Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

How CGIAR maize breeding is improving the world’s major staple crop for tropical regions

Maize production is surging due to its diversified end uses. While it is already the first staple cereal globally, it is expected to emerge as the world’s predominant crop for cultivation and trade in the coming decade. Globally, it serves primarily as animal feed, but it is also a vital food crop, particularly in sub-Saharan Africa, Latin America, and in some areas in Asia. 

Climate change is, however, altering the conditions for maize cultivation, especially in the rainfed, stress-prone tropics. Abiotic stresses like heat, drought, and floods, as well as biotic threats such as diseases and insect pests are becoming more frequent. These have a disproportionate impact on the resource-constrained smallholders who depend on maize for their food, income, and livelihoods. 

In a race against time, crop breeders are working to enhance maize’s resilience to the changing climates. Among others, CIMMYT and the International Institute of Tropical Agriculture (IITA), working within CGIAR’s Accelerated Breeding Initiative, are utilizing breeding innovations to develop climate-resilient and nutritionally enriched maize varieties needed by the most vulnerable farmers and consumers.  

Better processes

Improving maize yields in the rainfed, stress-prone tropics is challenging. Nevertheless, CGIAR’s efforts have significant impacts, as breeding programs embraced continuous improvement and enhanced efficiency over the years.  

To increase genetic gains, CIMMYT maize breeding program implemented a systematic continuous improvement plan. Sixty percent of CIMMYT’s maize lines in Eastern and Southern Africa (ESA) are now developed through technologies that speed up breeding cycle and improve selection intensity and accuracy; these include doubled haploid technology, high-throughput phenotyping, molecular marker-assisted forward breeding, and genomic selection. The breeding cycle time has been reduced from five or six years to only four years in most of the maize product profiles. Product advancement decisions now incorporate selection indexes, and specialized software aid in the selection of parental lines for new breeding starts. 

CIMMYT and IITA maize teams are working together to investigate several key traits in maize for discovery, validation, and deployment of molecular markers. CGIAR maize team developed a framework for implementing a stage-gate advancement process for marker-trait pipeline, which enables informed decision-making and data-driven advancements at multiple stages, from marker-trait discovery proposal to marker discovery, validation, and deployment. Consolidating research efforts and implementing this process is expected to increase efficiency and collaboration in maize breeding programs.

An example of maize biotic stress exacerbated by climate change: fall armyworm (FAW) larvae, highly destructive pests, emerge out from an egg mass placed on a maize leaf. (Photo: A. Cortés/CIMMYT)

At the end of the breeding process, breeders must ensure the quality assurance and quality control (QA/QC) of the parental lines of the new varieties. Seed quality, which includes genetic purity, genetic identity, and verification of parentage – is critical in maize breeding and commercial seed production.  

CIMMYT has worked to enhance the capacity of NARES and seed company partners in Eastern and South Africa (ESA), Asia, and Latin America, in utilizing molecular markers for QA/QC in breeding and commercial seed production. This has resulted in more reliable and accurate outcomes. In addition, webinars and user-friendly software have boosted results for NARES maize breeders, regulatory agencies, and seed companies. These combined efforts mean a dependable, cost-effective, and efficient QA/QC system for the maize seed value chain in the Global South. 

Better tools 

With traditional means, obtaining a genetically homozygous or true-to-type maize line requires six to eight generations of inbreeding, and thus, more than ten years for developing a new hybrid. The technique of doubled haploid (DH), which enables derivation of 100% genetically homozygous lines in just two generations, is now integral to modern maize breeding. CIMMYT has pioneered the development of tropical maize DH technology, by developing and disseminating tropicalized haploid inducers, establishing centralized DH facilities in Mexico, Kenya and India, and providing DH development service to partners.  

Regional on-farm trials (ROFTs) is a crucial step in maximizing the impact of breeding investments. ROFTs help scientists understand performance of the pipeline hybrids under diverse farmers’ management conditions, besides environment, soil variability, etc. 

In ESA, ROFT networks for maize are expanded significantly over the last few years, from 20-30 sites per product profile to up to 300 sites, encompassing a wide range of smallholder farming practices. The experimental design was simplified to use less germplasm entries to be tested per farm, making it easier for the farmers to participate in the network, while improving data quality. Collaboration with NARES, seed companies, NGOs, and development partners was significantly stepped up to capture the social diversity within the target market segments. Gender inclusion was prioritized.

Training workshop organized by CIMMYT at the Maize Doubled Haploid Facility in Kunigal, India. (Photo: CIMMYT)

Strengthening the capacity of NARES and SMEs to systematically access and utilize improved maize germplasm is critical for increasing genetic gains in the stress-prone tropics. But partner institutions are at different stages of evolution, which means capacity strengthening must be tailored to institutional strengths and constraints.  

Accelerated Breeding has been strengthening regional CGIAR-NARES-SME collaborative maize breeding networks via activities such as exchanging elite tropical germplasm (inbred lines, trait donors, and breeding populations) through field days, and widely disseminating CIMMYT maize lines (CMLs) requested by institutions globally.  

Partners participate in CGIAR maize stage-advancement meetings – they are given access to multi-location trial data and participate in the selection process of promising hybrids to be advanced from the different breeding stages. CGIAR maize teams also assessed the capacity of different NARES institutions, and formulated continuous improvement plans in consultation with respective NARES teams for further support.  

Better varieties

Systematic integration of new breeding techniques and innovations in CGIAR maize breeding pipelines are leading to better varieties, at a much faster pace, and at lower cost. Given the impacts of climate change, this is indeed the need of the hour.  

Maize breeders need to respond rapidly to emerging and highly destructive insect-pests and diseases. For instance, the invasion of fall armyworm (FAW) in Africa (since 2016) and Asia (since 2018) has ravaged maize crops across more than 60 countries. CGIAR maize team in Africa responded to this challenge and made progress in identifying diverse sources of native genetic resistance to FAW, resulting in elite hybrids and open-pollinated varieties (OPVs) adapted to African conditions. 

Since 2017, CIMMY has strengthened the maize insectary capacity of KALRO-Katumani by optimizing the FAW mass rearing protocol and screening of maize germplasm under FAW artificial infestation at Kiboko Station, Kenya. The station now has sixteen 1,000m net houses. The intensive work since 2018 led to identification of FAW-tolerant inbred lines by CIMMYT and their distribution to over 90 public and private institutions in 34 countries. 

NARES partners across 13 countries in Africa have undertaken national performance trials of three FAW-tolerant hybrids developed by CIMMYT. Kenya, Zambia, Malawi, South Sudan and Ghana released the three hybrids in 2022-23, while several more countries are expected to release these hybrids in the coming months.

Drought and heat tolerant maize ears are harvested through a CIMMYT project. (Photo: J.Siamachira/CIMMYT)

Climate change is also exacerbating maize diseases. Affecting at least 17 countries in the Americas, the Tar Spot Complex (TSC) disease affects maize in the cool and humid regions. It causes premature leaf death, weakens plants, and reduces yields by up to 50%. CIMMYT maize team in Mexico has mapped genomic regions conferring TSC resistance, and is using these markers in breeding programs.  

The Global South is also particularly vulnerable to drought and high temperature stresses. In the past five years, 20 drought- and heat-tolerant maize hybrids have been released in Asia, including Bangladesh, Bhutan, India, Nepal, and Pakistan. Socio-economic studies in India and Nepal showed that farmers who adopted these hybrids realized higher grain yields, and increased income compared to the non-adopters. 

In 2022, certified seed production of CGIAR multiple stress-tolerant maize varieties reached 181,119 metric tons in sub-Saharan Africa (from 72,337 tons in 2016). This is estimated to cover ~7.4 million hectares, benefiting over 46 million people in 13 countries. 

With maize facing unprecedented threats from climate change-induced stresses in the rainfed stress-prone tropics, CGIAR maize breeding programs working closely with NARES and private sector have demonstrated remarkable success in breeding as well as deploying climate resilient maize.  These efforts rely on better processes and modern breeding tools, leading to drastically reduced breeding cycle time, cost saving, and improved efficiency.  

The resulting improved varieties–resilient to major environmental stresses, diseases and insect-pests–are increasingly adopted by smallholders across sub-Saharan Africa, South Asia, and Latin America, showing that tomorrow is already here. The work continues to ensure that maize remains a constant source of food security and prosperity for generations to come in the tropical regions.

Strengthening seed systems emphasized to enhance Bhutan’s seed and food security initiatives

Quality seed is a crucial agricultural input for enhancing crop production and productivity per unit of land. However, in many developing countries, including Bhutan, ensuring the availability, affordability, and accessibility of quality seed, especially of preferred varieties, remains a significant challenge for farmers. Maize is the second most important cereal in Bhutan after rice. However, the total area dedicated to cereal cultivation in Bhutan has been decreasing due to factors such as rural-urban migration, urban expansion, and the effects of climate change.

Between 2016 and 2021, the areas under rice and maize cultivation have contracted by 55% and 64%, respectively (FAOSTAT, 2022). This huge reduction in cereal cultivation, combined with relatively low productivity, has led Bhutan to rely on imports to bridge the gap and meet the demand for essential food crops, including maize. The Bhutanese government is committed to enhancing domestic capacity and fostering self-sufficiency in major food crops and discourages the import of seed, especially of hybrid maize.

AbduRahman Beshir, seed systems specialist at CIMMYT, displays incomplete fertilization of maize cobs. (Photo: Passang Wangmo/ARDC-Wengkhar)

Hybrid maize seed to offset deficit

Recognizing the significance of improving maize productivity, the Agriculture Research & Development Center (ARDC) in Bhutan is working on the development and deployment of hybrid maize that has the potential to double yields compared to non-hybrid varieties. In 2020, Bhutan officially released its first hybrid maize variety, Wengkhar Hybrid Maize-1 (WHM-1), which was sourced from CIMMYT. Furthermore, several other hybrid maize varieties from CIMMYT are currently in the pipeline for release and evaluation, including those tolerant to fall armyworm (Spodoptera frugiperda), the most important maize pest in Bhutan.

Despite the testing and release of hybrid maize varieties, the production of high-quality seed—vital for realizing the benefits of hybrid maize for Bhutanese farmers—has yet to take place. The seed industry in Bhutan is primarily informal, with the majority of farmers relying on farm-saved seed of often inferior quality. The absence of a formalized seed system, coupled with a lack of the necessary skills and technical expertise across the seed value chain, presents considerable challenges in building a competitive and vibrant seed sector in Bhutan.

Training workshop emphasizes the strengthening of seed systems

To ensure a consistent supply of high-quality maize seed to Bhutanese farmers, which is essential for seed and food security and improved productivity, ARDC in collaboration with CIMMYT, under the CGIAR Seed Equal Initiative, carried out an international training workshop on quality seed production and distribution, with the main focus on hybrid maize, from 13–15 November 2023 at ARDC-Wengkhar, Mongar.

The three-day workshop involved 30 participants from diverse organizations, including the National Seed Centre, the College of Natural Resources, extensions agents from the eastern region, the Bhutan Food and Drug Authority, and agriculture research and development centers. The workshop aimed to enhance participants’ technical skills in understanding and applying the principles and practices of quality hybrid maize seed production; to promote synergistic partnerships among various seed sector stakeholders for initiating and scaling up quality hybrid maize seed production in Bhutan; and to exchange experiences and lessons to be learned from South Asian countries that can be applied to strengthening Bhutan’s seed system.

Participants discuss during the workshop. (Photo: AbduRahman Beshir/CIMMYT)

“This is the first kind of training I have received on hybrid maize seed production, and it was very relevant, action-oriented and applicable to our condition in Bhutan,” says Kinley Sithup, a researcher at ARDC-Wengkhar, Mongar, and adds that the training workshop was a useful forum for identifying key challenges and the role of stakeholders across the seed value chain, which were discussed in detail during the group work in the training.

Recently, the Bhutanese government has restricted the import of hybrid maize seed in order to promote import substitution and enhance local seed production. “In light of the unavailability of imported hybrid seeds, it’s crucial for us to intensify our efforts in scaling up local seed production,” says Dorji Wangchuk, project director of the Commercial Agriculture and Resilient Livelihood Enhancement Program (CARLEP), while addressing the participants during the opening.

The training workshop covered courses on seed system components, maize breeding concepts, hybrid seed production principles, the development of a seed roadmap on production and marketing, hybrid seed pricing and marketing approaches, seed quality control and certification, among others. A field visit along with hands-on training at ARDSC Lingmethang enriched the learning experience. In addition, experiences from other South Asian countries on hybrid seed production and marketing were shared during the training.

A group photo with the participants of the seed systems training workshop in Bhutan. (Photo: ARDC)

Team up for seed production

A significant outcome is the planned initiation of the inaugural hybrid maize seed production group in Udzorong, Trashigang, scheduled for January 2024 in collaboration with extension, the National Seed Center, and the Bhutan Food and Drug Authority. This initiative, supported by CARLEP-IFAD and CIMMYT, reflects a dedicated effort to strengthen Bhutan’s seed sector and enhance maize production for the benefit of local farmers. Fast-track variety release and seed deployment are important to Bhutanese smallholder farmers to mitigate the challenges of lower productivity. “CIMMYT is ready to continue working with partners in Bhutan,” says Program Director of the Global Maize Program at CIMMYT and the One CGIAR Plant Health Initiative lead, BM Prasanna, while delivering his messages online. Prasanna added that CIMMYT has licensed three fall armyworm-tolerant hybrids for Bhutan, and partners need to team up for the release and seed-scaling of the hybrids.

The training workshop on hybrid maize seed was the first of its kind to be held in Bhutan and was conducted under the CGIAR Seed Equal Initiative in collaboration with ARDC and CARLEP. AbduRahman Beshir, seed systems specialist at CIMMYT, delivered the main courses, with additional virtual presentations from CIMMYT staff from India and Kenya.

CIMMYT at the Borlaug Dialogue

Harnessing Change was the theme of the 2023 Borlaug Dialogue, an annual summit of international thought leaders, development specialists, researchers, farmers, and practitioners, designed to promote global food systems transformation and food security, and is organized by the World Food Prize Foundation.

This iteration of the Borlaug Dialogue, held in Des Moines, Iowa, October 24-26, 2023, was the site of the inauguration of a collaboration between CIMMYT and the Gorongosa Restoration Project to improve climate resilience, food security and nutrition in Mozambique’s Gorongosa National Park.

“These kinds of collaborations exemplify what the Borlaug Dialogue is all about,” said CIMMYT Director General Bram Govaerts. “The annual event and the work of the World Food Prize Foundation year-round is dedicated to bringing people and organizations together to work better and smarter. CIMMYT is proud to be a part of it.”

CGIAR Centers based in the Americas host discussion on Latin America’s food security challenges and opportunities

CIMMYT, the International Potato Center (CIP), the Alliance of Bioversity International and the International Center for Tropical Agriculture, and International Food Policy Research Institute (IFPRI) co-organized the side event Maximizing Latin America and the Caribbean’s Contributions to Global Agriculture and Biodiversity Solutions at Dialogue.

Govaerts moderated the panel discussion and the Q&A session that followed with members of the audience.

Panelists, including Elsa Murano, director of the Norman E. Borlaug Institute for International Agriculture & Development, Rob Bertram, chief scientist for the Bureau for Resilience and Food Security at the U.S. Agency for International Development (USAID), and María (pilu) Giraudo, honorary president of Argentina’s No Till Farmers Association, shared views on Latin America’s role in global agriculture from academic, development and farming offer academic insights, international cooperation recommendations and farmer perspectives.

CIMMYT and USAID co-host panel focused on AID-I’s impact at the Borlaug Dialogue

CIMMYT and USAID hosted an event at the Dialogue organized by the World Food Prize Foundation on October 25 focused on the Southern Africa Accelerated Innovation Delivery Initiative (AID-I).

The discussion labelled, Harnessing Innovation to Rapidly Respond to Crises, aimed to present AID-I’s innovative approach to addressing systemic weaknesses in agriculture by accelerating the market-based delivery of improved seeds, fertilizers, and critical information to farmers.

(Left to right) Bram Govaerts, Kevin Kabunda and Dina Esposito. (Photo: CIMMYT)

Dina Esposito, USAID’s Global Food Crisis coordinator and assistant to the Administrator for the Bureau for Resilience, Environment and Food Security, described how AID-I is “turning crisis into opportunity” by improving farmers’ resilience and profitability.

“We joined CIMMYT and went to Zambia, and the partnership was a glimmer in our eyes,” said Esposito, referring to a recent visit to a model farm with AID-I partners.

Reporting progress in Zambia, Malawi and Tanzania, Kevin Kabunda, CIMMYT’S AID-I chief of party in southern Africa, noted that the private sector had produced 13,000 tons of maize in the first year.

“The extended or increased potential for every farmer who uses fall armyworm-tolerant varieties translates to US$100 dollars,” said Kabunda who estimated AID-I reached 1.3 million farmers in its first year generating an aggregated value of at least US$65 million dollars.

In addition, Mtieyedou (Abdou) Konlambigue, AID-I chief of party in the Great Lakes Region, pointed out that the project has given access to new bean varieties and fertilizer recommendations to over 500,000 farmers in Rwanda, Burundi and the Democratic Republic of the Congo.

Farmers take the stage

Two champion farmers, María (pilu) Giraudo and Guillermo Bretón joined CIMMYT’s Director General, Bram Govaerts, and CGIAR Board Chair, Lindiwe Majele Sibanda, during a main stage session of the Borlaug Dialogue organized by the World Food Prize Foundation on Tuesday, October 24.

The event, MasAgro Taking it to the Farmer, reported on progress achieved and milestones reached by one of CIMMYT’s flagship projects, Crops for Mexico (MasAgro), which began 14 years ago and earned Govaerts the 2014 Norman E. Borlaug Award for Field Research and Application endowed by The Rockefeller Foundation.

Giraudo, an Argentinian farmer who co-founded the Rural Women Network and serves as honorary president of Argentina’s no till farmer association Aapersid, said that the best way to acknowledge MasAgro’s work is to seize the opportunity to offer women farmers the possibility of having full access to science and technology.

Bretón, a farmer from Mexico’s state of Tlaxcala, described MasAgro as a disruptive way of understanding agriculture. “Investing in our soils is better than investing in a one-cycle crop,” he said.

CGIAR Board Chair Lindiwe Majele Sibanda was enthusiastic about the project’s trajectory and proud of its evolution into CIMMYT’s ongoing efforts, including adapting MasAgro to southern Africa.

Sibanda expressed her excitement about MasAgro-inspired activities in Africa and praised the diversified seed systems that today include dryland crops sold in smaller seed bags by young entrepreneurs who are taking up businesses in villages without having to go to urban centers.

Govaerts moderated the event and thanked Dina Esposito, and U.S. Special Envoy for Global Food Security, Cary Fowler, for facilitating the establishment of MasAgro programs in southern Africa.

Sieg Snapp receives International Soil Science Award

Sieg Snapp, director of the Sustainable Agrifood Systems (SAS) program at CIMMYT, has been selected as a recipient of the 2023 International Soil Science Award. Bestowed by the Soil Science Society of America (SSSA), the award recognizes outstanding contributions to soil science on the international scene.

The awarding panel looks for lasting contributions to international soil science, including creativity and relevance in the establishment of scientific research, the application of sound principles of international significance. A key factor is evidence of bringing about long-lasting change in practices related to soil science in more than country, as Snapp has done through improved understanding of integrated nutrient management in Malawi and Tanzania. Snapp’s receipt of the prestigious award affirms her lifelong commitment to enhancing the science and practice of agriculture for the betterment of the planet and its people.

Sieglinde Snapp receives the International Soil Science Award. (Photo: ASA, CSSA, SSSA)

Snapp is a trailblazing scientist renowned for pioneering the “mother-baby trial” method, the go-to tool for participatory research which has helped develop farmer-approved technologies in 30 countries. Her groundbreaking approach has significantly advanced participatory research, enriching our understanding of soil health, crop diversity and agroecology, informing extension services and policymakers in Africa and beyond.

Snapp received her award at the ASA-CSSA-SSSA International Annual Meeting in St. Louis, Missouri, where she also delivered the ASA Plenary/E.T. & Vam York Distinguished ASA Lectureship. Her talk, titled “Sustainable Agrifood Systems for a Changing World Requires Action-driven Science,” unveiled CIMMYT’s strategy for advancing the science of SAS in a rapidly changing world. In it, she addressed the pressing issues of climate change, conflict and food insecurity, emphasizing the need for action research, new data analytics and agro-diversity. These, she emphasized, are essential elements to safeguard the resilience and sustainability of our farming systems.

Three new CIMMYT maize hybrids available from Southern Africa Breeding Program

CIMMYT is happy to announce three new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM22SAPP1-15 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM22SAPP1-12 Late maturing, white, high yielding, drought tolerant, low-nitrogen tolerant, and resistant to MSV, TLB, and Ear rots
CIM22SAPP2-10 Extra-early to early-maturing, white, high-yielding, drought tolerant, NUE, resistant to GLS, MSV, TLB

 

Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 and 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is January 26, 2024. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the southern Africa Stage 5 On Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced regarding the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Pamela Sithole, project coordinator, Global Maize Program, CIMMYT office in Zimbabwe.

APPLY FOR A LICENSE

Charting a new course in agriculture: NARC-CIMMYT synergy in Nepal

The Nepal Agricultural Research Council (NARC) and CIMMYT are partnering to advance actions to revolutionize agriculture in Nepal. The collaboration, announced at a planning meeting between the two organizations on October 16, 2023, aims to enhance food security and improve the livelihoods of farmers in the country. With their combined expertise, NARC and CIMMYT will chart a new course in agricultural development, bringing hope and prosperity to Nepal’s farming communities.

CIMMYT scientists with NARC scientists. (Photo: Nabin Maharjan/CIMMYT)

Previous collaborative efforts developing new crop varieties have helped to strengthen Nepal’s national research framework. In a recent statement, Sreemat Shrestha, NERC chief at the NARC, highlighted CIMMYT’s significant contributions. Shrestha emphasized CIMMYT’s role in introducing revolutionary advancements, such as digital file mapping, market segmentation and advanced agricultural land use technologies.

CIMMYT Country Representative in Nepal, Dyutiman Choudhary, gave the presentation and led the meeting. During the event, he presented a comprehensive explanation of the vast relationship that exists between CIMMYT and NARC. He emphasized the historical significance of this partnership and discussed the various aspects that contribute to the strength of their combined efforts.

NARC expanding global influence and enhancing research impact

In an effort to strengthen its position on the global stage, NARC has set forth a clear mission to enhance capacity development, broaden its influence worldwide and establish a coalition of highly trained scientists to elevate the quality and impact of research.

“With this ambitious agenda, NARC is poised to make significant strides in scientific advancement, and CIMMYT will be a valued partner with us the entire time,” said Shrestha.

Sieglinde Snapp, director of Sustainable Agrifood Systems (SAS) at CIMMYT, while acknowledging the challenges the world is facing, such as air and water quality issues, rising food prices, emphasized the importance of agriculture in addressing these challenges and further innovations like new genetic research, molecular biology and AI.

Sieglinde and Sreshtha discuss the CIMMYT-NARC collaboration. (Photo: Nabin Maharjan/CIMMYT)

“I am excited about the progress CIMMYT and NARC have already achieved in Nepal,” said Snapp. “I encourage all of us to continue our efforts together, because collective action is necessary for meaningful change.”

Snapp highlights the need for technology adoption and mentions the transformation of wheat value chains, particularly in reducing women’s labor through introducing machines and spare parts. She praises the commitment to balance input and output and cites an example of helping farmers during a fertilizer crisis.

CIMMYT’s new focus at play in Nepal

Timothy Krupnik, CIMMYT regional director for SAS, provided insights into the organization’s growth and global influence in over 80 countries. Krupnik highlighted CIMMYT’s transition from its primary focus on breeding and genomics to its engagement to include other factors, such as agronomy, on-farm participatory research, socioeconomic studies and comprehensive agrifood systems.

“This shift in focus enhances CIMMYT’s understanding of the broader agricultural landscape and contributes to more comprehensive solutions,” said Krupnik. “Remarkable progress has been achieved in hybrid maize development and seed production, and we look forward to continuing to work with our Nepali partners.”

The meeting discussed various agricultural technology and innovation topics, including machinery, remote sensing, GIS toolsand greenhouse gas emission reduction strategies. NARC officials stressed the significance of enhancing capacity, especially in digital agriculture, to prepare Nepal for present and future climate challenges. Specific focus was on utilizing predictive crop modeling and simulation techniques to ensure crop resilience in the face of changing climate scenarios.

Viewpoint: Hunger crisis — The number of countries unable to feed their populations has soared 400% since 2000. Here’s why crop biotechnology is a key solution

Global concerns are escalating as population growth, climate challenges and regional conflicts contribute to a food crisis. CIMMYT, in collaboration with 13 countries, is registering 160 drought-tolerant maize varieties to address changing climatic conditions, underscoring the need for unified efforts in global agricultural organizations.

Read the full story.

Discovering the potential of multispectral UAV and satellite sensors in detecting wheat rust in Ethiopia

Latest advances in sensor technology and data processing allow early detection, mapping and monitoring of crop infestation, helping prevent large-scale outbreaks.

A recent study published in Nature Scientific Reports, assesses the capability of very high-resolution satellite (VHRS) imagery and high-resolution unmanned aerial vehicles (UAVs) imagery for high-throughput phenotyping and detecting impacts of wheat rusts in earlier crop growth stages. UAVs and VHRS offer high potential for nonintrusive, extensive, rapid and flexible measurements of plant biophysical properties at very high spatial and temporal scales.

The study—led by CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR) and Lincoln Agritech Ltd from New Zealand—establishes that these advanced sensor technologies are emerging as gamechangers in crop health management. They save time, complement traditional disease scoring methods and field surveys, and are cost-effective.

Further, the study establishes that multispectral VHRS sensors can pave the way for the upscaling of disease severity assessment from plot to regional scales at early growth stages.

Wheat rust is a global challenge

Globally, crop infections are an increasing threat to crop production and food security. Increased cross-border trade and travel, coupled with a changing climate are resulting in increased frequency and severity of crop disease outbreaks. Of all the diseases that affect wheat, wheat rusts are among the most damaging, capable of causing epidemics on a vast scale with significant economic and production losses. As of date, global losses from wheat rusts equate to 15 million tonnes per year (USD $2.9 billion). In Ethiopia, a major stripe/yellow-rust epidemic in 2010 affected an estimated 600,000 hectares, resulting in production losses of 15–20% and causing economic losses of USD $250 million. Similarly, a stem/black rust (SR) epidemic from 2013-2014 infected approximately 40,000 hectares. SR, which can cause 100% crop loss within weeks, is re-emerging as a major concern to wheat production.

Early detection, monitoring and timely intervention is key

Rapid early-season detection, monitoring and timely control of wheat rusts in susceptible varieties are critical to avoid large-scale outbreaks, especially in countries where fungicides are scarcely available or too costly for smallholders. UAV-based high-throughput phenotyping (HTP) has been recently investigated to support wheat improvement breeding, in particular, to assess plant growth development, canopy architecture, physiology, reaction to abiotic stress, crop disease and insect pest response, and wheat yield.

Figure 1

Spectral and thermal measurements at the plant and canopy levels allow for monitoring the interactions between plant germplasm and environmental (abiotic and biotic) factors. The current study identifies several spectral features from UAV and VHRS multispectral imagery that have strong assessment power for the detection of combined wheat rust diseases at early crop growth stages.

During a randomized trial conducted in Ethiopia, six bread wheat varieties with differing rust resistance were monitored using UAV and VHRS. In total, 18 spectral features were tested to assess stem and yellow rust disease progression and associated yield loss. Spectral properties of the wheat canopy (e.g., pigmentation, moisture, and biomass) are altered under rust disease stress. Using multispectral images and derived vegetation indices, it is possible to determine crop susceptibility to diseases and consequently can be used for detection and monitoring of wheat rusts.

Figure 2

Recent research on wheat, maize and dry bean demonstrated strong and significant correlations between vegetation indices extracted from UAV and VHRS imagery, confirming the feasibility of VHRS-HTP targeting biomass and yield; however, such satellite applications for plant breeding programs are still scarce.

Looking ahead to upscaling

This study provides valuable insight into the upscaling capability of multispectral sensors for disease detection from UAV imagery at 5 cm per pixel to pan-sharpened satellite imagery at 50 cm per pixel, demonstrating a first step towards upscaling disease detection from plot to regional scales. Further work will expand and improve current methodology to examine the VHRS detection capability towards machine and deep learning techniques (e.g., convolutional neural network) to allow for continuous monitoring systems, focusing on both single and mixed rust diseases under different treatments (e.g., variable fungicide rates, irrigation rates).

The early detection of diseases through spectral analysis and the integration of machine learning algorithms offers invaluable tools to mitigate the spread of infections and implement prompt disease management strategies.

Figures (1-2):

Field trial captured at varying spatial resolutions:

(a) SkySat false color composite (NIR-R-G) at 50 cm pixels (booting stage; 2020-10-17)

(b) UAV false color composite (NIR-R-G) at 5 cm pixels (heading stage; 2020-10-29) 

(Photo: Nature Scientific Reports)

How K-State research feeds the world

Jared Crain, a research assistant professor of plant pathology, collaborates with CIMMYT on wheat genomics. Leading the Feed the Future Innovation Lab for Applied Wheat Genomics at K-State, Crain and his team annually analyze DNA from 19,000 plants.

Read the full story.

 

Early maturity products popular among farmers in Kenya

Across all production environments in Kenya, early-maturity products demonstrate strong sales. This was revealed in a recent study by the CGIAR Initiative on Market Intelligence. During the long-rains season, farmers in higher rainfall production environments—wet, mid and high altitudes—purchased early-maturity seed products despite potentially lower yields. Also, the short-rains season, which represents almost one-fourth of total maize seed sales, was dominated by early-maturity products.

These insights were obtained through a panel of maize-seed sales data from 722 agrodealers in Kenya during two short-rains seasons and three long-rains seasons in 2020–2022. The study also offers insights into the extent the maturity level of seed products, purchased by farmers in Kenya, aligns with the production environment where they were sold. Market Intelligence applies eight criteria to identify seed product market segments (SPMSs) for CGIAR crop breeding. In the application of these criteria to maize in East Africa, two conditions distinguish the segments: production environment and maturity level. The other criteria do not vary. A key indicator for prioritizing breeding investments across segments is the relative size of SPMSs. In the case of maize, and other crops, teams generally use geospatial data to identify the area of production environments, with the assumption that farmers in each production environment would use the seed product with the maturity level designed for that environment.

The paper contends that a stronger focus on using sales data to inform breeding decisions in maize, and potentially other crops where retailers play an important role in seed distribution, should become a priority for market intelligence. Future work will engage stakeholders in maize seed systems in other countries of East Africa about the changes in demand for earlier-maturing products and the implications for segmentation.

This article is adapted from Market Intelligence Brief 5: Maize Farmers Acquire Early-Maturity Seed Across Production Environments – the fifth paper in the ongoing peer-reviewed series published inMarket Intelligence Briefs.

*About Market Intelligence Briefs

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop-breeding teams, and others to work together toward the design and implementation of a demand-led breeding approach. In 2022, the Market Intelligence Brief (MIB) series was created as a valuable communication tool to support informed decision making by crop breeders, seed-system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector, and non-governmental organizations (NGOs).

The author would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund. This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by Bill & Melinda Gates Foundation; Foundation for Food & Agriculture Research (FFAR); United States Agency for International Development (USAID); and United Kingdom’s Foreign, Commonwealth & Development Office (FCDO).

Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe

Fall armyworm (Spodoptera frugiperda J.E. Smith) has emerged as a major threat to farming communities across Africa, including Zimbabwe. This destructive pest feeds on a wide range of crops, including maize, posing a significant challenge to food security. To combat this pest, the project “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe” was initiated in October 2018 with support from USAID. It aims to address research gaps on fall armyworm management and cultural control in sustainable agriculture systems.

The project has implemented research trials in ten (10) districts across Zimbabwe, with work reaching close to 9,000 beneficiaries in target areas being exposed and applying new control practices that reduce the damage of FAW without heavily relying on chemical pesticides. This has been supported by a strong focus on agronomy trainings, field days, documentation, education through technical videos, knowledge sharing, and developing farmer manuals. In addition, the project supports Farmer Field Schools involving all relevant players in the farming communities to mainstream cultural practices in fall armyworm management.

Key objectives

The overall objective is to explore climate-adapted push pull systems and low-cost cultural control options for smallholder farmers in Zimbabwe. This project focused on research trials in Murehwa (Mashonaland East) and Mhondoro Ngezi (Mashonaland West), where the proof of concept was developed. After the inception phase it expanded to establishing demonstration sites and Farmer Field Schools in the Manicaland province, conducting trainings with farmers, and promoting knowledge sharing with Agritex officers and engaging with all relevant players in the target localities. Through continuous research and collaborative efforts, this project aims to develop sustainable and eco-friendly strategies to manage all armyworm infestations.