area to find work in the city as an alternative to the difficulty of trying to make ends meet on limited hectarage, coping with erratic harvests and with no guarantee of long-term financial stability.

This story is not unique to Ali and his community – it is familiar across Burkina Faso and other nations where the problems of food security, reliable employment, and dependable income limit economic development in rural areas.

Mechanization as a business

To help communities tackle these challenges, in 2014 Germany’s Federal Ministry for Economic Cooperation and Development (BMZ) created the special initiative One World No Hunger, which launched Green Innovation Centers for the Agriculture and Food Sector (GIC) in 14 countries in Africa and two in Asia. In Burkina Faso, the GIC focuses primarily on the sesame and rice value chains in the Hauts-Bassins, Cascades, Boucle du Mouhoun, and Sud-Ouest regions.

These initiatives include the introduction of mechanized agricultural practices that can increase yields of maize, rice, and other crops. In connection with GIC, farmers like Ali have used machines across the full agricultural value chain – from seed development to post-harvest – to improve their own crop yields. Mechanization has also enabled them to offer their services for hire to other farmers in the area.

Mechanization is a significant economic driver for boosting development of farm areas, but to achieve sustainable success and maximize the ability to bring transformative change to communities, business model development must be a critical focus area.

One of Ouattra Ali’s two-wheel tractors that he uses to provide machinery hire services to nearby farmers. (Credit: Rabe Yahaya/GIZ)

In August, the International Maize and Wheat Improvement Center (CIMMYT) and Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH, collaborated with the United Nations Food and Agriculture Organization (FAO) and Germany’s University of Hohenheim to host a webinar on business models for agricultural mechanization projects. Joining the conversation were 48 participants from countries including Burkina Faso, Nigeria, Benin, and Vietnam.

During the webinar, FAO Senior Consultant Karim Houmy presented research on business models from two case studies of agricultural mechanization hire services in sub-Saharan Africa. Houmy found five basic types of business model, each with its own structure, complexity, and requirements, but he also outlined common features that characterize all successful models.

Many models, a few key principles

The basic business model for agricultural mechanization involves a farmer who uses machinery on their own crops, and then subsequently provides the same services to neighboring farmers. This model is probably the simplest and least expensive. Any smallholder who can procure the necessary machinery, parts, and training can launch this small business, generate additional income, and help neighbors increase their yield. This model also has limits, however, as it restricts farmers to a relatively small footprint of clients whose farms are located near the service provider.

At the other end of the scale is an enterprise model where an entrepreneur does not own any farm machinery but uses mobile phones and geographic information system (GIS) technology to connect farmers with service providers. This model provides a much greater geographical scope as well as greater opportunities for growth and innovation. It also adds layers of complexity that require a network of intermediaries – from machinery dealers and mechanics to booking agents – and bank financing.

The more diverse in operational offerings a business model is, the more promise it holds for generating economic growth and food security. This occurs by spreading activity across a wider geographic region, providing yield-increasing services for more farmers, employing more workers, and generating increased demand up and down the supply chain.

In addition to laying out the range of business models in operation today, Houmy identified success factors important for all, including long-term access to financing and local infrastructure, both of which are structural issues that entrepreneurs have less immediate control over. GIC works to address this shortcoming by involving a broad range of stakeholders, including government actors, in addressing issues of sustainability.

Houmy encouraged entrepreneurs to focus on areas like cultivating a skilled staff, building close links with processors and aggregators, and diversifying the services they offer. This sort of business model training can translate into significant improvements on the ground.

Building a business

Life began to change dramatically for Ali when his local agricultural bureau connected him to the GIC in his area.

Through his relationship with GIC, Ali gained access to some basic mechanized farming equipment, including disc plows, harrows, and planters, which revolutionized his work. He now prepares his rice and maize fields more quickly and evenly. He plants them more efficiently and spends less time harvesting while producing equal and sometimes higher yields. To support this transition, GIC provided training in agricultural mechanization, seed production, and financial management.

Initially, Ali sustained an injury while using a harrow and trailer. Thankfully, this did not slow him down for long, he said. He learned how to regularly tighten components of the machine to avoid further injuries and other safety problems.

Soon, Ali began using his machines to provide services to his neighboring farmers as well, helping them with land preparation, transportation, and planting.

Today, 22 local farmers use Ali’s services, and his community is experiencing the benefits. Less time is spent on planting and harvesting while agricultural yields are increasing. Mechanization marked a sharp decline in the drudgery associated with farming tasks, especially for the area’s youth and women.

Ali is thinking about the future by expanding and diversifying. He plans to buy a seeder and a thresher if he can get financing, and he is interested in additional training. He is developing a business plan for a larger enterprise that would be “the farmers’ one-stop shop” for mechanization services in his area. With the profits so far, he has built a house for his wife and two children and bought a small car.

GIC has supported 26 service providers like Ali in Burkina Faso as well as others in Benin, Mali, and Kenya. Over time, the proliferation of sustainable agricultural operations like Ali’s, as well as their growth into more complex and more profitable business networks, holds enormous promise for rural areas where food security, sustainable employment and a baseline of prosperity have been elusive for far too long.

Cover photo: Workers on Ouattra Ali’s farm outside of Bobo Dioulasso, Burkina Faso. (Credit: Rabe Yahaya/GIZ)

Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers

A female farmer using digital agricultural tools. (Credit: C. De Bode/CGIAR)

Research shows that digital innovations can increase small-scale farmers’ incomes, boost the adoption of better practices, and increase resilience to climate shocks while reducing the gender gap and managing food system risks. However, these benefits are not universal. More than 600 million people and 40 percent of small farms are still not covered by mobile internet, especially in those countries most dependent on agricultural production. Across low- and middle-income countries, women are 7 percent less likely than men to own a mobile phone and 15 percent less likely to use mobile internet.

A new CGIAR Research Initiative, Digital Innovation, has been launched to research pathways to bridge this digital divide, improve the quality of information systems, and strengthen local capacities to realize the potential of digital technologies.

Read the original article: Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers

Scientist urges upgrades to monitor groundwater use for agriculture in low-income countries

Data collector reading data from offline groundwater level logger – one of the three tested monitoring technologies. (Credit: Subash Adhikari/CIMMYT)

Based on a pilot study regarding the feasibility and cost effectiveness of several groundwater monitoring approaches for agriculture in Nepal’s Terai region, a water and food security specialist who led the research has recommended the use of phone-based systems.

Speaking to diverse experts at the recent World Water Week 2022 in Stockholm, Sweden, Anton Urfels, a systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), said that manual monitoring with phone-based data uploading is relatively low-cost and effective and could be scaled up across the Terai.

“One alternate monitoring approach studied — online data uploading — has substantially lower staff time requirements and technology costs and higher temporal resolution than phone-based monitoring, but does not provide real-time data and entails high technical skills, capital costs, and risks of theft and damage,” said Urfels in his presentation, ‘Upgrading Groundwater Monitoring Networks in Low-Income Countries’.

Urfels and partners also developed a prototype of an open-source groundwater monitoring dashboard to engage stakeholders, help translate raw data into actionable information, and detect water depletion trends.

Water has become a key part of food research and innovation, critical for sustainable and ecological intensification in agriculture, according to the scientist.

“Collecting groundwater data is difficult and the technology for monitoring is unreliable, which impairs effective modeling, decision-making, and learning,” Urfels explained. “Like other countries in the region, Nepal is increasing its agricultural groundwater consumption, particularly through private investment in irrigation wells and pumps that open irrigation to more farmers. This and climate change have altered groundwater recharge rates and availability, but national data on these trends are incomplete.”

An extensive lowland region bordering India and comprising one-fifth of the nation’s territory, the Terai is Nepal’s breadbasket.

Held yearly since 1991, World Water Week attracts a diverse mix of participants from many professions to develop solutions for water-related challenges including poverty, the climate crisis, and biodiversity loss. The 2022 theme was “Seeing the Unseen: The Value of Water”.

“I’d recommend more pilot studies on phone-based groundwater monitoring for other areas of Nepal, such as the Mid-hill districts,” Urfels said. “We also need to fine-tune and expand the system dashboard and build cross-sectoral coordination to recognize and take into account groundwater’s actual economic value.”

Urfels said the Nepal Ministry of Energy, Water Resources and Irrigation has requested the nationwide scale-out of a digital monitoring system, and CIMMYT and Nepal experts will support this, as well as improving the system, which would be freely available for use and development by researchers and agencies outside of Nepal.

The research described was carried out under the Cereal Systems Initiative in South Asia (CSISA), which is funded by USAID and the Bill & Melinda Gates Foundation, and under the CGIAR integrated research initiative, Transforming Agrifood Systems in South Asia (TAFSSA).

CGIAR Initiative: Digital Innovation

Digital innovations can enable an unprecedented transformation of food, land and water systems for greater climate resilience and sustainability. To realize this potential, multidisciplinary expertise across the CGIAR must find solutions to three challenges affecting the Global South: 

  1. The digital divide: digital technologies and infrastructure do not meet people’s needs, especially women and rural populations. More than 600 million people live outside the reach of mobile networks, two-thirds of them in sub-Saharan Africa. 
  2. Weak information systems: available information is inadequate or does not reach those who need it most. More than 300 million small-scale producers lack access to digital climate services. Weak information systems prevent evidence-based policy responses and lead to missed opportunities to reduce poverty and increase economic growth. 
  3. Limited digital capabilities: digital literacy and skill levels across the Global South remain low, particularly for marginalized and food-insecure individuals and groups such as women.

Objective

The Digital Innovation Initiative aims to develop and support digital innovations to stimulate the inclusive, sustainable transformation of food, land and water systems in the areas of investments that policymakers could make to close the digital divide, information delivery systems that allow more people to take action against predicted risks, and ways for partner organizations and marginalized communities to enhance digital capabilities, access resources and opportunities. 

This objective will be achieved through:

  • Generating evidence on impacts of digital innovations and collaborative partnerships to create an enabling environment for digital ecosystems, unlocking local innovators’ access to investments and advanced technologies. 
  • Developing a suite of tools and guidelines to bridge the digital divide, ensuring that gender equality and social inclusion underly the development of digital innovations, research programs and their implementation. 
  • System dynamics modeling to understand complex dynamics in agrifood systems and support natural resource management authorities in equitably allocating water and land resources and managing risks. 
  • Real-time food system monitoring to provide timely and reliable information to stakeholders by applying AI-driven analytics of satellite remote sensing, internet-connected sensors, and other ground-truthed data from multidisciplinary sources. 
  • Strengthening partners’ capacity to collect real-time data, conduct data analytics and make data-driven decisions to enable equitable digital platforms and services.

Why co-creation is vital for sustainable agriculture

Agricultural mechanization engineer Subash Adhikari adjusts a maize shelling machine on a farmer´s verandah in Rambasti, Kanchanpur, Nepal. (Credit: P. Lowe/CIMMYT)

The adoption of climate-smart agricultural production processes and technologies is a vital strategy in attempts to mitigate the global impacts of climate change without compromising on food security. However, supporting farmers to permanently implement new technologies and approaches requires a deep understanding of their needs, robust training, and effective transfer of knowledge.

At the International Maize and Wheat Improvement Center (CIMMYT), projects across the Global South aim to embed agrifood systems that are sustainable for all.

To share how CIMMYT empowers farmers and develops new technologies, Director General Bram Govaerts attended a panel event hosted by the Business Council for International Understanding (BICU) on September 19. For an audience of foreign government officials, multilaterals, and private sector executives, panelists introduced new perspectives to support global food security efforts and inspire greater collaboration.

Partnership approach

Panelists were asked to explain the technologies that can be unlocked by agricultural financial mechanisms, referencing how research and development is keeping pace with the quick adaptations needed by farmers to address climate change.

Examples from CIMMYT’s participation in the AgriLAC Resiliente CGIAR Initiative, a project for sustainable agricultural development in Latin America and the Caribbean, highlighted the innovative partnerships that are pushing forward research and development in the sector, enabling food systems and actors to act quickly to meet food security needs, mitigate climate hazards, stabilize communities and reduce forced migration.

Scientists are conscious of ensuring that solutions to one challenge are not the cause of new problems elsewhere; co-development is essential to this, ensuring the views of all actors are represented. Using the Integrated Agri-food System Initiative (IASI) methodology, created by CIMMYT in partnership with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), projects can develop strategies and actions with a significant likelihood of supportive public and private investment that will transform food systems.

Expertise from farmers

Even the best agricultural technology in the world is only effective if it is used. When discussing barriers to the implementation of technology, Govaerts emphasized CIMMYT’s mechanization prototyping, co-creation, and experimentation work that bridges the gap between farmers and scientists and encourages adoption of new methods and tools.

Having farming influencers onboard has proved priceless, as these people co-create prototypes and experiments that demonstrate results and offer assured testimony to reluctant stakeholders.

Innovations can transform livelihoods, giving farmers a way to increase income and provide stability and better opportunities for their families – which is the most appealing reason for adoption.

Training programs are also fundamental, ensuring skills and knowledge around new technologies are freely available to farmers, technicians, and researchers. CIMMYT projects such as MasAgro in Mexico, has trained more than 3,000 producers and 400 technicians in sustainable agriculture, with more than 70,000 producers participating in educational events during the pandemic.

Hunger and climate change – a dual problem?

Conversation also centered on whether the development of new technologies is aiming to confront world hunger and climate change as separate issues, or whether solutions can be suitable for both challenges.

Essential actions to mitigate the food crisis require a global perspective, acknowledging that unexpected crises will always arise. For example, Russia and Ukraine account for 28% of the world’s wheat exports, so high prices are linked to supply chain disruption. More than 2.5 billion people worldwide consume wheat-based products, so the effects of these disruptions could mean significant hunger and potential civil unrest. Nations already in crisis, such as Yemen, Sudan and Ethiopia, may be worse hit, but other countries with high dependency on imports like Egypt are also affected.

Govaerts highlighted the inextricable links between the causes of food insecurity and climate change. He underscored CIMMYT’s holistic approach to overcoming widespread impacts on the global food system, such as the concurrent challenges of COVID-19, climate change and the Ukraine crisis, by co-developing lasting solutions incorporating these three elements:

  • Extensive research on climate change adaptation and mitigation in maize and wheat-based production systems across Africa, Asia, and Latin America.
  • Climate focused research aims to help smallholder farmers adapt to climate shocks and to raise and maintain yields profitably and sustainably by reducing greenhouse gas emissions.
  • Capacity building for stakeholders in the development and application of new technologies.

Many other deep disruptions are on their way. It is time to invest in science, research, innovation, technologies, and start practicing teamwork to allow those investments to translate into a better future for the planet, and for us.

About BICU:

BICU is a leading business-supported non-profit education initiative, established by President Eisenhower of the United States in 1955 for the purpose of facilitating public-private partnerships and high-level business to government dialogue.