The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.
CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.
Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.
Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.
Balancing the application of fertilizers based on the characteristics of soil leads to increased crop productivity, income, and fertilizer use efficiency unlike former “one size fits all” recommendations, said Bedu Ram Bhushal, Nepal’s Minister of Agriculture and Livestock Development (MoALD) during a press briefing earlier this month in Nepal’s capital Kathmandu.
Participants from the press release (Photo: Deepa Woli/CIMMYT)
“I congratulate NARC for this historical work on updating the fertilizer recommendations after 46 years,” Bhushal said. “Now, we should support the large-scale adoption of these new recommendations by farmers for sustainable soil fertility management.”
Earlier recommendations developed by the Agricultural Chemistry and Soil Science Service Section under the Department of Agriculture (DoA) in 1976 did not take into account soil diversity, biophysical conditions, and agronomic management. Nutrients recommended for a particular crop were the same for terai lowlands, hills, and mountains.
In general, soil fertility changes over time due to deployment of continuous intensive cropping systems. The new recommendations consider the indigenous nutrient supply of soils, target yields, and the amount of nutrients removed by crops at harvest.
Senior officials and dignitaries endorsed new fertilizer recommendation (Photo: Deepa Woli/CIMMYT)
It took six years for NSSRC of NARC in partnership with NSAF, to update the recommendations through nutrient omission and optimum nutrient rate trials in various locations. By using advanced analytical methods and machine learning tools for extrapolating data across different agroecological zones and domains, they were able to make them site-specific.
Other factors considered, included attainable yield at a particular farm, soil fertility status, agro-climate, crop management practices, and the amount of nutrients to be supplied to fill the gap between crop nutrient removal and soil nutrient supply of nitrogen, phosphorus, and potassium. Micronutrients and organic inputs were also considered.
These recommendations were presented to leading soil scientists and agronomists from NARC and MoALD and were validated at national meetings in July and October 2022.
The Honorable Minister of MoALD, Bedu Ram Bhusal reviewed the press release (Photo: Deepa Woli/CIMMYT)
The new recommendations were included in the DoA’s agriculture extension guidelines in 2023, to achieve potential yield at the farm level and to link with the extension system through the three-tier of governments for its extensive use throughout the country. The new approach is part of CIMMYT’s efforts to support the NARC, MoALD, provincial agriculture ministries, and farmers to build indigenous soil fertility management resources and capabilities and promote locally adapted strategies for long-term resilience by using integrated soil fertility management approaches.
Scientists, researchers and stakeholders from around the world gathered at the global sorghum conference from June 5-9, 2023, in Montpellier, France, to discuss the latest developments in sorghum research, innovation, challenges and sustainable practices in the face of climate change.
The Dryland Crops Program (DCP) partners pose for a group photo at the Sorghum Conference (Photo: Marion Aluoch/CIMMYT)
Participating as a sponsor, the International Maize and Wheat Improvement Center (CIMMYT) demonstrated valuable insights and technological advances in a variety of sessions. Two CIMMYT representatives and six National Agricultural Research Extension Systems (NARES) partners, presented findings, addressing critical topics such as adaptation genetics and genomics, climate and environmental change, sorghum yield optimization techniques and the development of new sorghum products for human consumption.
CIMMYT has initiated a crop improvement program, known as the Dryland Crop Program (DCP), focused on sorghum, millets (pearl and finger millet), chickpea, pigeon pea and groundnut. The program is in the process of establishing a CGIAR-NARES network with stakeholders form 17 countries in Africa to collaboratively create, develop and implement a crop improvement network for these crops in Eastern, Southern, Western and Central Africa. This cooperative approach will enable CIMMYT and the network to identify suitable products for specific market segments, establish joint breeding pipelines, conduct on-farm germplasm testing and ultimately release and scale up superior seed varieties. This will ultimately lead to improving the quality and yield of these dryland crops, ensuring food security and promoting sustainable agricultural practices.
Nebie Baloue from CIMMYT Senegal providing information about the Dryland Crops Program (DCP) program to visitors at the CIMMYT’s booth (Photo: Marion Aluoch/CIMMYT)
Abhishek Rathore presented “Understanding sorghum race level diversity and development of sorghum genomic resources by using deep learning-based variant calling approach,” which examines sorghum’s racial diversity and the creation of genomic resources. Using a deep learning-based variant, researchers identified race-specific genetic signatures and gained a comprehensive understanding of sorghum race structure and domestication processes. These discoveries pave the way for more targeted breeding programs and the identification of single nucleotide polymorphism (SNPs) markers.
Baloua Nebie presented a poster on “Crop improvement network approach to co-develop market required products and strengthen partners’ capacities in Africa.” He indicated the dryland crops improvement programs are in collaboration with CGIAR-NARES programs, with CIMMYT acting as a facilitator within the network to deliver varieties more quickly and efficiently in response to market demand. The network is comprised of 10 NARES in Western and Central Africa, seven NARES in Eastern and Southern Africa, as well as farmer organizations and seed companies. In addition to their national roles, NARES partners will contribute to regional activities based on their comparative advantages; these roles include co-sharing of regional pipelines development, early to late testing of breeding lines, product release and scaling. Through consultative meetings and program evaluation, these activities will be aligned with the regional and country-specific market segments identified by stakeholders.
Alex Zongo of the Institut de l’Environnement et des Recherches Agricoles (INERA) / CNRST – Burkina Faso, a NARES partner, presented research analyzing the macro-institutional determinants of the adoption of new sorghum/millet varieties. He shed light on the obstacles associated with the adoption of new sorghum/millet varieties. The research uncovered the economic and social incentives that prevent their scaling through a combination of qualitative and quantitative analysis.
Mr. Jeffrey Ehlers Program Officer at the Bill & Melinda Gates Foundation engages in conversation with Nebie Baloua from CIMMYT Senegal at the CIMMYT’s booth (Photo: Marion Aluoch/CIMMYT)
With climate change posing a significant threat to global agriculture, NARES partners involved in regional networks have delved into the pressing issues of enhancing sorghum production’s climate resilience. Rekiya Abdoulmalik, from the Institute of Agriculture Research (IAR) in Nigeria, presented a poster on the threats to sorghum cultivation in Nigeria posed by current security issues and potential climate change effects. The study evaluated 14 varieties of dwarf sorghum in multiple locations. The analysis identified stable, high-yielding varieties with the potential to contribute to Nigeria’s food security in the face of shifting environmental conditions.
Other NARES partners presenting posters included Henry Nzioka from Kenya Agricultural and Livestock Research (KALRO), who made a case for the biological control of the striga weed in sorghum. Citing technological advancements, he illustrated how the integration of climate-smart weed management technologies can lead to the control of the weed.
Another presentation by Charles Bett of KALRO focused on mechanization in the sorghum value chain, which revealed that investments in machinery and traction power have a positive and significant effect on sorghum yield. The findings recommend a shift in policy to help farmers afford small-scale machinery and gradually replace ox power with affordable machinery.
Assitan Daou from the Institut d’Economie Rurale (IER) in Mali emphasized the suitability of sorghum as a crop for growing populations in varying climates and the significance of an agroecological transition for adaptation to climate change. His poster presentation centered on sorghum cropping systems under rainfed conditions, which aligned with the conference’s goals of increasing crop productivity, adapting to climate variations and bolstering the resilience of small-scale farmers.
The conference, according to Chris Ojiewo, Strategic Partnerships and Seed Systems lead for the Dryland Crops Program at CIMMYT, played a crucial role in sharing the latest sorghum research findings and their outcomes. “The conference provided an important platform for communicating advances in research and associated outputs and outcomes on sorghum as an important cereal grain contributing to food, nutrition and income securities and overall resilience in agrifood systems especially to smallholder farmers in areas prone to drought stress and more so in the face of changing and variable climates,” said Ojiewo.
Nebie Baloua from CIMMYT Senegal engaging with visitors at the CIMMYT’s stand (Photo: Marion Aluoch/CIMMYT)
CIMMYT also set up an exhibition booth that provided an overview of the various activities undertaken as a part of its dryland crop programs and CGIAR-NARES improvement network. Senior officials of donor organizations consulted CIMMYT staff regarding approaches to dryland crops improvements, key achievements and the possibility of new partnerships.
The next 21st Century Global Sorghum Conference will be hosted by Texas University in Lubbock in September 2026.
Supporting farmers and local communities can better and more quickly preserve the Yucatán peninsula’s biodiversity in the mid and long term, as well as the agricultural heritage of its Indigenous peoples.
Improving the distribution and use of nitrogen fertilizer — skewed by price hikes and outdated subsidies — can raise maize, wheat, and rice production in Africa and South Asia, while saving on fertilizer and addressing both food security and climate crisis concerns.
CIMMYT leds different regenerative agriculture projects with companies like Nestlé and Bimbo that positively impact food security and rural communities in Mexico. These initiatives aim to boost productivity through regenerative agriculture practices to positively impact food security, the environment and social inclusion in the Mexican countryside.
Integrated management of organic and inorganic nitrogen sources in high- to low-yield cereal production could bring yearly savings in nitrogen fertilizer of over 1 million tons in India, some 90,000 tons in Ethiopia, and more than 20,000 tons in Malawi, according to a new scientific paper, “Spatially differentiated nitrogen supply is key in a global food-fertilizer price crisis.”
“Global policies and governments should prioritize nitrogen supplies to low-yield, low-fertility cropping systems, such as smallholder maize and rice farms in Malawi, which are representative of the highly N-deficient cereal systems relied upon by over 100 million people in sub-Saharan Africa,” said Sieglinde Snapp, director of the Sustainable Agrifood Systems Program at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the paper. “Those farmers should also ramp up organic nitrogen inputs, such as manure and legume crops.”
In the intensive, high-yield cropping systems of India, farmers generally over-apply N fertilizer on 90% of the rice and wheat crops and more than half of maize crops. Less than half the nitrogen is taken up and used by the crops and the rest is lost into the environment, contaminating water, land, and the atmosphere. “Simply saving the excess fertilizer from over-fertilized areas and shifting it to low-application areas could increase global crop yields by 30%, with huge reductions in greenhouse gas emissions,” said Tek Sapkota, co-author of the paper and climate change leader at CIMMYT.
This study is based on evidence of achievable shifts in nitrogen management over 1-2 years, for a modest proportion of cropped area (10%). “We did not assess interventions with longer time horizons or large investment requirements such as precision agriculture, mechanization, or deep placement of fertilizer,” Snapp explained.
Snapp and her colleagues used evidence from the scientific literature to estimate N-fertilizer savings from the above interventions for maize, wheat, and rice cropping systems in India, Ethiopia, and Malawi. Integrated organic and inorganic nitrogen management was estimated by considering manure and legume N inputs along with N fertilizers. The effect of reallocating public subsidies to more cost-effective, high-N fertilizer was calculated as the extra nitrogen that could be made available through a lower unit cost of nitrogen.
Food production vs healthy environment?
According to Snapp, humanity is caught in a bind. Food crops grown using synthetic nitrogen fertilizer have fed expanding world populations since the 1960s, fertilizer use has increased nearly 10-fold since then, and significantly higher food demands lie ahead to mid-century. At the same time, poor use of N fertilizer is hurting the environment and, most recently, geopolitical conflicts have disrupted N fertilizer supplies and exposed the vulnerabilities of the global fuel-fertilizer-food nexus.
“In regions where cropping systems are highly deficient in nitrogen, investment is needed in policies and extension education to promote the use of organic nitrogen residues and legume crops,” Snapp said.
Extension agencies, she suggests, can extend their reach using digital tools and bi-directional communication approaches that engage local knowledge and farmers, including advisories regarding local soils and crop and fertilization requirements.
The ambitious fourth phase of the Australian Cereal Rust Control Program (ACRCP) is complete and it has produced an impressive set of achievements. Phase 4 saw an emphasis on gene discovery work and on understanding the interactions between rusts and their cereal hosts. It also included a strong focus on adult plant resistance (APR) genes and their potential to deliver more-durable forms of resistance.
The G20 MACS is composed of the ministries or governmental bodies responsible for agricultural research in each G20 state and leading research institutions, including CIMMYT as part of CGIAR, which strategically advise these decision makers. The G20 MACS addresses diverse global challenges in agriculture affecting the people and planet through joint agricultural research and innovation strategies and implementation of initiatives under new cooperation formats.
“CIMMYT is working for a world with resilient agri-food systems and protecting biodiversity with a multi-crop, multi-institutional, and multi-disciplinary approach,” said Govaerts during the recent MACS meeting. “70% of wheat and over 50% of maize varieties sown worldwide are derived from CIMMYT materials, and we are improving livelihoods in over 50 countries.”
Wheat and maize plots at the CIMMYT experimental station in El Batán, Mexico. (Photo: Alfonso Cortés/CIMMYT)
In its efforts to ensure biodiversity, CGIAR genebanks hold over 770,000 accessions, of which 80% are immediately accessible. As an added measure of security, duplicates of 78% of the seeds reside at the Svalbard Global Seed Vault.
Because wheat provides 20% of the global population’s daily protein intake, protecting it from disease, pests, and the effects of climate change is paramount. And to keep pace with the growing population, yields must increase in sustainable manners. To meet those challenges, CIMMYT coordinates the International Wheat Improvement Network, which involves hundreds of partners and testing sites worldwide. The Network has established a global phenotyping network, with platforms hosted locally so that environments are optimal for specific trait phenotyping.
Battling pests
In efforts to combat the threat of wheat blast, CIMMYT has established a regional collaboration which includes testing centers (over 15,000 lines tested), surveillance networks, and the release of blast resistant varieties in India, Nepal, and Bangladesh. In addition, CIMMYT has trained 100 extension agents from 10 countries in wheat blast identification and surveillance protocols.
Examining Ug99 stem rust symptoms on wheat. (Photo: Petr Kosina/CIMMYT)
Fall armyworm, is a voracious pest in both Africa and Asia, has caused up to $13 billion per year in crop losses in sub-Saharan Africa since 2016, threatening the livelihoods of millions of farmers throughout the region. CIMMYT has developed hybrid maize varieties resistant to this pest by identifying and validating sources of native genetic resistance.
International Year of the Millet: 2023
Within its presence in CGIAR, CIMMYT is working in networks with African NARS and private sector partners to share resources and knowledge and innovating sustainable crop and crop-livestock systems. This will directly support the Millets And Other Ancient Grains International Research Initiative (MAHARISHI), inaugurated at the G20 MACS conference. The initiative facilitates research collaboration on climate-resilient and nutritious grains, including millets and other underutilized grains. CIMMYT is also initiating and supporting crop improvement programs for sorghum, millet, groundnut, pigeon pea, and chickpea, in a model that empowers the national research centers.
Malawian farmer in her groundnut plot under conservation agriculture. (Photo: T. Samson/CIMMYT)
This work dovetails with the recently announced Accelerated Innovation Delivery Initiative (AID-I), in which CIMMYT is catalyzing efforts to scale up existing and high potential innovations, technologies, and business models as opposed to starting new ones in Malawi, Tanzania, and Zambia.
Creating sustainable solutions
CIMMYT is also pioneering the development of a hub network which supports adaptive research and integrated development for sustainable agrifood systems. With particular attention paid to inclusivity, these hubs are changing the perception of women’s roles in agriculture.
“CIMMYT is building towards future-proof solutions that foster empowerment through raising family income and food security, working with partners in the Global South for the benefit of the Global South,” said Govaerts.
Maize under conservation agriculture (CA) in Malawi (Photo: T. Samson/CIMMYT)
With many stresses facing agricultural food systems, including climate change, disease epidemics, growing populations, there is not one solution that will answer all the challenges. However, a foundational part of any attempt to strengthen food systems is the effort to conserve crop diversity. Maintaining a robust set of plant varieties serves as a building block for developing favorable traits, like increased yield, increased disease resistance, and drought tolerance, among others.
Dedicated to conserving crop diversity, the Crop Trust is a non-profit international organization with the mission of making that diversity available for use globally, forever, for the benefit of everyone.
On April 3, 2023, Crop Trust’s Executive Director, Stefan Schmitz, and Director of Programs, Sarada Krishnan, visited the International Maize and Wheat Improvement Center (CIMMYT) for the first time to examine CIMMYT’s maize and wheat genebanks, with the goal of establishing a set of standards for genebanks around the world. The parties also discussed future collaborations between the two institutions that will be best amplify each organization’s strengths.
A key part of the Crop Trust’s mission is support for collections of unique and valuable plant genetic resources for food and agriculture held in genebanks.
“CIMMYT is — and has been — one of the key partners in making sure crop diversity is safe and available for all of humanity,” said Schmitz. “Their maize and wheat genebanks serve a crucial role in assuring crop diversity, especially in Latin America.”
Maize seed samples, CIMMYT germplasm bank (Photo: Xochiquetzal Fonseca/CIMMYT)
CIMMYT manages the most diverse maize and wheat collections. CIMMYT’s germplasm bank, also known as a seed bank, is at the center of CIMMYT’s crop-breeding research. This remarkable, living catalog of genetic diversity comprises over 28,000 unique seed collections of maize and 123,000 of wheat.
“CIMMYT is honored to host the Crop Trust as any global solution requires global collaboration,” said CIMMYT Director General, Bram Govaerts.
Advances in genebank management
Representatives of the Crop Trust were eager to learn more about CIMMYT’s efforts in Digital sequence information (DSI). CIMMYT is using DSI to analyze structure, redundancies, and gaps within its own genebank and is now working to bring DSI tools to national genebanks in Latin America.
This visit builds on ongoing work, such as the third workshop of the Community of Practice for Latin America and the Caribbean on the use of genomic and digital tools for the conservation and use of Genetic Resources for Food and Agriculture (GRAA) held in November 2022.
In 2020, CIMMYT was the largest contributor to the Svalbard Global Seed Vault, providing 173,779 maize and wheat accessions from 131 countries.
The Seed Vault, managed by the Crop Trust, is a repository collection holding duplicates of seeds from over 1,700 genebanks around the world.
CIMMYT’s most recent donation to the Seed Vault was in October 2022.
Colleagues from CIMMYT’s germplasm bank prepare a delivery of 263 accessions of maize and 3,548 accession of wheat. (Photo: Francisco Alarcón/CIMMYT)
“All CIMMYT staff we met were passionate about their work and welcomed us kindly, generously sharing their knowledge and time with us. We look forward to continuing our collaboration, to strengthen it, and make sure that the crop collections held at the CIMMYT genebank are safe and available, forever,” said Schmitz.
During the recent International Day of Plant Health, a group of experts from across the globe sat together in a webinar to discuss and address the challenges facing plant health management capacity in the Global South.
Like other crops, wheat – which makes up 20 percent of the human diet – is affected by threats to the global food system from persistent population growth and economic and climate pressures. These challenges are further exacerbated by the fallout from the COVID-19 pandemic and the war in Ukraine. There is an urgent need to prioritize climate resilient wheat varieties to protect this food staple.
Some five years after HeDWIC was launched in 2014 to incorporate the most advanced research technologies into improving heat and drought tolerance of wheat, the Intergovernmental Panel on Climate Change reported that climate change was having an impact on food security through increasing temperatures, changing precipitation patterns and greater frequency of extreme weather events in its Special Report on Climate Change and Land.
“While some areas are becoming more conducive to wheat growing, crop yields are suffering in other regions around the world traditionally known as bread baskets,” said wheat physiologist Matthew Reynolds, who leads HeDWIC at the International Maize and Wheat Improvement Center (CIMMYT).
“Wheat is one of our fundamental crops, and we must spare no effort in protecting it from current and future challenges,” said Saharah Moon Chapotin, FFAR executive director. “Global collaborations are necessary to address global concerns, and these grants are bringing together international teams to share and build the science and research that will ensure the stability of this crop.”
To boost new ideas in “climate-proofing” crops, HeDWIC conducts virtual meetings that include all awarded research teams to take advantage of the collective global expertise in heat and drought resilience, leading to cross-pollination of ideas and further leverage of resources and capabilities.
In March, Reynolds led in-person discussions with some of the collaborating researchers at CIMMYT’s experimental research station on the outskirts of Ciudad Obregon, a city in Mexico’s Sonoran Desert, during CIMMYT’s annual Visitors’ Week.
Projects awarded in 2022
Exploring the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat (FluoSense4Wheat)
“The HeDWIC mini proposal allows us to explore the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat. The controlled irrigation conditions for wheat grown in Obregon give us the opportunity to quantify photosynthesis by fluorescence while drought develops. Detecting a drought-specific fluorescence response and/or the interaction between active and passive fluorescence is relevant for breeding selecting purposes as well as large spatial scale detection of drought by monitoring the plant.” – Onno Muller, Forschungszentrum Jülich, Institute of Bio- and Geosciences, Germany
Physiological basis of amelioration of heat stress through nitrogen management in wheat
“Heat stress during grain filling can restrict the availability of carbohydrates needed for grain development. India has been experiencing sudden spikes in both minimum and maximum temperatures by 3 to 5 degrees above normal from late-February onwards, which is an important time for wheat grain-filling and has resulted in declining wheat productivity. Our team is examining the ability of pre-flowering nitrogen applications to support biomass accumulation and overcome the grain-filling source (carbohydrate) limitation during heat spikes. If successful, the results could have broad-reaching benefits given that farmers are familiar with and well-skilled in using nitrogen applications regimes in crop management.” – Renu Pandey, Division of Plant Physiology, Indian Agricultural Research Institute
Can reproductive development be protected from heat stress by the trehalose 6-phosphate pathway?
“The HeDWIC funding provides a unique opportunity to test how the regulatory sugar, trehalose 6-phosphate (T6P) can protect wheat yields against increasingly common chronic and acute heat stress events. We have already shown that T6P spray increases wheat yields significantly in field conditions under a range of rainfall in wet and dry years. With increasing likelihood of heat stress events in the years ahead, in unique facilities at CIMMYT, we will test the potential of T6P to protect reproductive development from catastrophic yield loss due to chronic and acute heat.” – Matthew Paul, Rothamsted Research, UK
Investigating tolerance of heat resilient wheat germplasm to drought
“Over the last decade, we have developed heat tolerant wheat germplasm at the University of Sydney that maintains yield under terminal heat stress. In our new HeDWIC project, this material will be tested under combined drought and heat stress under field conditions. This will provide plant breeders with highly valuable information on field tested germplasm for use in accelerated breeding programs targeting combined heat and drought tolerance. The work is critical for future food security considering the inextricable link between temperature and plant water demand, and the increased frequency and intensity of heat and drought events under projected climate change.” – William Salter, University of Sydney, Australia
Novel wheat architecture alleles to optimize biomass under drought
“Wheat Rht-1 dwarfing genes were an essential component that led to spectacular increases in grain yields during the Green Revolution. Although Rht1 and Rht2 are still used widely in wheat breeding 50 years after they were introduced, they are suboptimal under drought conditions and are often associated with a yield penalty. Using a more extensive range of Rht-1 dwarfing alleles that were developed at Rothamsted, we will introduce them into CIMMYT germplasm to optimize biomass and ultimately increase grain yields under drought stress.” – Steve Thomas, Rothamsted Research, UK
Additional comments from 2021 awardees
“This opportunity has enabled the collection of significant amounts of data that will contribute to the advancement of knowledge in crop physiology and root biology. It has also provided early career researchers with opportunities to gain hands-on experience, develop important skills, and grow their networks. Additionally, this initiative has stimulated further ideas and collaborations among researchers, fostering a culture of innovation and cooperation that is essential for progress.” – Hannah Schneider, Wageningen University & Research, Netherlands
“The project is a unique opportunity for research groups from around the world to coordinate efforts on identifying ways to improve heat tolerance of wheat.” – Owen Atkin, Australian National University, Australia
“It is important to understand how high temperature limits crop growth and yield and to identify genetic variation that can be used for breeding climate resilient crops. This project has already begun to develop new methods for rapidly screening growth and physiological processes in genetically diverse panels which we hope will be invaluable to researchers and breeders.” – Erik Murchie, University of Nottingham, UK
“This project will provide novel phenotyping screens and germplasm to breeders and lay the groundwork for genetic analysis and marker development.” – John Foulkes, University of Nottingham, UK
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
Delegates with other officials in front of the seminar room. (Photo: Biswajit/BWMRI)
Representatives from Australian Centre for International Agricultural Research (ACIAR) and Bangladesh Agricultural Research Council (BARC) paid a visit to Bangladesh to see the valuable work of the Precision Phenotyping Platform (PPP).
PPP was established in response to the devastating wheat blast disease, which was first reported in the country in 2016.
Technical and financial support from the International Maize and Wheat Improvement Center (CIMMYT), the Australian Commission for International Agricultural Research and the Australian Centre for International Agricultural Research, along with other funders, has contributed to the effort to combat the disease.
This is achieved by generating precise data for wheat blast resistance in germplasm in Bangladesh, as well as other wheat growing countries. This PPP has been used to screen elite lines and genetic resources from various countries.
On February 16 and 17, 2023, two groups of national and international delegations visited the BWMRI-CIMMYT collaborative research platform PPP at the BWMRI regional station in Jashore, Bangladesh.
The first group was made up of representatives from both the Australian Commission for International Agricultural Research and the Australian Centre for International Agricultural Research. This included seven commissioners under the direction of Fiona Simson, along with ACIAR senior officials from Australia and India.
The other group was from BARC, which was led by Executive Chairman Shaikh Mohammad Bokhtiar, along with Golam Faruq, Director General of BWMRI, and Andrew Sharpe, Bangabandhu Research Chair, Global Institute of Food Security (GIFS), University of Saskatchewan in Canada.
Both delegations were welcomed by Muhammad Rezaul Kabir, the Senior Wheat Breeder at BWMRI. Kabir gave a brief presentation about the platform and other wheat blast collaborative research programs in the seminar room.
The delegations then went to the PPP field, where BWMRI researchers Kabir and Robiul Islam, as well as CIMMYT researcher Md. Harun-Or-Rashid, explained further information about the BWMRI-CIMMYT collaborative research. Both commissioners and delegates appreciated seeing the work being conducted in person by the national and international collaborations of BWMRI and CIMMYT on wheat blast research.
Visitors observing blast disease symptoms in wheat leaves. (Photo: Muhammad Rezaul Kabir/BWMRI)
“It is important, innovative work, that is affecting not only Bangladesh but many countries around the world that are now starting to be concerned about the impacts of wheat blast,” commissioner Simson said. “This study is very important for Australia and we are pleased to be contributing to it.”
Lindsay Falvey, another commissioner, added, “This is a wonderful experiment, using high-level science and technologies to combat wheat blast in Bangladesh. The experiment is well-planned. Overall, it is an excellent platform.”
ACIAR delegate Eric Huttner added to the praise for the project. “The platform is performing extremely well for the purpose of evaluating lines, resistance to the disease and that’s very useful for Bangladesh and rest of the world,” he said. “This is a gift that Bangladesh is giving to the neighboring countries to protect wheat.”
The delegates pledged to share their expert advice with the Minister of Foreign Affairs in Bangladesh in order to increase investments and improve facilities for agricultural research programs in the country.
Golam Faruq, Director General of BWMRI discussing the PPP with Shaikh Mohammad Bokhtiar, Executive Chairman of BARC (Photo: Md. Harun-Or-Rashid/CIMMYT)
“This is an excellent work,” Executive Chairman of BARC, Bokhtiar said. “We can get more information from screening activities by using bioinformatics tools and training people through the BARC-GIFS program.”
Pawan Kumar Singh, Head of Wheat Pathology at CIMMYT-Mexico and Project Leader, coordinated the visits virtually and expressed his thanks to the delegations for their visit to the platform. This PPP, within a short span of few years, has been highly impactful, characterizing more than 15,000 entries and releasing several resistant varieties in countries vulnerable to wheat blast.
Stewards Global, trading as Afriseed, is a Zambia seed systems intervention success story. Thanks to support from the International Maize and Wheat Improvement Center (CIMMYT) and other partners such as the United States Agency for International Development (USAID) and the Alliance for a Green Revolution in Africa (AGRA), Afriseed is transforming rural farmers’ livelihoods through supplying drought tolerant maize seed.
What began as a start-up in 2007 has since grown to be one of the leading companies in Zambia’s seed industry. “I started this company with a team of three people. We did not have much, but we had a compelling vision,” says founder Stephanie Angomwile. “Initially, we were multiplying and distributing legume seed to the market as we had observed the deficit where it was very difficult for any serious farmer to procure improved and high-performing seed.”
“Having set up the business, we were fortunate to get AGRA’s support to secure proper industrial premises where we could focus our operations and serve the Zambian market,” she explains. “Using a basic drum seed dresser, we were able to churn out 100 metric tons of seed per season, which was quite impressive considering how rudimentary our equipment was.”
At this point, USAID bought into their vision and furnished Afriseed with a processing plant that could handle, sort, treat, and package seeds for both legume and maize. The company then pivoted to working with maize seed, based off the observation that most farmers were obtaining yields lower than the genetic potential of existing varieties.
“To do so, it was quite clear that we needed an institution that could help us break into the maize seed industry dominated by large multinational seed companies,” Angomwile explains. “This led us to partner with CIMMYT, which is a partnership that still exists today and has enabled us to accelerate our market penetration strategy through providing us with high-performing drought-tolerant genetics which are growing in popularity among farmers.”
Stephanie Angomwile gives a tour to representatives from the USAID special envoy and CIMMYT during a visit to Afriseed. (Photo: Tawanda Hove/CIMMYT)
The impact of CIMMYT support
Since 2017, CIMMYT has been working with Afriseed to help smallholder farmers access new and improved varieties that are drought-tolerant and can withstand seasonal weather variations induced by climate change. “As CIMMYT, our role is not only to breed improved genetic material that farmers can take up, but also to support business development for the private sector through intensive capacity building programs that position such entities to be sustainable and to excel in the absence project support,” explains Hambulo Ngoma, an agricultural economist working with CIMMYT. The organization has provided Afriseed with two high performing varieties so far: AFS 635 and AFS 638. In addition, CIMMYT has supported Afriseed in stimulating demand within the smallholder farmer market through facilitating the establishment of demonstration plots and designing targeted seed marketing strategies.
During CIMMYT Director General Bram Govaerts’ recent visit to Zambia, Ngoma highlighted that the organization is aware that small-to-medium enterprises may be constrained with regards to marketing budgets and market development investments. “As such, when we are convinced that there is a business case and an opportunity for a food security transformation, we usually support promising entities such as Afriseed with knowledge and resources to stimulate demand,” he said. “This is of extreme importance as farmers growing old, recycled seed from ancient varieties need to transition to new, improved varieties.”
Govaerts said, “We are happy we could contribute to the success of Afriseed in our own small way and we hope our partnership will take you to the next level.”
Afriseed has since grown and now comprises nearly 200 workers: 90 permanent staff and 110 casual workers during the peak season. Production has surged to an excess of 10,000 metric tons per season and there is a growing customer base stretching throughout all regions of the country. Angomwile is very grateful to have had a partner like CIMMYT, which facilitated Afriseed’s membership to the International Maize Consortium (IMC), a global body that provides access to an expanded genetic pool bringing exposure to new genetic gains. “Being a member of IMC is definitely an advantage for us as an entity because the seed supply market is highly competitive,” she explains. “So, we can now quickly become aware of the new genetic materials available and ask our research and development team — established through the immense support from CIMMYT — to develop new varieties for our target market.”
Through a series of exchange visits and trainings, CIMMYT has mentored the research and development team who are now in a position to breed their own varieties without external support. “The number of farmers in high potential areas that are remotely located that are still growing recycled seed is still quite large,” says Peter Setimela, a seed systems specialist who was part of the mentoring team. “We need to continuously render extensive support to entities such as Afriseed such that the seed quality deficiency gap can be greatly reduced.”
As the rains have been in abundance during this 2022/23 season, there is high anticipation that farmers who have grown seed from reputable seed suppliers such as Afriseed, are set for a bumper harvest.
Cover photo: Afriseed staff preparing legume seeds for processing in Zambia. (Photo: Agricomms)
Although the technologies exist, many farmers have little information on how to implement them.
Seed companies and senior officials from the Ministry of Agriculture could play a key role in disseminating information, as could mobile phone technology and emerging digital innovation platforms.
The Wheat Disease Early Warning Advisory System (Wheat DEWAS) project is bringing new analytic and knowledge systems capacity to one of the world’s largest and most advanced crop pathogen surveillance systems. With Wheat DEWAS, researchers are building an open and scalable system capable of preventing disease outbreaks from novel pathogen strains that threaten wheat productivity in food vulnerable areas of East Africa and South Asia.
The system builds from capabilities developed previously by multi-institutional research teams funded through long-term investments in rust pathogen surveillance, modelling, and diagnostics. Once fully operationalized, the project aims to provide near-real-time, model-based risk forecasts for governments. The result: accurate, timely and actionable advice for farmers to respond proactively to migrating wheat diseases.
The Challenge
Farmers growing wheat face pathogen pressures from a range of sources. Two of the most damaging are the fungal diseases known as rust and blast. Rust is a chronic issue for farmers in all parts of the world. A study in 2015 estimated that the three rust diseases — stem, stripe and leaf — destroyed more than 15 million tons of wheat at a cost of nearly $3 billion worldwide. Wheat blast is an increasing threat to wheat production and has been detected in both Bangladesh and Zambia. Each of these diseases can destroy entire harvests without warning, wiping out critical income and food security for resource-poor farmers in vulnerable areas.
The Response
Weather forecasts and early-warning alerts are modern technologies that people rely on for actionable information in the case of severe weather. Now imagine a system that lets farmers know in advance when dangerous conditions will threaten their crop in the field. Wheat DEWAS aims to do just that through a scalable, integrated, and sustainable global surveillance and monitoring system for wheat.
Wheat DEWAS brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.
Together, the researchers are focused on six interlinked work packages:
Work package
Lead
Objectives
Data Management
Aarhus University; Global Rust Reference Center
Maintain, strengthen and expand the functionality of the existing Wheat Rust Toolbox data management system
Create new modules within the Toolbox to include wheat blast and relevant wheat host information
Consolidate and integrate datasets from all the participating wheat rust diagnostic labs
Develop an API for the two-way exchange of data between the Toolbox and the Delphi data stack
Develop an API for direct access to quality-controlled surveillance data as inputs for forecast models
Ensure fair access to data
Epidemiological Models
Cambridge University
Maintain operational deployment and extend geographical range
Productionalize code for long-term sustainability
Multiple input sources (expert, crowd, media)
Continue model validation
Ensure flexibility for management scenario testing
Extend framework for wheat blast
Surveillance (host + pathogen)
CIMMYT
Undertake near-real-time, standardized surveys and sampling in the target regions
Expand the coverage and frequency of field surveillance
Implement fully electronic field surveillance that permits near real-time data gathering
Target surveillance and diagnostic sampling to validate model predictions
Map vulnerability of the host landscape
Diagnostics
John Innes Centre
Strengthen existing diagnostic network in target regions & track changes & movement
Develop & integrate new diagnostic methodology for wheat rusts & blast
Align national diagnostic results to provide a regional & global context
Enhance national capacity for wheat rust & blast diagnostics
Information Dissemination and Visualization Tools
PlantVillage; Penn State
Create a suite of information layers and visualization products that are automatically derived from the quality-controlled data management system and delivered to end users in a timely manner
Deliver near real time for national partners to develop reliable and actionable advisory and alert information to extension workers, farmers and policy makers
National Partner Capacity Building
Cornell University
Strengthening National partner capacity on pathogen surveillance, diagnostics, modeling, data management, early warning assessment, and open science publishing