Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Network develops optimized breeding pipelines for accelerated genetic gains in dryland crops

Participants from the breeding pipelines optimization meeting at the Safari Park Hotel, Nairobi, Kenya. (Photo: CIMMYT)

Partners from the Africa Dryland Crop Improvement Network (ADCIN) from 16 institutes in Africa came together for a four-day workshop in Nairobi, Kenya, during 19-22 September 2023, to critically review and optimize breeding pipelines for newly formed breeding programs. The meeting provided an opportunity for multidisciplinary scientists to better understand each other’s significant roles and contributions in achieving optimized breeding pipelines.

Nine female and 28 male scientists working across 14 countries made up the group of experts at the workshop, which included crop breeders, quantitative geneticists, crop protection scientists, genomics experts, and data analysts. Together, they collaboratively developed, assessed, and refined the various stages and processes of breeding pipelines. Most participants were crop breeding leads from the national agricultural research and extension systems (NARES) and CGIAR Research Centers, as well as members of the Breeding Informatics Working Group A, the first of its kind as a strategic leadership group of crop breeding experts.

The workshop sponsored by CIMMYT focused on improving genetic gains across six crops: chickpea, pigeon pea, finger millet, pearl millet, groundnut, and sorghum. The workshop was organized by CIMMYT experts, Abhishek Rathore, breeding data and informatics expert, Keith Gardner, quantitative geneticist, and Roma Rani Das, biometrician, and quantitative geneticist experts from the CGIAR Accelerated Breeding Initiative, Dorcus Gemenet and Christian Werner.

Multidisciplinary expertise in action

Under the guidance of the Associate Program Director and the Breeding Lead for Dryland Crops, Harish Gandhi, participants engaged in an array of advanced genetic approaches, statistical techniques, and quantitative concepts presented by the participating experts from CIMMYT and CGIAR Accelerated Breeding.

Each breeding program schema was reviewed from detailed quantitative genetic aspects and agreed project criteria, including choosing parents, the optimum number of parents, crossing designs, the number of generations, methodologies, testing strategies, and analytical frameworks. The group deliberated on the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines to enhance the programs’ efficiency.

Agreements were reached on the number of founder parents, the number of crosses and progenies in various generations, line development method, evaluation and testing strategy, time until parental selection (cycle time), marker assisted selection (MAS), genomic selection (GS) strategy, making routine use of molecular markers for QA/QC. The team also finalized the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines aimed at higher genetic gains.

In coordination with crop breeders from CIMMYT, the NARES dryland crop breeding leads presented the current schematics of breeding pipelines for both line and hybrid breeding, highlighting the market segment, Target Product Profile (TPP) and Target Product Environment (TPE).

The breeding informatics team also showcased the upcoming Dryland Crops Trial Information System dashboard, a one stop shops to capture, host, and provide information on the trials organized by the network’s NARES breeders across Africa.

Collaboration for genetic gains

Crop breeding experts discuss strategies for breeding pipeline optimization. (Photo: CIMMYT)

The value of partnership working was frequently highlighted by the speakers. Michael Quinn, lead of the CGIAR Accelerated Breeding Initiative, gave an overview of the initiative’s objectives and high-level goals in 2023, emphasizing the need to foster dialogue and alignment across breeding teams. He also underlined the importance of such hand-in-hand meetings for fostering cross-regional and cross-institute learning.

“Plant breeding has always been at the center stage of crop improvement, but it has become more and more important lately, and there is a need to bring more collaborative efforts across disciplines to realize higher genetic gains in our breeding programs,” said Kevin Pixley, Dryland Crops program director and Wheat program director during his virtual presentation.

“Interaction with the breeding leads from CIMMYT and the NARES in East and Southern Africa (ESA) and West and Central Africa (WCA) and other experts helped in cross learning from the advanced breeding programs,” said Maryam Dawud, plant breeder at the Lake Chad Research Institute in Nigeria. Such workshops are needed for developing optimized breeding pipelines, and we will need more such in-person workshops on advanced data analysis.”

Next steps for dryland crops

During the workshop, network partners came up with an optimized breeding pipeline incorporating advanced quantitative genetic and statistical principles aligned with the latest scientific advancements and market demands. The group further developed a six-month actionable plan split by region to address common bottlenecks across the crops, such as capacity building in data analysis, modernizing digital infrastructure, training and enhancing human capacity in the use of equipment, and managing staff turnover.

All these deliberations provided the network partners with better insights and hands-on-experience to design their breeding pipeline, outlining specific steps, responsibilities, and timelines for implementing the identified optimizations. This preparatory work will ensure there is a targeted and coordinated effort toward pipeline enhancement and accelerated genetic gain for dryland crops in the region.

Happy Daudi, head, Groundnut Research Program at Tanzania Agricultural Research Institute (TARI), who participated in the workshop, stated, “Bringing in multidisciplinary experts provided a great opportunity to integrate various concepts of population improvement, product development, and deploying advanced statistical approaches for optimizing our breeding pipeline for achieving higher genetic gains, and accelerated variety turn over.”

Thank you to the Bill and Melinda Gates Foundation, the United States Agency for International Development (USAID), and CGIAR, for their generous funding which made this workshop possible.

MARA-CIMMYT Joint Laboratory hosts CGIAR delegation

CGIAR delegation arrives at the Joint Laboratory. (Photo: CIMMYT)

Several experts from across CGIAR, including Sonja Vermeulen, managing director of Genetic Innovation, Hugo Campos, CIP deputy director, Sarah Hearne, CIMMYT Genetic Resources program director a.i., and Charlotte Lusty, Genetic Innovation senior director gene banks, the Alliance Bioversity-CIAT, visited the Minister of Agriculture and Rural Affairs MARA-CIMMYT Joint Laboratory on 25-26 January 2024.

The MARA-CIMMYT Joint Laboratory, hosted by Chinese Academy of Agricultural Sciences (CAAS), is a global leader in Chinese wheat quality and molecular development and application and plays a significant role in variety development, serving as an entry point for international collaboration.

The visit follows a China visit from CIMMYT’s Director General Bram Govaerts. “We remain committed to strengthening collaboration ties by continuing wheat and maize germplasm introduction, and climate change adaptation and carbon sequestration, two key issues we discussed, bearing in mind that our partnership with China is mutually beneficial and contributes to the world’s food security,” said Govaerts.

“The partnership between the Ministry of Agriculture and Rural Affairs and CIMMYT sets the standard for collaboration among CGIAR organizations and government ministries,” said Vermeulen. “And the timely and effective facilitation of the CAAS is a key part of this venture’s success.”

CGIAR delegation stands with Zhonghu He. (Photo: CIMMYT)

CIMMYT Distinguished Scientist and the Country Representative for China, Zhonghu He, presented the history and achievement of the China-CIMMYT partnership.

“CIMMYT maize varieties have been planted on more than 1 million hectares across China and three thousand new inbred lines were introduced to broaden the genetic base of Chinese maize germplasm,” said He. “The MARA-CIMMYT partnership has released thirteen commercial maize varieties in Nepal and elsewhere.”

The delegation received a first-hand look at noodle quality evaluation and gave high recommendation to the wheat variety Zhongmai 578, derived from CIMMYT germplasm with high-yield potential and excellent pan bread and noodle qualities. It is planted on half a million hectares across China, with a yield of six-thousand tons, leading to both improving farmer income and enhancing the competitiveness of the food industry in China.

Enhancing wheat breeding efficiency in South Asia through early germplasm access

Wheat field. (Photo: CGIAR)

In the dynamic landscape of wheat breeding, early access to germplasm emerges as a strategic catalyst for accelerating variety turnover and meeting the evolving challenges faced by farmers in South Asia. Since its inception, the Accelerating Genetic Gains in Maize and Wheat (AGG) project has pioneered new tools to optimize the wheat breeding process. One such tool, the efficient and low-cost 3-year breeding cycle, has been fine-tuned in Mexico, using the Toluca screenhouse and field advancement in Obregón, laying the groundwork for faster variety turnover.

The inaugural set of lines generated through this enhanced breeding cycle is already undergoing Stage 1 trials in the Obregón 2023-24 season. However, the innovation doesn’t stop there; to expedite the variety release process and garner robust data from the Target Population of Environments (TPE), Stage 2 lines are being rigorously tested at over 20 sites in South Asia through collaboration with National Agricultural Research and Extension Services (NARES) partners. In the seasons spanning 2021-2024, a total of 918 Stage 2 lines underwent rigorous trials, aiming to provide early access to improved wheat lines for testing and release by NARES and establish a genetic correlation matrix between Obregón selection environments and diverse sites across South Asia.

These extensive trials serve a dual purpose. Firstly, they facilitate early access to improved wheat lines for testing and release by NARES, bolstering the agricultural landscape with resilient and high-yielding varieties. Secondly, they contribute to the establishment of a genetic correlation matrix between the selection environments in Obregón and the diverse sites across South Asia. This matrix becomes a guiding compass, aiding in selecting the most promising lines for broader TPEs in South Asia and beyond.

Transformative impact on wheat varieties in South Asia

Through the support of our partners and funders from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), the UK Foreign, Commonwealth & Development Office (FCDO), and the US Agency for International Development (USAID), great achievements have been recorded throughout the region. India, a prominent player in wheat cultivation, stands as a testament to the transformative impact of early access to advanced lines. The top three varieties, namely DBW187, DBW303, and DBW 222, covering over 6 million hectares, trace their roots to CIMMYT varieties. Adopting a fast-track approach through early-stage testing of these advanced lines at BISA sites in India, supported by the Delivering Genetic Gain in Wheat (DGGW) project, facilitated the release of these varieties two years ahead of the regular testing process. This expedited varietal release was complemented by the innovative early seed multiplication and dissemination approach introduced by the Indian Council of Agricultural Research (ICAR). Recent additions to this accelerated channel include varieties such as DBW 327, DBW 332, DBW 370, and 371, promising further advancements in wheat cultivation.

Pakistan

In Pakistan, the early access to advanced lines has been a catalyst for releasing high-yielding, climate-resilient, and nutritious wheat varieties. In 2023 alone, 12 new varieties were released, with the renowned ‘Akbar-19,’ introduced in 2019, covering a substantial 42% of cultivated land in Punjab. Data released by the Ayub Agricultural Research Institute (AARI), shows that this variety, known for its high yield potential, disease resistance, and enriched zinc content, has significantly contributed to increased wheat production in the region.

Nepal

Guided by policy interventions in the national varietal testing process, Nepal has experienced the fast-track commercialization of high-yielding and climate-resilient wheat varieties. Allowing multilocation testing of CIMMYT nurseries and advanced elite lines, Nepal released six biofortified zinc wheat varieties in 2020. The expeditious seed multiplication of these released and pre-release varieties has facilitated the rapid spread of new and improved wheat varieties.

The strategic utilization of early access to wheat germplasm in South Asia holds promise in accelerating variety turnover, offering farmers resilient and high-performing wheat varieties. Collaborative efforts between research institutions, government bodies, and international organizations exemplify the power of innovation in transforming agriculture. With an ongoing dedication to refining breeding cycles, expanding testing initiatives, and fostering collaboration, the AGG project contributes to building a sustainable and resilient agricultural future in South Asia. Early access to wheat germplasm emerges as a practical approach in this scientific endeavor, laying the foundation for a climate-resilient and food-secure region. The successes witnessed in India, Pakistan, and Nepal underscore the transformative potential of this approach, offering tangible benefits for agricultural communities in South Asia and beyond. In navigating the complexities of a changing climate and growing food demand, early access to wheat germplasm remains a pragmatic ally, propelling agricultural innovation and resilience to new heights.

Advancing conservation agriculture

A practical demonstration at Jabalpur. (Photo: CIMMYT)

Agriculture feeds the world. Yet traditional cycles of ploughing, planting, and harvesting crop and biomass products is inefficient of labor and other scarce resources and depletes soil health while emitting greenhouse gases that contribute to climate change.

One effort to ameliorate the negative effects of farming is a set of practices referred to as conservation agriculture (CA), based on the principles of minimal mechanical soil disturbance, permanent soil cover with plant material, and crop diversification.

To deliver advanced, high-level instruction on current innovative science around important aspects of cropping and farming system management to scientists from India, Bangladesh, Egypt, and Morocco, the 12th Advanced Conservation Agriculture Course hosted by the Indian Council of Agricultural Research (ICAR), CIMMYT, and the Borlaug Institute for South Asia (BISA) took place in India from December 10 to 24, 2023.

SK Chaudhari, deputy director general for Natural Resource Management, ICAR; HS Jat, director of the Indian Council of Agricultural Research-Indian Institute of Maize Research (ICAR-IIMR); Arun Joshi, country representative for India and BISA managing director, CIMMYT-India; Mahesh K. Gathala, senior systems agronomist and science lead, CIMMYT-Bangladesh; and Alison Laing, agroecologist, CIMMYT-Bangladesh, all attended the opening ceremony at the National Agricultural Science Complex in New Delhi, India.

This CA course integrated scientific advancements and multidisciplinary techniques to sustainably develop agricultural systems, restore natural resources, and improve climate resilience in agriculture throughout Asia and North Africa. It was held at leading research centers throughout India.

SK Chaudhari welcomed delegates to the course and stressed its practical character and efficacy in promoting CA management innovations, as evidenced by the significant achievements and international reputations of many former attendees and resource personnel.

“As climatic variability and change increase, the need to manage agronomic risks grows, and CA is an effective tool for farmers and scientists in both irrigated and rainfed systems,” said Chaudhari.

Twenty rising scientists from such fields as agronomy, soil science, plant protection, agricultural engineering, plant breeding, and extension, took part in the workshop where they gained a better understanding of all aspects of conservation agricultural methods in rainfed and irrigated ecosystems, as well as exposure to wide networks with prominent international scientists. Organizers prioritized the inclusion of female scientists, who made up 40% of attendees.

The workshop empowered participants to act as conservation agriculture ambassadors and champions of modern, novel agronomic methods when they return to their home institutions.

Rajbir Singh, ICAR assistant director general for Natural Resource Management, and ML Jat, global research program director of Resilient Farm and Food Systems, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) provided keynote addresses at the closing ceremony, held at the ICAR-Central Soil Salinity Research Institute in Karnal, Haryana, India.

CIMMYT joins global efforts to curb greenhouse emissions and strengthen food systems

The 2023 UN Climate Change Conference (COP 28) took place from November 30 to December 12, 2023, in Dubai, UAE. The conference arrived at a critical moment when over 600 million people face chronic hunger, and global temperatures continue to rise at alarming rates. CIMMYT researchers advocated for action into agriculture’s mitigating role in climate change, increasing crop diversity, and bringing the tenets of sustainability and regenerative agroecological production systems to a greater number of farmers.

Directly addressing the needs of farmers, CIMMYT proposed the creation of an advanced data management system, training, and protocols for spreading extension innovations such as digital approaches and agronomic recommendations to farmers via handheld devices to harmonize the scaling in Africa of regenerative agriculture—diverse practices whose outcomes include better productivity and environmental quality, economic feasibility, social inclusivity, and nutritional security.

CIMMYT presented research showing that in times of fertilizer shortages, targeting nitrogen supplies from inorganic and organic sources to farms with minimal access to nitrogen inputs can improve nitrogen-use efficiency and helps maintain crop yields while limiting harm from excesses in fertilizer use. Examining how food production is driving climate change, CIMMYT promoted ways to lessen climate shocks, especially for smallholder farmers who inordinately suffer the effects of climate change, including rising temperatures and extended droughts. Improved, climate-resilient crop varieties constitute a key adaptation. Boosting farmer productivity and profits is a vital part of improving rural livelihoods in Africa, Asia, and Latin America.

When asked about CIMMYT’s contribution to COP 28, Bram Govaerts, CIMMYT’s director general, highlighted the inclusion of agriculture in the COP28 UAE Declaration on Sustainable Agriculture, Resilient Food Systems, and Climate Action as part of various potential solutions for climate change, an effort that CIMMYT supported through advocacy with leaders and government officials.

“Our participation addressed some of the pressure points which led to this significant recognition. It further cleared our role as an active contributor to discussions surrounding the future of food and crop science,” said Govaerts.

Unlocking the potential of crop genetic diversity

“The diversity stored in today’s gene banks contains the potential to unlock genes that can withstand drought and warmer temperatures,” said Sarah Hearne, CIMMYT’s director of Genetic Resources at a side-event: Crop diversity for climate change adaptation and mitigation contributing to resilient and nature positive futures for farmers globally.

Sarah Hearne presents on the potential of crop diversity to help combat climate change impacts on agrifood systems. (Photo: Food Pavilion/COP 28)

Hearne explained the process that characterizes plant DNA to identify the ideal, climate-adaptable breeding traits. This classification system also opens the door for genetic modeling, which can predict key traits for tomorrow’s climatic and environmental conditions.

“Our thinking must shift from thinking of gene banks to banks of genes, to make vibrant genetic collections for humanity, opening up genetic insurance for farmers,” said Hearne.

Working towards a food system that works for the environment

With an increased strain on food production, sustainability becomes critical for long-term human and environmental health. Sarah Hearne and Tek Sapkota, agricultural systems and climate change senior scientist, from CIMMYT participated in a panel discussion: Responsible consumption and sustainable production: pathways for climate-friendly food systems. They shared how progress in genetic innovation and fertilizer use can contribute to sustainable consumption and a resilient food system.

Fertilizer use remains highly skewed, with some regions applying more fertilizer than required and others, like sub-Saharan Africa, not having sufficient access, resulting in low crop yields. However, to achieve greater food security, the Global South must produce more food. For that, they need to use more fertilizer. Just because increased fertilizer use will increase greenhouse gases (GHGs) emissions, institutions cannot ask smallholder farmers not to increase fertilizer application. Increased GHGs emission with additional fertilizer application in low-input areas can be counterbalanced by improving Nutrient-Use Efficiency (NUE) in high-output areas thereby decreasing GHGs emissions. This way, we can increase global food production by 30% ca with the current level of fertilizer consumption.

Tek Sapkota speaks on how sustainable and efficient fertilizer use can contribute to a resilient food system. (Photo: Food Pavilion/COP 28)

“This issue needs to be considered through a holistic lens. We need to scale-up already proven technologies using digital extensions and living labs and linking farmers with markets,” said Sapkota.

On breeding climate-resilient seeds, Hearne addressed whether farmers are accepting new seeds and how to ensure their maximum adoption. Hearne detailed the partnership with CGIAR and NARS and the numerous technologies advancing the selection of ideal breeding traits, considering shortened breeding cycles, and responding to local needs such as heat or flood tolerance, and traditional preferences.

“Drought-tolerant maize, developed by CIMMYT and the International Institute of Tropical Agriculture (IITA), has benefited over 8 million households in sub-Saharan Africa, which proves that farmers are increasingly receptive to improved seeds. With a better selection of appropriate traits, we can further develop and distribute without yield penalties,” said Hearne.

Regenerative and agroecological production systems

Researchers have studied regenerative and agroecological production systems for decades, with new and old research informing current debates. These systems restore and maintain ecosystems, improving resource use efficiency, strengthening resilience, and increasing self-sufficiency. In his keynote presentation, Sapkota presented 3 examples of regenerative agriculture and agroecological systems:  conservation agriculture, cropping system diversification and site-specific nutrient management and their impact on food production, climate change adaptation and mitigation.

“As the science continues to develop, we need to harness digital capacity to co-create sustainable solutions alongside local, indigenous knowledge,” said Sapkota. “While we should continue research and innovation on cutting-edge science and technologies, we should also invest in knowledge sharing networks to spread access to this research; communication is fundamental for further adoption of these practices.”

Lennin Musundire

Lennin Musundire is responsible for supporting the National Agriculture Research Systems (NARS) in Africa to develop breeding improvement plans to deliver higher genetic gains targeted at smallholder farmers. These improvement plans will focus on product profiles, breeding scheme optimization, use of genotyping, automation, mechanization, appropriate breeding software and links with seed producers. Provides support to national breeding teams in African countries, implements an all-inclusive internal breeding pipeline optimization plan supported by the Excellence in Breeding platform as well as supports national partners to integrate and build breeding networks with CGIAR institutes and regional, national partners.

 

USAid programme equips rural farmers

With generous support from USAID, CIMMYT, in collaboration with the lead organization World Food Programme and partner organizations SNV, Tree of Life, and MTDC, has significantly enhanced climate resilience in Zimbabwe through the promotion of conservation agriculture practices under the Zambuko Livelihoods Initiative initiated, since 2020.

Read the full story.

Heat tolerant maize hybrids: a pursuit to strengthen food security in South Asia

After a decade of rigorous effort, CIMMYT, along with public-sector maize research institutes and private-sector seed companies in South Asia, have successfully developed and released 20 high-yielding heat-tolerant (HT) maize hybrids across Bangladesh, Bhutan, India, Nepal, and Pakistan. CIMMYT researchers used a combination of unique breeding tools and methods including genomics-assisted breeding, doubled haploidy (a speed-breeding approach where genotype is developed by chromosome doubling), field-based precision phenotyping, and trait-based selection to develop new maize germplasm that are high-yielding and also tolerant to heat and drought stresses.

While the first batch of five HT maize hybrids were released in 2017, by 2022 another 20 elite HT hybrids were released and eight varieties are deployed over 50,000 ha in the above countries.

In South Asia, maize is mainly grown as a rainfed crop and provides livelihoods for millions of smallholder farmers. Climate change-induced variability in weather conditions is one of the major reasons for year-to-year variation in global crop yields, including maize in Asia. It places at risk the food security and livelihood of farm families living in the stress-vulnerable lowland tropics. “South Asia is highly vulnerable to the detrimental effects of climate change, with its high population density, poverty, and low capacity to adapt. The region has been identified as one of the hotspots for climate change fueled by extreme events such as heat waves and intermittent droughts,” said Pervez H. Zaidi, principal scientist at CIMMYT.

Heat stress impairs the vegetative and reproductive growth of maize, starting from germination to grain filling. Heat stress alone, or in combination with drought, is projected to become a major production constraint for maize in the future. “If current trends persist until 2050, major food yields and food production capacity of South Asia will decrease significantly—by 17 percent for maize—due to climate change-induced heat and water stress,” explained Zaidi.

From breeding to improved seed delivery–the CIMMYT intervention

In the past, breeding for heat stress tolerance in maize was not accorded as high a priority in tropical maize breeding programs as other abiotic stresses such as drought, waterlogging, and low nitrogen in soil. However, in the last 12–15 years, heat stress tolerance has emerged as one of the key traits for CIMMYT’s maize breeding program, especially in the South Asian tropics. The two major factors behind this are increased frequency of weather extremes, including heat waves with prolonged dry period, and increasing demand for growing maize grain year-round.

At CIMMYT, systematic breeding for HT maize was initiated under Heat Stress Tolerant Maize for Asia (HTMA), a project funded by the United States Agency for International Development (USAID) Feed the Future program. The project was launched in 2013 in a public–private alliance mode, in collaboration with public-sector maize research institutions and private seed companies in Bangladesh, Bhutan, India, Nepal, and Pakistan.

The project leveraged the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of the partners. An array of activities was undertaken, including genetic dissection of traits associated with heat stress tolerance, development of new HT maize germplasm and experimental hybrids, evaluation of the improved hybrids across target populations of environments using a heat stress phenotyping network in South Asia, selection of elite maize hybrids for deployment, and finally scaling via public–private partnerships.

Delivery of HT maize hybrids to smallholder farmers in South Asia

After extensive testing and simultaneous assessment of hybrid seed production and other traits for commercial viability, the selected hybrids were officially released or registered for commercialization. Impact assessment of HT maize hybrid seed was conducted in targeted areas in India and Nepal. Studies showed farmers who adopted the HT varieties experienced significant gains under less-favorable weather conditions compared to farmers who did not.

Under favorable conditions the yield was on par with those of other hybrids. It was also demonstrated that HT hybrids provide guaranteed minimum yield (approx. 1 t ha-1) under hot, dry unfavorable weather conditions. Adoption of new HT hybrids was comparatively high (19.5%) in women-headed households mainly because of the “stay-green” trait that provides green fodder in addition to grain yield, as women in these areas are largely responsible for arranging fodder for their livestock.

“Smallholder farmers who grow maize in stress vulnerable ecologies in the Tarai region of Nepal and Karnataka state in southern India expressed willingness to pay a premium price for HT hybrid seed compared to seed of other available hybrids in their areas,” said Atul Kulkarni, socioeconomist at CIMMYT in India.

Going forward–positioning and promoting the new hybrids are critical

A simulation study suggested that the use of HT varieties could reduce yield loss (relative to current maize varieties) by up to 36% and 93% by 2030 and by 33% and 86% by 2050 under irrigated and rainfed conditions respectively. CIMMYT’s work in South Asia demonstrates that combining high yields and heat-stress tolerance is difficult, but not impossible, if one adopts a systematic and targeted breeding strategy.

The present registration system in many countries does not adequately recognize the relevance of climate-resilience traits and the yield stability of new hybrids. With year-to-year variation in maize productivity due to weather extremes, yield stability is emerging as an important trait. It should become an integral parameter of the registration and release system.

Positioning and promoting new HT maize hybrids in climate-vulnerable agroecologies requires stronger public–private partnerships for increasing awareness, access, and affordability of HT maize seed to smallholder farmers. It is important to educate farming communities in climate-vulnerable regions that compared to normal hybrids the stress-resilient hybrids are superior under unfavorable conditions and at par with or even superior to the best commercial hybrids under favorable conditions.

For farmers to be able to easily access the new promising hybrids, intensive efforts are needed to develop and strengthen local seed production and value chains involving small-and medium-sized enterprises, farmers’ cooperatives, and public-sector seed enterprises. These combined efforts will lead to wider dissemination of climate-resilient crop varieties to smallholder farmers and ensure global food security.

Wheat blast spread globally under climate change modeled for the first time

Climate change poses a threat to yields and food security worldwide, with plant diseases as one of the main risks. An international team of researchers, surrounding professor Senthold Asseng from the Technical University of Munich (TUM), has now shown that further spread of the fungal disease wheat blast could reduce global wheat production by 13% until 2050. The result is dramatic for global food security.

With a global cultivation area of 222 million hectares and a harvest volume of 779 million tons, wheat is an essential food crop. Like all plant species, it is also struggling with diseases that are spreading more rapidly compared to a few years ago because of climate change. One of these is wheat blast. In warm and humid regions, the fungus magnaporthe oryzae has become a serious threat to wheat production since it was first observed in 1985. It initially spread from Brazil to neighboring countries. The first cases outside of South America occurred in Bangladesh in 2016 and in Zambia in 2018. Researchers from Germany, Mexico, Bangladesh, the United States, and Brazil have now modeled for the first time how wheat blast will spread in the future.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Regionally up to 75% of total wheat acreage affected

According to the researchers, South America, southern Africa, and Asia will be the regions most affected by the future spread of the disease. Up to 75% of the area under wheat cultivation in Africa and South America could be at risk in the future. According to the predictions, wheat blast will also continue to spread in countries that were previously only slightly impacted, including Argentina, Zambia, and Bangladesh. The fungus is also penetrating countries that were previously untouched. These include Uruguay, Central America, the southeastern US, East Africa, India, and eastern Australia. According to the model, the risk is low in Europe and East Asia—with the exception of Italy, southern France, Spain, and the warm and humid regions of southeast China. Conversely, where climate change leads to drier conditions with more frequent periods of heat above 35 °C, the risk of wheat blast may also decrease. However, in these cases, heat stress decreases the yield potential.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Dramatic yield losses call for adapted management

The affected regions are among the areas most severely impacted by the direct consequences of climate change. Food insecurity is already a significant challenge in these areas and the demand for wheat continues to rise, especially in urban areas. In many regions, farmers will have to switch to more robust crops to avoid crop failures and financial losses. In the midwest of Brazil, for example, wheat is increasingly being replaced by maize. Another important strategy against future yield losses is breeding resistant wheat varieties. CIMMYT in collaboration with NARs partners have released several wheat blast-resistant varieties which have been helpful in mitigating the effect of wheat blast. With the right sowing date, wheat blast-promoting conditions can be avoided during the ear emergence phase. Combined with other measures, this has proven to be successful. In more specific terms, this means avoiding early sowing in central Brazil and late sowing in Bangladesh.

First study on yield losses due to wheat blast

Previous studies on yield changes due to climate change mainly considered the direct effects of climate change such as rising temperatures, changing precipitation patterns, and increased CO2 emissions in the atmosphere. Studies on fungal diseases have so far ignored wheat blast. For their study, the researchers focused on the influence of wheat blast on production by combining a simulation model for wheat growth and yield with a newly developed wheat blast model. Environmental conditions such as the weather are thus included in the calculations, as is data on plant growth. In this way, the scientists are modeling the disease pressure in the particularly sensitive phase when the ear matures. The study focused on the influence of wheat blast on production. Other consequences of climate change could further reduce yields.

Read the full article.

Further information:

The study was conducted by researchers from:

  • CIMMYT (Mexico and Bangladesh)
  • Technical University of Munich (Germany)
  • University of Florida (United States)
  • Brazilian Agricultural Research Corporation (Brazil)
  • International Fertilizer Development Center (United States)
  • International Food Policy Research Institute (United States)

Zambuko Livelihoods Initiative

Persistent vulnerability to frequent climate-related shocks, exacerbated by the effects of climate change poses a continual threat to the capacity of communities to secure an adequate and nutritious food supply throughout the year. The R4 Rural Resilience Initiative, led by the World Food Programme (WFP), aims to enable vulnerable, smallholder farmers to increase their food security, income, and resilience by managing climate-related risks. Expanding on the success of R4, WFP launched the Zambuko Livelihoods Initiative, a comprehensive program supported by United States Agency for International Development (USAID). This initiative strategically concentrates on fostering social cohesion within communities, advancing crop and livestock production, and facilitating improved access to financial resources.

In a collaborative endeavor, CIMMYT is leading the implementation of the climate-smart agriculture and mechanization components of the Zambuko program, with a specific focus on Masvingo Rural (Ward 15) and Mwenezi (Ward 6) in Zimbabwe. Focused on mitigating the impact of climatic shocks and stresses, the initiative aims to empower local farmers, improve agricultural practices, and foster sustainable livelihoods. This collaborative effort represents a crucial step towards building resilience in the face of climate challenges, offering a holistic approach to enhancing the adaptive capacity of vulnerable communities.

Key objectives

The overall objective is to diversify and strengthen climate-resilient livelihoods, while mitigating household vulnerability to recurring shocks, such as droughts and floods.

CIMMYT oversees interlinked goals which are –

  1. Viable conservation agriculture (CA) and mechanization options are tested and expanded in rural farming communities.
  2. Seed and fodder options are tested and available for wider use by smallholders.
  3. Increased smallholder farmer knowledge and capacity to implement climate-smart agriculture interventions to build resilience.

Soybean rust threatens soybean production in Malawi and Zambia

Healthy soybean fields. (Photo: Peter Setimela/CIMMYT)

Soybeans are a significant source of oil and protein, and soybean demand has been increasing over the last decade in Malawi and Zambia. Soybean contributes to human nutrition, is used in producing animal feed, and fetches a higher price per unit than maize, thus serving as a cash crop for smallholder farmers. These are among the main factors contributing to the growing adoption of soybean among smallholder producers. In addition, soybean is a vital soil-fertility improvement crop used in crop rotations because of its ability to fix atmospheric nitrogen. To a large extent, soybean demand outweighs supply, with the deficit covered by imports.

Soybean production in sub-Saharan Africa is expected to grow by over 2% per annum to meet the increasing demand. However, as production increases, significant challenges caused by diseases, pests, declining soil fertility, and other abiotic factors remain. According to official government statistics, Zambia produces about 450,000 tonnes of soybean per annum, with an estimated annual growth of 14%. According to FAOSTAT, this makes Zambia the second largest soybean producer in the southern African region. Although soybean was traditionally grown by large commercial farmers in Zambia, smallholders now account for over 60% of the total annual soybean production.

Production trends show that smallholder soybean production increased rapidly in the 2015–2016 season, a period that coincided with increased demand from local processing facilities. As smallholder production continued to increase, in 2020, total output by smallholder farmers outpaced that of large-scale farmers for the first time and has remained dominant over the last two seasons (Fig 1). However, soybean yields among smallholder farmers have remained low at around 1 MT/HA.

Figure 1. Soybean production trends by smallholders and large-scale farmers. (Photo: Hambulo Ngoma/Zambia Ministry of Agriculture, Crop Forecast Survey)

Soybean production in the region is threatened by soybean rust caused by the fungus Phakopsora pachyrhizi. The rust became prevalent in Africa in 1996; it was first confirmed in Uganda on experimental plots and subsequently on farmers’ fields throughout the country. Monitoring efforts in the U.S. have saved the soybean industry millions of dollars in fungicide costs due to the availability of accurate disease forecasting based on pathogen surveillance and environmental data.

Soybean rust disease is spread rapidly and easily by wind, and most available varieties grown by farmers are susceptible. The above-normal rainfall during the 2022–2023 season was conducive to the spread of the fungus. A recent survey of over 1,000 farm households shows that 55% and 39% of farmers in Zambia and Malawi, respectively, were affected by soybean rust during the 2022–2023 season. The lack of rust-tolerant varieties makes production expensive for smallholder farmers who cannot afford to purchase fungicides to control the pathogens. It is estimated that soybean rust can cause large yield losses of up to 90%, depending on crop stage and disease severity. Symptoms due to soybean rust infection may be observed at any developmental stage of the plant, but losses are mostly associated with infection from the flowering stage to the pod-filling stage.

Soybean plants affected by soy rust. (Photo: Peter Setimela)

Mitigation measures using resistant or tolerant varieties have been challenging because the fungus mutates very rapidly, creating genetic variability. Although a variety of fungicides effective against soybean rust are available, the use of such fungicides is limited due to the high cost of the product and its application, as well as to environmental concerns. Due to this restricted use of fungicide, an early monitoring system for detecting rust threats for steering fungicide might only be relevant for large-scale producers in eastern and southern Africa. With the massive increase in the area under soybean production, soybean rust is an important disease that cannot be ignored. Host-plant resistance provides a cheaper, more environmentally friendly, and much more sustainable approach for managing soybean rust in smallholder agriculture that characterizes the agricultural landscape of eastern and southern Africa.

To advance the use of rust-tolerant varieties, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is presently concluding surveys to assess farmers’ demand and willingness to pay for rust-tolerant varieties in Malawi and Zambia. The results from this assessment will be valuable to seed companies and last-mile delivery partners to gain a better understanding of what farmers need and to better serve the farmers.  This coming season AID-I will include rust tolerant varieties in the mega-demonstrations to create awareness about new varieties that show some tolerance to rust.

Livestock Production Systems in Zimbabwe (LIPS-Zim)

The livestock sub-sector is one of the most important arms of the agricultural sector, contributing to the livelihoods of 70% of Zimbabwe’s rural population. Sustainable livestock production depends on the maintenance of healthy and productive animals which requires paying particular attention to the problems of both endemic and introduced animal diseases and zoonotic. Climate relevant livestock production practices such as fodder management and conservation, water harvesting, and manure management have been identified as solutions to increasing livestock productivity.

The Livestock Production Systems in Zimbabwe (LIPS-Zim) project, funded by the European Union (EU) focuses on increasing agricultural productivity in Zimbabwe’s semi-arid, agro-ecological regions IV and V. Led by the International Livestock Research Institute (ILRI) and in partnership with CIMMYT, the French Agricultural Research Center for International Development (Cirad) and the University of Zimbabwe (UZ), LIPS-Zim is working in 10 districts of Zimbabwe, i.e. Matabeleland South Province (Beitbridge and Gwanda districts), the parched Matabeleland North Province (Binga, Hwange and Nkayi districts), Midlands (Gokwe North district), Masvingo (Chiredzi and Zaka districts), Manicaland (Buhera district) and Mashonaland East (Mutoko district). LIPS-Zim is conducting research that seeks to increase livestock feed productivity and well as reducing diseases and mortality of livestock.

Main objectives

Core to the project is to increase the adoption of climate-relevant innovations (e.g feeding) in livestock-based production systems and improve the surveillance and control of livestock diseases. CIMMYT’s main thrust in this project is based on the recognition that at least 50% of the arable land area in semi-arid region IV and V of Zimbabwe is still put to maize despite extension recommendations for farmers to grow the more resilient small grains in those regions. Given the above, and to address their food and feed needs, farmers in those regions need drought-tolerant and nutritious maize varieties that are resilient in those dry environments. CIMMYT’s work is thus focusing on testing the feed value of these nutritious and drought tolerant maize varieties when intercropped with various legumes such as mucuna, cowpea, lab-lab and pigeonpea. CIMMYT is also testing the later, along with climate smart production techniques such as conservation agriculture and water harvesting practices.

Tackling fall armyworm with sustainable control practices

Typically looking like a small caterpillar growing up to 5 cms in length, the fall armyworm (FAW, Spodoptera frugiperda) is usually green or brown in color with an inverted “Y” marking on the head and a series of black dots along the backs. Thriving in warm and humid conditions, it feeds on a wide range of crops including maize, posing a significant challenge to food security, if left unmanaged. The fall armyworm is an invasive crop pest that continues to wreak havoc in most farming communities across Africa.

A CIMMYT researcher surveys damaged maize plants while holding a fall armyworm, the culprit. (Photo: Jennifer Johnson/CIMMYT)

The first FAW attack in Zimbabwe was recorded around 2016. With a high preference for maize, yield losses for Zimbabwe smallholder farmers are estimated at US$32 million. It has triggered widespread concern among farmers and the global food system as it destroyed large tracts of land with maize crops, which is a key staple and source of farmer livelihood in southern Africa. The speed and extent of the infestation caught farmers and authorities unprepared, leading to significant crop losses and food insecurity.

Exploring the destructive FAW life cycle

It undergoes complete metamorphosis, progressing through four main stages including egg, larva, pupa, and adult. Reproducing rapidly in temperatures ranging from 20 to 38°C, moist soil conditions facilitate the egg-laying process, while mild winters enable its survival in some regions. The larval stage is the most destructive phase, feeding voraciously on plant leaves and can cause severe defoliation. They can migrate in large numbers, devouring entire fields within a short period if left unchecked.

Working towards effective FAW management

A farmer and CIMMYT researcher examine maize plants. (Photo: CIMMYT)

Efficient monitoring, early detection, and appropriate management strategies are crucial for mitigating the impact of FAW infestations and protecting agricultural crops. To combat the menace of this destructive pest, CIMMYT, with support from the United States Agency for International Development (USAID), has been implementing research and extension on cultural control practices in Zimbabwe. One such initiative is the “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe”. Since 2018, this project strives to address research gaps on FAW management and cultural control within sustainable agriculture systems. The focus of the research has been to explore climate-adapted push-pull systems and low-cost control options for smallholder farmers in Zimbabwe who are unable to access and use expensive chemical products.

Environment friendly practices are proving effective to combat FAW risks

To reduce the devastating effects of FAW, the project in Zimbabwe is exploring the integration of legumes into maize-based strip cropping systems as a first line of defense in the Manicaland and Mashonaland east provinces. By planting maize with different, leguminous crops such as cowpea, lablab and mucuna, farmers can disrupt the pests’ feeding patterns and reduce its population. Legumes release volatile compounds that repel FAW, reducing the risk of infestation. Strip cropping also enhances biodiversity, improves soil health and contributes to sustainable agricultural practices. Overall results show that FAW can be effectively managed in such systems and implemented by smallholder farmers. Research results also discovered that natural enemies such as ants are attracted by the legumes further contributing to the biological control of FAW.

Spraying infested maize crop with Fawligen in Nyanyadzi. (Photo: CIMMYT)

Recently, the use of biopesticides such as Fawligen has gained traction as an alternative to fight against fall armyworm. Fawligen is a biocontrol agent that specifically targets the FAW larvae. Its application requires delicate attention – from proper storage to precise mixing and accurate application. Following recommended guidelines is essential to maximize its effectiveness and minimize potential risks to human health and the environment.

Impact in numbers

Since the inception of the project, close to 9,000 farmers participated in trainings and exposure activities and more than 4,007 farmers have adopted the practices on their own field with 1,453 hectares under improved management. Working along with extension officers from the Ministry of Lands, Agriculture, Water, Fisheries & Rural Resettlement, the project has established 15 farmer field schools as hubs of knowledge sharing, promoting several farming interventions including conservation agriculture practices (mulching, minimum tillage through ripping), timely planting, use of improved varieties, maintaining optimum plant population, and use of recommended fertilizers among others.

Addressing FAW requires a multi-faceted approach. The FAW project in Zimbabwe is proactive in tackling infestation by integrating intercropping trials with legumes, harnessing the application of biopesticides, and collaborative research. By adopting sustainable agricultural practices, sharing valuable knowledge, and providing farmers with effective tools and techniques, it is possible to mitigate the impact of FAW and protect agrifood systems.

Examining how insects spread toxic fungi

Maize grain heavily damaged by the larger grain borer and maize weevil. (Photo: Jessica González/CIMMYT)

According to the World Health Organization (WHO), 10% of the global population suffers from food poisoning each year. Aflatoxins, the main contributor to food poisoning around the world, contaminate cereals and nuts and humans, especially vulnerable groups like the young, elderly, or immune-compromised, and animals are susceptible to their toxic and potentially carcinogenic effects.

Fungi contamination occurs all along the production cycle, during and after harvest, so the mitigation of the mycotoxins challenge requires the use of an integrated approach, including the selection of farmer-preferred tolerant varieties, implementing good agricultural practices such as crop rotation or nitrogen management, reducing crop stress, managing pests and diseases, biological control of mycotoxigenic strains, and good post-harvest practices.

Monitoring of mycotoxins in food crops is important to identify places and sources of infestations as well as implementing effective agricultural practices and other corrective measures that can prevent outbreaks.

A bug problem

Insects can directly or indirectly contribute to the spread of fungi and the subsequent production of mycotoxins. Many insects associated with maize plants before and after harvest act as a vector by carrying fungal spores from one location to another.

International collaboration is key to managing the risks associated with the spread of invasive pests and preventing crop damage caused by the newly introduced pests. CIMMYT, through CGIAR’s Plant Health initiative, partners with the Center for Grain and Animal Health Research of the US Department of Agriculture (USDA) and Kansas State University are investigating the microbes associated with the maize weevil and the larger grain borer.

The experiment consisted of trapping insects in three different habitats, a prairie near CIMMYT facilities in El Batán, Texcoco, Mexico, a maize field, and a maize store at CIMMYT’s experimental station at El Batán, using Lindgren funnel traps and pheromones lures.

Hanging of the Lindgren funnel traps in a prairie near El Bátan, Texcoco, Mexico. (Photo: Jessica González/CIMMYT)

Preliminary results of this study were presented by Hannah Quellhorst from the Department of Entomology at Kansas State University during an online seminar hosted by CIMMYT.

The collected insect samples were cultured in agar to identify the microbial community associated with them. Two invasive pests, the larger grain bore and the maize weevil, a potent carcinogenic mycotoxin was identified and associated with the larger grain borer and the maize weevil.

The larger grain borer is an invasive pest, which can cause extensive damage and even bore through packaging materials, including plastics. It is native to Mexico and Central America but was introduced in Africa and has spread to tropical and subtropical regions around the world. Together with the maize weevil, post-harvest losses of up to 60% have been recorded in Mexico from these pests.

“With climate change and global warming, there are risks of these pests shifting their habitats to areas where they are not currently present like sub-Saharan Africa and North Africa,” said Quelhorst. “However, the monitoring of the movement of these pests at an international level is lacking and the microbial communities moving with these post-harvest insects are not well investigated.”

Riya Gupta

Riya works as the Communication Officer at the Borlaug Institute for South Asia (BISA), leading communications for a BISA-led project- Atlas of Climate Adaptation in South Asian Agriculture (ACASA).

She is currently executing a comprehensive communication strategy for partner countries in South Asia, such as Nepal, Bangladesh, Sri Lanka, and India. Riya holds a master’s degree in public health and brings a range of experience in various domains such as maternal nutrition, food security, WASH, and now agriculture and climate change.

Prior to BISA, Riya has led and ideated effective social behaviour change communication (SBCC) campaigns on-ground concerning maternal health in one of the aspirational districts of India. With her expertise in content strategy, Riya also supported her clients in establishing a strong thought leadership and public relations in media.