Skip to main content

Theme: Innovations

Working with smallholders to understand their needs and build on their knowledge, CIMMYT brings the right seeds and inputs to local markets, raises awareness of more productive cropping practices, and works to bring local mechanization and irrigation services based on conservation agriculture practices. CIMMYT helps scale up farmers’ own innovations, and embraces remote sensing, mobile phones and other information technology. These interventions are gender-inclusive, to ensure equitable impacts for all.

Scaling up health diet seed kits in Zanzibar

Many people on the islands of Zanzibar face food insecurity and nutritional challenges. The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub, implemented by CIMMYT, has partnered with the World Vegetable Center (WorldVeg) to directly distribute health diet seed kits to vulnerable households, while prioritizing vulnerable groups such as pregnant and lactating mothers and children under five.

The kits contain a diverse selection of nutrient-rich vegetables specifically chosen for their high nutritional value, ensuring optimal health and development.

The kits contain traditional African vegetables. (Photo: CIMMYT)

To date, the partnership has reached an impressive number of households in Zanzibar. Over 1,350 health diet seed kits have been distributed, or one seed kit per household, benefiting approximately 4,050 individuals (considering at least three people per household). These numbers showcase the tangible impact AID-I has made in addressing the root causes of malnutrition and hidden hunger, providing a sustainable pathway towards improved health and a brighter future for Zanzibar.

The World Vegetable Center (WorldVeg) conducts research, builds networks, and carries out training and promotion activities to raise awareness of the role of vegetables for improved health and global poverty alleviation.

“This initiative holds tremendous promise in fostering long-term improvements in food security, nutrition, and overall well-being for the communities in Zanzibar and shows the power of collaboration,” said Kevin Kabunda, CIMMYT lead for the AID-I project.

Seed variety encourages improved nutrition

A key strength of the seed kits lies in their diversity. Each kit comprises a range of seeds for various crops, including legumes and nutrient-rich vegetables. This includes amaranth consumed as leafy and grain, African eggplant, Ethiopian mustard, African nightshade, and cowpea. The combination of these diverse crops ensures a more resilient and nutritious food supply, essential to combating malnutrition and fostering agricultural sustainability in the islands.

The seed kits are tailored to suit the local agroecological conditions, considering the specific needs and preferences of farmers in Zanzibar. This localization approach enhances the adoption of the kits and maximizes their potential impact on food security and dietary diversity.

“The partnership between WorldVeg and CIMMYT has been invaluable in driving the success of this activity in Zanzibar,” said Jeremiah Sigalla, WorldVeg technical lead for the AID-I project in Zanzibar. “By providing farmers with these healthy diet seed kits, we aim to promote the cultivation of diverse crops that are essential for a balanced and nutritious diet and its attendant benefits, particularly among vulnerable communities.”

By raising awareness about the significant benefits of incorporating diverse vegetables into daily diets, the partnership has inspired and encouraged the community to fully embrace the intervention. This collaboration between CIMMYT and WorldVeg is a testament to the potential of collective action, highlighting sustainable solutions and community empowerment as essential elements in combating malnutrition and enhancing overall well-being in Zanzibar.

The Ministry of Agriculture, Irrigation, Natural Resources and Livestock delivers a health diet seed kit. (Photo: CIMMYT)

The Honorable Shamata Shame Khamis, the minister of Agriculture, Irrigation, Natural Resources and Livestock in Zanzibar joined a health diet seed kit distribution event at Michiweni district in Pemba, on June 30, 2023, where he commented that the consumption of nutritious vegetables in Zanzibar is very low, and malnutrition-related cases are increasing because of poor daily diets. He also extended his appreciation to the AID-I project, recognizing that this initiative is not only important but also timely, as it serves to meet the urgent need for promoting and enhancing the availability of nutritious vegetables in Zanzibar.

CGIAR Initiative on Diversification in East and Southern Africa

East and Southern Africa is a climate hotspot, with more than US$45 billion in agricultural production at risk from higher temperatures, shorter growing seasons and more extreme droughts and floods. Maize, a staple crop covering up to 75% of cropland in parts of the region, is particularly vulnerable and is projected to face yield declines of 15%, among other climate impacts if no adaptation measures are taken. Many of the affected areas already have serious levels of hunger and malnutrition, with the highest burden experienced by women and youth from marginalized and vulnerable communities. If these systems are sustainably diversified, they can contribute to stabilizing regional and global agrifood systems.

The next decade will be critical for strengthening food, land and water systems in East and Southern Africa. The agribusiness ecosystem for both regions has been identified as a critical engine for agricultural and economic development, climate change adaptation and gender and youth empowerment. Investment in innovation, capabilities and supportive environments will be essential for driving sustainable growth.

Objective

This Initiative aims to support climate-resilient agriculture and livelihoods in 12 countries in East and Southern Africa by helping millions of smallholders intensify, diversify and reduce the risks in maize-based farming through improved extension services, small and medium enterprise development, supporting governance frameworks and increased investment with a gender and social inclusion lens.

Activities

This objective will be achieved through:

  • Diversifying and sustainably intensifying production by assessing needs and options for the introduction of crops, livestock, mechanization and irrigation, applying innovations in value chains and building capacity while scaling to larger farming communities.
  • Reducing risk and digitalizing value chains by co-designing and delivering “Innovation Package” bundles of digital agro-advisory systems and research management products — including mobile apps, TV programs and social media — to build resilience and improve productivity.
  • Supporting and accelerating value chain business enablers in maize mixed systems by using CGIAR’s expertise and partner network to unlock access to funding, investment and tailored technical assistance.
  • Promoting the governing and enabling of multifunctional landscapes for sustainable diversification and intensification with a focus on strengthening the evidence base for decision-makers.
  • Empowering and engaging women and youth in agribusiness ecosystems by mapping challenges and opportunities to address gender and social inequality and applying inclusive and coordinated interventions for transformative change.
  • Scaling innovations and coordinating CGIAR and partner activities in the region through a scaling hub that uses the “scaling readiness” approach to inform, activate and bring to scale innovations that respond to regional or country demand.

LIPS-Zimbabwe empowers farmers through innovative intercropping trials

Since 2021, CIMMYT, in partnership with the International Livestock Research Institute (ILRI), the French Agricultural Research Centre for International Development (CIRAD), and the University of Zimbabwe’s Department of Veterinary, has been working in rural communities of Zimbabwe, as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project. The activity is led by Zimbabwe’s Department of Research and Specialist Services and is at the forefront of introducing new agricultural innovations to local farmers.

One of their most impactful initiatives has been the intercropping trials involving maize and various legumes including jack bean, mucuna, lablab, and pigeon pea. This groundbreaking approach has not only transformed the lives of farmers but has also had a positive impact on the overall health of livestock.

Various leguminous fodder crops have been promoted widely as sources of high-quality protein feed in mixed crop-livestock systems of Zimbabwe. However, to diversify and increase the options for the drier regions, the LIPS-Zim project is testing new leguminous crops such as jack bean and pigeon pea, which are well-adapted to dry conditions.

Intercropping trials with jack bean and maize (Photo: CIMMYT)

Netsai Musekiwa, a farmer in the town of Mutoko, has been part of the LIPS-Zim project for the past two seasons, and is currently conducting intercrop trials with jack bean. “Since I started intercropping maize with jack bean, I have been amazed by the results and will continue on this path. The jack bean plants have shown strong tolerance to prolonged dry spells and heat stress,” she said. “Next season, I plan to extend my plot to harvest more jack bean.” These words of encouragement on intercropping maize with jack bean have also been largely echoed by many other farmers in Mutoko and Buhera during the feedback meetings held in October 2023.

What is intercropping and how beneficial is it to farmers?

Intercropping is an agricultural practice of growing two or more crops together on the same field simultaneously to maximize land use and enhance productivity. As different crops have different growth patterns and nutrient requirements, intercropping can help optimize resource utilization and boost overall crop output.

In addition, intercropping reduces the risk of climate induced crop failure as well as minimizing pest damage, enhances soil fertility by diversifying the root system, and can provide additional income streams to farmers.

The science behind jack bean and pigeon pea

Jack bean (canavalia ensiformis) and pigeon pea (cajanus cajan) are leguminous crops valued for their nitrogen-fixing abilities which aides in improving soil fertility. Both jack bean and pigeon pea have deep root systems, making them ideal candidates for the dry semi-arid conditions in Zimbabwe.

Pigeon pea is known for its drought-tolerance and produces edible seeds used in various culinary dishes and is a source of both food and feed. Jack bean is used as a forage crop for livestock, providing nutritious feed.

“Jack bean seeds contain a toxic compound called canavanine, which can be harmful when consumed in large quantities or not properly processed. To make jack beans safe for consumption, it must be boiled, soaked, or fermented,” said Isaiah Nyagumbo, cropping systems agronomist at CIMMYT. “We have introduced many farmers to the best practices for handling jack beans and have opened up new possibilities for its utilization in sustainable farming practices.”

While some farmers were intercropping with jack bean, others explored pigeon pea as an alternative. “I liked the intercropping of maize and pigeon pea on my plot. I am assured of getting nutritious food both for my family and livestock. After harvesting, I usually take the branches, then put them in the shade and dry them to retain the nutritional value. I occasionally give some to my goats during the dry season when feed from natural pastures is scarce, and my goat herd has risen to 12 goats,” said Fungai Kativu, a farmer in Mutoko.

Building capacity of local farmers

To narrow the knowledge gap and highlight the potential of such feed options, LIPS-Zim has also been spearheading the establishment of community level learning centers. These centers are a knowledge hub to local farmers, providing practical knowledge, facilitating the sharing of different perspectives while nurturing working as groups with a common vision. This “farmer learns by seeing” approach has been a success in the community.

Through this initiative, farmers have not only witnessed increased productivity but have also gained the necessary skills and knowledge to adapt to the changing agricultural landscape. “Intercropping leguminous crops with maize has shown great potential in improving food security and livestock feed production in Zimbabwe’s farming communities, especially in areas prone to heat and drought,” said Nyagumbo.

CIMMYT’s Hub Model – a learning field in Mexico for the Indian Scientists

CIMMYT’s partnership with the Government of India, which spans more than five decades, is one of the longest and most productive in the world.

In October, a group of about 18 scientists from Bihar Agricultural University (BAU), Indian Council for Agricultural Research (ICAR), and Dr. Rajendra Prasad Central Agricultural University (RPCAU) visited CIMMYT headquarters in Mexico to participate in the course on “Innovation in Agri-food Systems through the Hub Model”.

Read the full story.

Resilience Building through agroecological intensification in Zimbabwe (RAIZ)

Zimbabwe’s agricultural sector is predominantly subsistence-oriented, with maize as the main staple crop and limited use of external inputs. To promote sustainable and climate-smart agriculture, Zimbabwe has developed a 10-year framework (2018-2028) that emphasizes the adoption of climate-smart agriculture (CSA). However, the adoption of CSA practices remains limited in the country. Agroecological practices (AE) and the systemic perspective embedded in agroecological approaches hold great potential to address climate change and enhance agricultural sustainable intensification in Zimbabwe. RAIZ was conceived as the research component of the “Team Europe Initiative” (TEI) on “Climate-Smart Agriculture for Resilience Building”, formulated by the European Union (EU) delegation in Zimbabwe together with its member states.

Led by the French Agricultural Research Centre for International Development (CIRAD), in partnership with CIMMYT and the University of Zimbabwe, with funding from the European Union, RAIZ operates along a gradient of declining rainfall from Murewa in Natural Region II to Mutoko in Natural Region IV. Both districts are in the Mashonaland East province. Under RAIZ, CIMMYT leads Work Package 3 which involves ‘developing the capacity of extension and advisory services on agroecological approaches’ is actively involved in research and development activities, including the creation of training materials and the establishment of on-farm trials. In efforts to address challenges associated with low soil fertility on Zimbabwe’s granitic sandy soils. CIMMYT scientists working on RAIZ are testing the contribution of organic fertilizers and conservation agriculture in building up soil organic carbon and bringing back soil life to these mostly dead soils. These efforts aim to support farmers in adopting sustainable and climate-smart agricultural practices, ultimately contributing to the long-term resilience and prosperity of Zimbabwe’s agricultural sector.

Key objectives 

The overall objective is to support government in the development and implementation of scientifically tested agroecological approaches which will enhance agricultural production and resilience to climate change in Zimbabwe.

In addition, the project focuses on protecting the environment and reducing greenhouse gas (GHG) emissions. It will provide scientific evidence and experience for the design of climate-smart agriculture (CSA) at the plot, farm, and landscape levels, contextualized for mixed crop–livestock farms under sub-humid to semi-arid environments.

Response of African sorghum genotypes for drought tolerance under variable environments

New drought-resistant sorghum varieties bring hope for farmers in Africa

Scientists have identified drought-resistant, high-yielding sorghum genotypes that have the potential to revolutionize agriculture in dry regions of Africa. Sorghum, a staple food for millions in sub-Saharan Africa, has long been threatened by devastation from drought.

But now, researchers from the African Centre for Crop Improvement, the Institute of Agricultural Research (IAR), the International Maize and Wheat Improvement Center (CIMMYT), and the University of Life Sciences have discovered genetic resources that thrive under adverse conditions, yielding promising results and providing hope for a future that is more sustainable.

The study looked at 225 sorghum genotypes in various conditions, including non-stressed conditions and pre- and post-anthesis drought stress. The researchers used advanced statistical analysis, such as the additive main effects and multiplicative interaction (AMMI) method, to identify the most resilient and high-yielding genotypes.

The results revealed a vast diversity in the genetic resources of sorghum and provided a pathway for selecting promising genotypes for regions prone to drought. In addition, the study highlighted the significant impact of environmental conditions on grain yield, with genotypes showing variable responses to different growing environments.

A farmer inspecting sorghum on his farm in Tanzania. (Photo: CBCC)

For example, genotypes G144 (Kaura Short Panicle-1) and G157 (Kaura Mai Baki Kona) displayed higher grain yield in drought-stressed environments and were among the top performers. Not only do these genotypes outperform registered cultivars, but they also possess traits valued by farmers, making them ideal candidates for future breeding programs. In addition to drought tolerance, genotypes G119 and G127 displayed remarkable stability and high yield under non-stressed conditions, showing their potential as all-around performers in a variety of environments.

Farmers in dry areas of sub-Saharan Africa that are characterized by pre- and post-anthesis drought stress stand to gain a great deal from these newly identified sorghum strains. Adoption of these high-yielding and drought-resistant genotypes could increase food production and strengthen farmers’ resilience against the effects of climate change.

The findings of these super sorghum genotypes offer farmers facing the challenges of climate change a glimmer of hope. By adopting these new drought-resistant strains, African farmers can improve their food security and strengthen their communities, paving the way for a more resilient and sustainable future.

Boosting groundnut value chains

Representatives from various sectors in Tanzania met to discuss the challenges and opportunities in the country’s groundnut value chain, with the aim of establishing a platform for dialogue among stakeholders involved in groundnut production and distribution.

Participants attentively listen to a presentation at the groundnut value chain stakeholders’ meeting in Tanzania. (Photo: CIMMYT)

The meeting was organized by TEMNAR Co. Ltd., and brought together key stakeholders including farmers, government officials, research institutes, NGOs, and partners such as Ruvuma Commercialization and Diversification of Agriculture (RUCODIA), SWISSAID, and Vodacom. All participants affirmed the meeting’s overall impact and significance, acknowledging that the event would help lay a strong foundation for the growth of groundnut farming, particularly in Mtwara and Lindi regions.

The meeting featured presentations from scientists at the Tanzania Agricultural Research Institute (TARI) — who addressed topics such as groundnut agronomy and seed technology — and representatives from TEMNAR, who outlined strategies to facilitate effective collaboration among stakeholders and achieve mutually beneficial outcomes. Discussions centered on topics such as groundnut varieties, market demands, and the importance of quality and cleanliness throughout the production process. Trust in business relationships was identified as a key factor for success.

Participants at the meeting shared innovative ideas and identified opportunities for strengthening the sector. They highlighted, for example, the need for aggregators to specify their groundnut volume requirements and the application of simple technologies — such as hand push planters and threshing machines — to increase production efficiency. They also emphasized the importance of planting new TARI-bred groundnut varieties to meet market demand, and the establishment of additional seed multiplication farms to increase seed availability.

: A participant examines displayed groundnuts at the groundnut value chain stakeholders’ meeting in Tanzania (Photo: CIMMYT).

Another key component of the meeting was assessing the challenges faced by local groundnut farmers. These include the shortage of good groundnut seed, limited agronomical knowledge, and the labor-intensive nature of planting, harvesting, and picking the crop. To address these challenges, participants suggested making agricultural inputs and tools more accessible to farmers, conducting technology demonstrations, and establishing seed multiplication farms across different districts.

Both farmers and aggregators expressed their commitment to making changes in their farming practices; aggregators are now able to access groundnuts easily through phone calls, while farmers enjoy improved access to markets and better prices. A number of follow-up actions have also been planned as a result of the meeting, such as product buyback initiatives during the harvest season and the establishment of field days to help reach more farmers and aggregators at the local level.

Farmers trained in irrigation plot layout

As the effects of climate change intensify, rain dependent crop production is becoming more challenging for smallholder farmers in Malawi, Tanzania and Zambia. Farmers often experience either too little or too much rain to effectively grow their crops, which means growing crops under irrigation is becoming key to building resilience to climate shocks. However, smallholder farmers often lack the access to equipment and skills to implement low-cost irrigation technologies.

The Accelerated Innovation Delivery Initiative (AID-I) implemented by the International Center for Maize and Wheat Improvement (CIMMYT) with funding from the United States Agency for International Development (USAID) has partnered with Total LandCare (TLC) Malawi and Zambia to promote Sustainable Intensification practices in eastern and central Malawi. TLC conducted a training session on using treadle pumps for irrigation plot layout in Mumbi Village, Petauke District, Zambia.

Farmers setting up an irrigation plot as a live demonstration. (Photo : TLC)

Letting gravity do the work

The irrigation system operates on the principle of pumping water manually from a low point to a high point from which the water then flows by gravity through a system of channels to irrigate crops.

Properly managed, treadle pump irrigation can improve household food security, income, nutrition, and health sustainably without detrimental effects to the environment.

The training educated 12 farmers in establishing an irrigation layout using gravity-fed basins, with water pumped from a stream downhill using a treadle pump. Participants learned how to erect channels that directed water into basins.

During practical irrigation training in Muya village of Mondolo camp, Petauke district, one of the farmers, Magret Tembo said, “This method of irrigation will negate the burden associated with use of watering cans, a practice which has been giving us backaches. Through this technology, we will experience increased production through better water management and increased area coverage.”

Following the setup demonstration, participants received practical guidance on various aspects of irrigation and crop management, covering such topics as planting techniques and effective fertilizer use, and application of pesticides and fungicides.

Inexpensive and durable

“Treadle pump irrigation offers tremendous opportunities to dramatically increase agricultural production while enriching the livelihoods of many resource-poor farmers,” said Zwide Jere, Co-founder/Managing Director of TLC.

Treadle pumps are inexpensive, so individuals can afford to purchase one and they are durable and easy to maintain, so one pump will work for years for individual households.

“The pumps are also designed to work in many environments,” said Paul Malambo, Country Manager for TLC Zambia. “So, over the years, TLC has been able to distribute the pumps in Malawi, Mozambique, Tanzania and Zambia.”


A farmer demonstrating how to use the pump (top left and right) in Kasenengwa, Zambia (Photo: TLC)

“Providing access to technical knowledge and support for under-utilized land, water and labor resources is an important part of the AID-I project, said Kevin Kabunda, CIMMYT lead for the AID-I. “As is collaboration with local partners like TLC who facilitate the dissemination of expertise.”

TLC is a registered non-governmental organization based in Malawi and active in Zambia. Its mission is to empower self-reliance and prosperity for rural households in the Southern Africa region.

Five new CIMMYT maize hybrids available from the Latin America breeding program

CIMMYT is happy to announce five new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

How does CIMMYT’s improved maize get to the farmer?
Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM21LAPP1A-12 Intermediate maturing, white, high yielding, and resistant to TSC, MLB, and Ear rots Lowland tropics
CIM21LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM21LAPP2A-4 Intermediate-maturing, white, high-yielding, FSR, GLS, and Ear rots. Mid-altitudes/

Spring-Summer season

CIM21LAPP2A-8
CIM20LAPP2B-12 Intermediate-maturing, yellow, high-yielding, resistant to GLS, and Ear rots.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 03-22LTHTWM4M, 04-22LTHTYM4M, 01-22MASTCHSTW and 02-22MASTCHSTY Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 -2021 and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is December 1st, 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Farmers’ Hub launched in Nigeria to boost food security and agricultural development

In a strategic move to improve food security and promote agricultural development, Syngenta Foundation Nigeria, one of the key partners in the Dryland Crops Program (DCP), has introduced a new initiative known as the AVISA Farmers’ Hub. The initiative was launched at an event in the Murya Community of Obi Local Government Area in the Nasarawa State of North Central Nigeria. The Farmers’ Hub aims to support and empower farmers in the region, contributing to the overall objectives of the DCP.

The introduction of the Farmers’ Hub comes at a time when smallholder farmers in the region are grappling with limited access to essential resources such as knowledge, high-quality inputs, modern technology, and reliable markets, all of which are critical for achieving high-quality agricultural productivity.

A farmers’ hub (FH) is an all-inclusive commercial platform that provides diverse inputs such as seeds, seedlings, fertilizers, and crop protection products, as well as price and weather information. In addition, it provides farmers with value-added services such as aggregation, cleaning, sorting and grading of produce, bulk sales, training, equipment leasing and rental, financing, and trade credit. Smallholder farmers can now take advantage of the opportunities provided by the Farmers’ Hub by transitioning from subsistence agriculture to a commercially oriented system.

Inside the farmer’s hub. The hub is all-inclusive platform offering a wide range of inputs including seeds, seedlings, fertilizers and more (Syngenta Foundation Nigeria).

During the event, the Country Program Manager of Syngenta Foundation Nigeria, Isaiah Gabriel, emphasized the foundation’s dedication to commercializing AVISA crops: “The foundation is working to facilitate the commercialization of cowpea, sorghum, groundnuts, and pear millet.” Gabriel also emphasized the importance of raising awareness among farmers and establishing a platform that provides smallholder farmers with improved seeds, seedlings, fertilizers, mechanization, and other value-added services. He urged farmers in the state to maximize their utilization of the Farmers’ Hub and its services, which are intended to facilitate improved seed production and service delivery.

The Farmers’ Hub was established with the goal of resolving access issues, optimizing yields, aggregating grains, and overcoming market challenges. Finally, the hub hopes to improve food security and increase the income of smallholder farmers.

Prof. Mary Yeye, the National Coordinator of AVISA, commended the initiative and emphasized the importance to farmers of taking advantage of the project and making prudent use of its resources as she addressed the participants.

Experts in attendance, that included Prof. Lucky Omoigui, a seed system specialist from the International Institute of Tropical Agriculture (IITA), Prof. SG Gaya, a groundnut breeder from Bayero University Kano (BUK), and Prof, Alhassan Lalihu from the Federal University Lafia, discussed several of the obstacles to high agricultural productivity. These factors include restricted access to improved seeds, expensive fertilizers, and security concerns. The experts lauded the Farmers’ Hub as the final step in delivering resources to smallholder farmers. In addition, they urged all levels of government to intensify efforts to subsidize input costs and improve farmers’ security.

The program manager of the Nasarawa State Agricultural Development Program, Emmanuel Alanama, responded by thanking Syngenta Foundation for selecting Nasarawa State for this significant project. He acknowledged that 75 to 80 percent of the state’s population are farmers and expressed the willingness of the state government to collaborate and support any agricultural initiatives.

Farmers participating in a training session at the farmers hub. (Syngenta Foundation Nigeria)

Rowland Alaku, manager of the Farmers’ Hub, assured farmers that they would have guaranteed access to quality seeds. The farmers in attendance expressed their gratitude for the initiative and promised to utilize the hub fully in order to benefit their own farming endeavors.

Other dignitaries in attendance included Prof. Johnson Onyibe from Ahmadu Bello University (ABU), Zaria; Dr. Teryima Iorlamen from the University of Agriculture, Makurdi; and several village heads. More than 150 farmers, stakeholders, and government officials attended the event, highlighting its importance.