Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Groundwater conservation policies help fuel air pollution crisis in northwestern India, new study finds

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas of India. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Groundwater conservation policies are contributing to the air pollution crisis in northwestern India by concentrating agricultural fires into a narrower window when weather conditions favor poor air quality, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT) published on Nature Sustainability.

Facing severe groundwater depletion from intensive crop cultivation, the state governments of Haryana and Punjab introduced separate legislation in 2009 to prohibit early rice establishment in order to reduce water consumption. The study revealed that later rice planting results in later rice harvest, leading to a delayed and condensed period when residues are burned prior to wheat establishment. Consequently, more farmers are setting fire to crop residues at the same time, increasing peak fire intensity by 39%, contributing significantly to atmospheric pollution.

“Despite being illegal, the burning of post-harvest rice residues continues to be the most common practice of crop residue management in northwestern India, and while groundwater policies are helping arrest water depletion, they also appear to be exacerbating one of the most acute public health problems confronting India,” said CIMMYT scientist Balwinder Singh.

“Burning agricultural waste dominantly releases PM2.5 aerosols, a type of fine particulate matter that is particularly harmful to human health,” he explained.

Air pollution in India kills an estimated 1.5 million people every year, with nearly half of these deaths occurring in the Indo-Gangetic Plains, the northernmost part of the country that includes New Delhi.

A holistic view of policies to support sustainable development

Farmers work on rice paddies. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
Farmers work on rice paddies. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

The research results shed light on the sustainability challenges confronting many highly productive agricultural systems, where addressing one problem can exacerbate others, said Andrew McDonald, a professor at Cornell University and co-author of the study.

“Identifying and managing tradeoffs and capitalizing on synergies between crop productivity, resource conservation, and environmental quality is essential,” McDonald said.

“To devise more effective agricultural development programs and policies, integrative assessments are required that meld groundwater, air quality, economic, and technology scaling considerations in common frameworks,” he explained.

The current policy environment in India encourages productivity maximization of cereals and very high levels of residue production especially in the western Indo-Gangetic Plains, according to Bruno Gerard, another author of the study and head of CIMMYT’s Sustainable Intensification Program.

“If these policies are changed, companion efforts must facilitate sustainable intensification in areas such as the Eastern Gangetic Plains, where water resources are relatively abundant and closer coupling of crop-livestock systems provides a diverse set of end-uses for crops residues,” Gerard said.

The way forward

Northwestern India is home to millions of smallholder farmers and a global breadbasket for grain staples, accounting for 85% of the wheat procured by the Indian government. Thus, what happens here has regional and global ramifications for food security.

“A sensible approach for overcoming tradeoffs will embrace agronomic technologies such as the Happy Seeder, a seed drill that plants seeds without impacting crop residue, providing farmers the technical means to avoid residue burning,” said ML Jat, a scientist with CIMMYT who coordinates sustainable intensification programs in northwestern India.

“Through continued efforts on the technical refinement and business model development for the Happy Seeder technology, uptake has accelerated,” he added. “Financial incentives in the form of payments for ecosystem services may provide an additional boost to adoption.”

“Additional agronomic management measure such as cultivation of shorter-duration rice varieties may help arrest groundwater decline while reducing the damaging concentration of agricultural burning,” Jat explained.

The researchers suggested that long-term solutions will likely require crop diversification away from rice towards crops that demand less water, like maize, as recently started by the government in the state of Haryana.

Access the journal article on Nature Sustainability:
Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India

Read Balwinder Singh’s op-ed in The Telegraph:
Groundwater, the unexpected villain in India’s air pollution crisis


For more information or interview requests, please contact:

Genevieve Renard, Head of Communications, CIMMYT. g.renard@cgiar.org +52 (55) 5804 2004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org +52 (55) 5804 2004 ext. 1167.

ABOUT CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

A burning issue

Pollution has become a part of our daily life: particulate matter in the air we breathe, organic pollutants and heavy metals in our food supply and drinking water. All of these pollutants affect the quality of human life and create enormous human costs.

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

India is home to 15 of the world’s cities with the highest air pollution, making it a matter of national concern. The country is the world’s third largest greenhouse gas emitter, where agriculture is responsible for 18% of total national emissions.

For decades, CIMMYT has engaged in the development and promotion of technologies to reduce our environmental footprint and conserve natural resources to help improve farmer’s productivity.

Zero tillage reverses the loss of soil organic matter that happens in conventional tillage. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
Zero tillage reverses the loss of soil organic matter that happens in conventional tillage. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Efficient use of nitrogen fertilizers, better management of water, zero-tillage farming, and better residue management strategies offer viable solutions to beat air pollution originating from the agriculture sector. Mitigation measures have been developed, field tested, and widely adopted by farmers across Bangladesh, India, Nepal and Pakistan.

India’s farmers feed billions of people, while fighting pest and weather related uncertainties. Is it too much to ask them to change their behavior and help support air quality with the food they grow? (Photo: Dakshinamurthy Vedachalam/CIMMYT)
India’s farmers feed billions of people, while fighting pest and weather related uncertainties. Is it too much to ask them to change their behavior and help support air quality with the food they grow? (Photo: Dakshinamurthy Vedachalam/CIMMYT)

“Multi-lateral impacts of air pollution link directly it to various sustainability issues,” explained Balwinder Singh, Cropping Systems Simulation Modeler at CIMMYT. “The major sustainability issues regarding air quality revolve around the common question: How good is good enough to be sustainable? We need to decide how to balance the sustainable agriculture productivity and hazardous pollution levels. We need to have policies on the regulation of crop burning and in addition to policies surrounding methods to help reach appropriate air quality levels.”

Read the whole story

Investing in diversity

 

For more than 50 years, CIMMYT has been dedicated to safeguarding and using maize and wheat genetic diversity for the betterment of millions of peoples’ lives around the globe. To accomplish this mission, CIMMYT relies on the diversity of its staff.

Just as there is no future for our food security and health of ecosystems without plant and animal biodiversity, an organization can only go so far without diversity and inclusion. These are no longer trendy keywords, they ensure success. According to recent studies, as organizations become more inclusive — in terms of age, gender, sexual orientation, race — the performance of their staff can skyrocket by 30% or more.

On the occasion of the International Day for Biological Diversity, we sat down with CIMMYT’s Director of Human Resources, Monika Altmaier, to discuss what organizations can do to become better, more resilient and efficient through investing in the diversity of staff.

Q: How do you see CIMMYT using diversity to support its growth and goals?

Monika Altmaier: As a research organization, we need to be innovative to stay relevant. Hiring diversity fosters just that. Different backgrounds provide different approaches, therefore speeding up the process of locating the best solution. According to experts, inclusive organizations are 1.7 times more likely to be innovation leaders in their market. Combining peoples’ diverse perspectives opens doors to innovation.

Employing diverse staff allows us to be more creative, competitive and improves our best practices. It provides a fresh pair of eyes. For me, diversity is an asset that enables us to learn about ourselves and others and grow, as people and professionals. Figuring out how people think and why is so interesting.

Q: What is CIMMYT doing to attract and retain more diverse talent?

MA: We have just finished sharpening our Gender and Diversity in Research and the Workplace policy. This document outlines how CIMMYT integrates gender and social inclusiveness in its research and innovation for development. Also, it describes what needs to be done to promote gender equality and diversity at all stages of employment, from securing new talent to retaining it.

Creating a 360-degree induction in multiple languages for all of our staff has been high on our agenda ever since hearing opinions of staff from 46 countries that gathered at our Science Week last year. This induction course will outline what is expected from everyone at CIMMYT: respect and dignity for all colleagues and stakeholders, regardless of gender identity and expression, disability or health status.

On a monthly basis, when doing outreach, HR post vacancy announcements that are attractive to people from different countries, that use gender-sensitive language and invite everyone, especially women to apply. We include colleagues of different genders, nationalities, and from various research and administration units in the selection and interview process. We scrutinize shortlists and make sure we are giving everyone the same opportunity.

One thing that is harder to change is the market. Still today, in some countries women do not get the same opportunities as men, not to talk about people from marginalized communities and members from the LGBTQ community. I hope that this will change because equality not only helps companies, but also countries, to have a happier population. CIMMYT works closely with universities across the world to make sure that more and more talent trickles where it is most needed: into research for development.

Monika Altmaier (center) takes a selfie with CIMMYT scientists during CIMMYT's Science Week 2018. (Photo: Alfredo Saenz for CIMMYT)
Monika Altmaier (center) takes a selfie with CIMMYT scientists during CIMMYT’s Science Week 2018. (Photo: Alfredo Saenz for CIMMYT)

Q: In line with hiring diversity, how is CIMMYT attracting millennial talent (people who are mainly born between 1980 and 2000)?

MA: Millennials are a vast workforce. In just a couple years they will reach the peak of representation in the labor force. There is no issue with attracting millennials: thankfully, our mission resonates with them and they are already working for us across all of our offices.

With this Millennial-centric shift, however, the key thing is to meet the needs that they express. Studies say, and I see this in all of our offices, that young people want a more collaborative approach to work. They want to embrace relationships, transparency, dialogue and creativity.

At CIMMYT’s HR, we are exploring different approaches to talent management and succession planning. Traditionally, one progresses hierarchically. But the world, even the research world, is moving too fast to be satisfied with that. We are currently putting our focus on training, which helps with functional evolution. We are exploring the geographic mobility of staff both within the organization and outside, within our vast network of partners, including those within CGIAR. We are also putting more emphasis on work-life balance, which is said to improve employee retention by more than 50%. In the future, we plan to explore functional mobility, too, and encourage young people to think outside the box they may have preselected for themselves at the beginning of their careers.

Q: What do you think about investing in cognitive diversity?

MA: Cognitive diversity helps teams solve problems faster because it unites people with diverse perspective or information processing styles. Basically, how people think about or engage with new uncertain and complex situations.

It’s not easy to surface cognitive diversity and equally complex to harness its benefits. At CIMMYT, we started with doing psychometric testing when hiring team leaders. These tests are designed to measure candidates’ personality characteristics and cognitive abilities. They show if people would fit in a team. Since then we have expanded to testing research and admin teams. In my experience, such tests are highly trustworthy and interesting, and can help team building.

Learn more about job opportunities at CIMMYT

Tracing maize landraces, 50 years later

Maize is more than a crop in Mexico. While it provides food, feed and raw materials, it is also a bloodline running through the generations, connecting Mexico’s people with their past.

The fascinating diversity of maize in Mexico is rooted in its cultural and biological legacy as the center of origin of maize. Landraces, which are maize varieties that have been cultivated and subjected to selection by farmers for generations, retaining a distinct identity and lacking formal crop improvement, provide the basis of this diversity.

As with any cultural legacy, the cultivation of maize landraces can be lost with the passage of time as farmers adapt to changing markets and generational shifts take place.

Doctoral candidate Denisse McLean-Rodríguez, from the Sant’Anna School of Advanced Studies in Italy, and researchers from the International Maize and Wheat Improvement Center (CIMMYT) have undertaken a new study that traces the conservation and abandonment of maize landraces over the last 50 years in Morelos, Mexico’s second smallest state.

The study is based on a collection of 93 maize landrace samples, collected by Ángel Kato as a research assistant back in 1966-67 and stored in CIMMYT’s Maize Germplasm Bank. Researchers traced the 66 families in Morelos who donated the samples and explored the reasons why they abandoned or conserved their landraces.

Doctoral candidate Denisse McLean-RodrĂ­guez (left) interviews maize farmer Roque Juarez Ramirez at his family home in Morelos to explore his opinions on landrace conservation. (Photo: E. Orchardson/CIMMYT)
Doctoral candidate Denisse McLean-RodrĂ­guez (left) interviews maize farmer Roque Juarez Ramirez at his family home in Morelos to explore his opinions on landrace conservation. (Photo: E. Orchardson/CIMMYT)

Tracing landrace abandonment

In six cases, researchers were able to interview the original farmers who donated the samples to CIMMYT. In other cases, they interviewed their family members, most frequently the sons or daughters, or alternatively their grandchildren, siblings, nephews or widows.

The study reveals that maize landrace cultivation has diminished significantly within the families. Only 13 of the 66 families are still cultivating the same maize seed lots as in 1966-67 and there was consensus that the current social, economic and physical environments are unfavorable for landrace cultivation.

Among the reasons for abandonment are changes in maize cultivation technologies, shifting markets for maize and other crops, policy changes, shifting cultural preferences, urbanization and climate change.

“By finding out about landrace continuity in farmers’ fields and the factors driving change, we were able to better understand the context in which these landraces are currently cultivated,” said McLean-Rodríguez. “Our study also allowed us to evaluate the importance of ex situ conservation in facilities like CIMMYT’s Germplasm Bank.”

Juarez and Oliveros’s grandson shows the family’s heirloom maize: maíz colorado (left) and Ancho maize. (Photo: E. Orchardson/CIMMYT)
Juarez and Oliveros’s grandson shows the family’s heirloom maize: maíz colorado (left) and Ancho maize. (Photo: E. Orchardson/CIMMYT)

Maize biodiversity conservation

Maize landraces can be conserved “in situ” in farmers’ fields and “ex situ” in a protected space such as a germplasm bank or community seed bank.

“These conservation strategies are complementary,” explained McLean-Rodríguez. “Ex situ conservation helps to secure landraces in case of unpredictable conditions that threaten their conservation in the field, while in situ cultivation allows the processes that generated maize’s diversity to continue, allowing the emergence of mutations and the evolution of new potentially beneficial traits.”

The loss of landraces in farmers’ fields over 50 years emphasizes the importance of ex situ conservation. CIMMYT’s Maize Germplasm Bank holds 28,000 samples of maize and its wild relatives from 88 countries, spanning collections dating back to 1943. Safeguarded seed stored in the Germplasm Bank is protected from crises or natural disasters, and is available for breeding and research. Traits found in landraces can be incorporated into new varieties to address some of the world’s most pressing agriculture challenges like changing climates, emerging pests and disease, and malnutrition.

McLean-Rodríguez recalls an aspect of the study that she found particularly rewarding: “Many of the families who had lost their landrace for one reason or another were interested in receiving back samples of their maize from the CIMMYT Germplasm Bank. Some were interested due to personal value, while others were more interested in the productive value. They were very happy to retrieve their maize from the Germplasm Bank, and it would be very interesting to learn whether the repatriated seed is cultivated in the future.”

Ventura Oliveros Garcia holds a photograph of her father, Santos Oliveros, who was one of the maize farmers who donated seed to CIMMYT’s genebank in 1966-67. (Photo: E. Orchardson/CIMMYT)
Ventura Oliveros Garcia holds a photograph of her father, Santos Oliveros, who was one of the maize farmers who donated seed to CIMMYT’s germplasm bank in 1966-67. (Photo: E. Orchardson/CIMMYT)

A family tradition

One of the families to take part in the study was farmer Roque Juarez Ramirez and his wife, Ventura Oliveros Garcia, whose father was one of the donor farmers from Morelos. “I was so happy to hear the name of my father, [Santos Oliveros],” recalls Oliveros, remembering the moment McLean-RodrĂ­guez contacted her. “He had always been a maize farmer, as in his day they didn’t cultivate anything else. He planted on his communal village land [ejido] and he was always able to harvest a lot of maize, many ears. He planted an heirloom variety of maize that we called arribeño, or marceño, because it was always planted in March.”

Juarez senses his responsibility as a maize farmer: “I feel that the importance [of maize farming] is not small, but big. We are not talking about keeping 10 or 20 people alive; we have to feed a whole country of people who eat and drink, apart from providing for our families. We, the farmers, generate the food.”

Filling vessels of champurrado, a Mexican maize-based sweet drink, and presenting samples of the family’s staple maize — maíz colorado and the Ancho landrace — Oliveros describes what maize means to her: “Maize is very important to my family and me because it is our main source of food, for both humans and animals. We use our maize variety to make pozole, tortillas, tamales, atole, quesadillas, picadas and many other foods.”

The Juarez-Oliveros family substituted the Ancho seed lot from Olivero’s father with another seed lot from the Ancho landrace obtained from her husband’s family. The Ancho landrace is used to make pozole, and continues to be widely cultivated in some municipalities of Morelos, including Totolapan, where the family resides. However, researchers found other landraces present in the 1966-67 collection, such as Pepitilla, were harder to trace 50 years later.

Maíz colorado (left), or red maize, is an important part of the family’s diet. The family’s Ancho maize (right) has characteristically wide and flat kernels, and is a key ingredient of the pozole stew. (Photo: E. Orchardson/CIMMYT)
Maíz colorado (left), or red maize, is an important part of the family’s diet. The family’s Ancho maize (right) has characteristically wide and flat kernels, and is a key ingredient of the pozole stew. (Photo: E. Orchardson/CIMMYT)

The study shows that landrace abandonment is common when farming passed from one generation to the next. Older farmers were attached to their landraces and continued cultivating them, even in the face of pressing reasons to change or replace them. When the younger generations take over farm management, these landraces are often abandoned.

Nonetheless, young farmers still value the cultural and culinary importance of landraces. “Maize has an important traditional and cultural significance, and is fundamental to our economy,” said Isaac Juarez Oliveros, son of Roque and Ventura. “I have been planting [maize landraces] since I was around 15 to 20 years old. I got my maize seed from my parents. I believe it is important for families to keep planting their maize, as it has become tradition passed down through many generations.”

The family’s son, Isaac Juarez Oliveros, stands outside the maize storage room where they store and dry their harvested maize for sale and consumption. (Photo: E. Orchardson/CIMMYT)
The family’s son, Isaac Juarez Oliveros, stands outside the maize storage room where they store and dry their harvested maize for sale and consumption. (Photo: E. Orchardson/CIMMYT)

The legacy for future generations

Global food security depends on the maintenance of high genetic biodiversity in such key staple food crops as maize. Understanding the causes of landrace abandonment can help to develop effective landrace conservation strategies. The authors suggest that niches for landrace conservation and even expansion can be supported in the same manner that niches have been created for improved maize and other commercial crops. Meanwhile, management of genetic resources is vital, both in the field and in germplasm banks, especially in developing countries where broader diversity exists.

For Oliveros, it is a matter of family legacy: “It means a lot to me that [my family’s seed] was preserved because it has allowed my family’s maize and my father’s memory to stay alive.”

“Farmers who cultivate landraces are providing an invaluable global public service,” state the authors of the study. “It will be key to encourage maize landrace cultivation in younger farmers. Tapping into the conservation potential of the current generation of farmers is an opportunity we should not miss.”

 

Read the full study:
The abandonment of maize landraces over the last 50 years in Morelos, Mexico: a tracing study using a multi-level perspective

Funding for this research was provided by the CGIAR Research Program on Maize (MAIZE), the Sant’Anna School of Advanced Studies and Wageningen University.

A special acknowledgement to the families, focus group participants and municipal authorities from the state of Morelos who kindly devoted time to share their experiences with us, on the challenges and rewards of maize landrace conservation.

The Molecular Maize Atlas encourages genetic diversity

Maize ears from CIMMYT's collection, showing a wide variety of colors and shapes. CIMMYT's germplasm bank contains about 28,000 unique samples of cultivated maize and its wild relatives, teosinte and Tripsacum. These include about 26,000 samples of farmer landraces — traditional, locally-adapted varieties that are rich in diversity. The bank both conserves this diversity and makes it available as a resource for breeding. (Photo: Xochiquetzal Fonseca/CIMMYT)
Maize ears from CIMMYT’s collection, showing a wide variety of colors and shapes. CIMMYT’s germplasm bank contains about 28,000 unique samples of cultivated maize and its wild relatives, teosinte and Tripsacum. These include about 26,000 samples of farmer landraces — traditional, locally-adapted varieties that are rich in diversity. The bank both conserves this diversity and makes it available as a resource for breeding. (Photo: Xochiquetzal Fonseca/CIMMYT)

Imagine walking through a grocery store, doing your weekly shopping. Everything seems normal, but as you pick up a can, there’s no label. There’s nothing to tell you what the product is, and now you can’t reliably choose anything to eat this week.

Now switch gears and imagine a germplasm bank. Without the right labeling on these different varieties, it’s difficult to tell what’s new and what’s already been discovered when working on new research projects.

That’s where the Molecular Maize Atlas steps into play.

About nine years ago, the International Maize and Wheat Improvement Center (CIMMYT) started an initiative called the Seeds of Discovery (SeeD). This initiative facilitates easier access to and use of maize and wheat genetic resources.

SeeD achieves impact through five main components: genotyping, phenotyping, software tools, pre-breeding and capacity building.

“One of the aims of Seeds of Discovery was to best characterize germplasm,” says Sarah Hearne, a molecular geneticist and maize lead of SeeD. “At CIMMYT, our international germplasm bank holds in trust one of the largest and most diverse publicly available maize collections in the world.”

However, Hearne says this germplasm bank used to look like a grocery store without any labels or without labels that would allow someone to select a can of value. To combat this, SeeD decided to work on a labeling process for the germplasm bank: the Molecular Maize Atlas.

The Molecular Maize Atlas is an information platform that brings genotypic data resources and associated tools together. This genotypic data provides unifying information across landraces and acts as a common backbone, which other valuable information, like phenotypic data, can be added to.

Read the full article on SeedWorld.

Growing need for food is reason for more biodiversity

Recent research in Southern Ethiopia found that agricultural areas with the highest tree cover also experienced the most productivity in crop, feed and fuel. (Photo: Mokhamad Edliadi/CIFOR)
Recent research in Southern Ethiopia found that agricultural areas with the highest tree cover also experienced the most productivity in crop, feed and fuel. (Photo: Mokhamad Edliadi/CIFOR)

Deep within southern Ethiopia’s agroforestry landscapes, where farmers grow grain and keep cattle, sheep, goats and donkeys, researchers counted more than 4,100 birds as part of an assessment on agricultural productivity and biodiversity.

The researchers also counted some 4,473 individual trees from 52 tree species in the same study, which they believe is the first to link key indicators of biodiversity to more than one indicator of agricultural productivity, considering three products people in rural communities value most: fodder, fuel and food.

This has led to two important new conclusions: that encouraging biodiversity on and around agricultural land likely increases its productivity, and that measurements of productivity must be broadened to include what matters for local livelihoods.

Too often, agricultural productivity is measured through a very narrow lens, such as “mere” crop yields alone. But, according to the study, that has “disregarded local perspectives of what is actually important to people in terms of ecosystem services.

Take, for instance, trees: in addition to potentially growing food, they also benefit crop yield by controlling erosion; capture nutrients for the soil through their roots; help regulate the climate; and provide habitats for animals and insects, including natural enemies of crop pests. The study found that in this region of Ethiopia, agricultural productivity was higher in areas with heavy tree cover than in landscapes where trees had been removed for more crop space.

“We need to understand what would be the best way to produce food with minimum negative consequences on biodiversity,” says lead researcher FrĂ©dĂ©ric Baudron, challenging the assumption of trading one for the other in faith that agricultural intensification and biodiversity conservation can be achieved at once.

This study comes amid concerns that a rising demand for food and fuel to serve the world’s growing population – projected to reach 9 billion by 2050 – will drive greater agricultural expansion and intensification.

The proliferation of both would likely cause real harm to landscapes and biodiversity, threatening the essential natural constituents of the world’s ability to feed itself, warns Baudron. “That has serious implications for the sustainability of our global food production system,” he says. “We need biodiversity as an essential input.”

He also raises the issue of justice. Biodiversity loss hits hardest the millions of small farmers in developing countries – who make up the majority of farmers worldwide – because they depend almost exclusively on ecosystem services, and not external inputs, for production. And the resulting edible output is crucial for everyone; family farms produce more than 80 percent of the world’s food in value terms, according to FAO statistics.

Baudron says the study’s findings play into how small family farms should be managed through policy and in major restoration efforts, given that tree placement and configuration have enormous implications for biodiversity and ecosystem services it provides.

In other words, biodiversity shouldn’t be a bonus of productive landscapes. The study suggests, rather, that productive landscapes should be designed to make the most of all of the services provided by biodiversity.

The work was part of ‘The Agrarian Change Project’, with funding from the United Kingdom’s Department for International Development (DFID), the United States Agency for International Development (USAID) and the CGIAR Research Program on Wheat.

This article was originally published on Landscapes News. This content is licensed under Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0). This means you are free to redistribute our material for non-commercial purposes, as long as you give Landscapes News appropriate credit and link to the original Landscapes News content, indicate if changes were made, and distribute your contributions under the same Creative Commons license. You must notify Landscapes News if you repost, reprint or reuse our materials by contacting G[dot]Lipton[at]cgiar.org.

Farmers key to realizing EAT-Lancet report recommendations in Mexico, CIMMYT highlights

CIMMYT's director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)
CIMMYT’s director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)

MEXICO CITY (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) was invited to discuss the findings of the EAT-Lancet Commission report and its implications for Mexico, during a launch event hosted by Mexico’s Health Department on March 4, 2019.

The report, published earlier this year, aims to offer an in-depth scientific analysis of the world’s food production systems and their impact on the planet and human health. It proposes a “planetary health diet” that balances nutrition with sustainable food production.

“Our first objective was to develop healthy diets for the 10 billion people who will inhabit the planet in 2050”, said Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute and member of the EAT-Lancet Commission. According to Dommarco, the healthy diet recommended for Mexico had to increase the intake of fruits, vegetables, legumes and whole grains to avert chronic diseases and combat malnutrition and obesity.

The report also makes several recommendations to reduce the environmental impact of food production, taking into account planetary boundaries. “The world needs to sustainably intensify food production and to produce basic foodstuffs of higher nutritional value”, said Fabrice DeClerck, EAT’s Science Director.

“If anybody is able to manage the complex systems that will sustainably yield the volume of nutritious food that the world needs, that’s the farmer”, said Bram Govaerts, Director of Innovative Business Strategies at CIMMYT. “In Mexico, more than 500 thousand farmers already innovate every day and grow maize, wheat and related crops under sustainable intensification practices that CIMMYT and Mexico’s Agriculture Department promote with MasAgro”.

Víctor Villalobos Arámbula, Mexico’s Secretary of Agriculture, said that the EAT-Lancet Commission report recommendations were very much in line with the strategic public policies that Mexico plans to implement in the coming years.

From left to right: Fabrice DeClerck, Science Director at the EAT Foundation; Hugo LĂłpez-Gatell RamĂ­rez, Mexico’s Undersecretary for Prevention and Promotion of Health; Teresa Shamah Levy, Deputy Director General for Evaluation and Surveys Research at Mexico’s Public Health Institute; Jorge Alcocer Varela, Mexico’s Secretary of Health; VĂ­ctor Villalobos ArĂĄmbula, Mexico’s Secretary of Agriculture; Bram Govaerts, Director of Innovative Business Strategies at CIMMYT; Rut KrĂŒger Giverin, Norway’s Ambassador to Mexico; Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute; and Olav KjĂžrven, Chief Strategic Officer at the EAT Foundation. (Photo: CIMMYT)
From left to right: Fabrice DeClerck, Science Director at the EAT Foundation; Hugo LĂłpez-Gatell RamĂ­rez, Mexico’s Undersecretary for Prevention and Promotion of Health; Teresa Shamah Levy, Deputy Director General for Evaluation and Surveys Research at Mexico’s Public Health Institute; Jorge Alcocer Varela, Mexico’s Secretary of Health; VĂ­ctor Villalobos ArĂĄmbula, Mexico’s Secretary of Agriculture; Bram Govaerts, Director of Innovative Business Strategies at CIMMYT; Rut KrĂŒger Giverin, Norway’s Ambassador to Mexico; Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute; and Olav KjĂžrven, Chief Strategic Officer at the EAT Foundation. (Photo: CIMMYT)

Experts analyze food systems at EAT-Lancet Commission report launch in Ethiopia

Earlier this year, the EAT-Lancet Commission published a groundbreaking report linking healthy diets and sustainable food systems. It proposed scientific targets that meet both the Sustainable Development Goals (SDGs) and the Paris Agreement action plan to reduce carbon emissions. Since then, more than 20 launch events have been scheduled around the globe, including Addis Ababa, Ethiopia.

On February 7, the African Union hosted the EAT-Lancet Commission on healthy diets for sustainable food systems. Government officials, researchers and experts attended the “Food Systems Dialogue on Ethiopia” and developed a list of recommendations going forward. Some of these included at least 10 percent resource allocation to agriculture, the creation of functional and efficient internal markets for enhancing food distribution within the country, post-harvest loss reduction, and stronger collaboration between government and other stakeholders.

Representatives of government, civil society, and research for development organizations participated in the "Food Systems Dialogue on Ethiopia." (Photo: CIMMYT)
Representatives of government, civil society, and research for development organizations participated in the “Food Systems Dialogue on Ethiopia.” (Photo: CIMMYT)

“The report has drawn the attention of policy makers, civil society and donors,” said Kindie Tesfaye Fantaye, a researcher and crop modeler at the International Maize and Wheat Improvement Center (CIMMYT). “The event was a good opportunity to create awareness on the chronic problems of stunting and malnutrition in Africa, and agriculture’s central role in contributing to effective solutions.”

Tesfaye Fantaye said CIMMYT’s work is well aligned with the report’s recommendations. In addition to research on sustainable intensification approaches that improve livelihoods while reducing the environmental footprint, CIMMYT explores ways to reduce postharvest losses and increase the nutritional quality of food through biofortification.

During a high-level side event, the commissioners indicated that the report is in-line with the different African Union policies and strategies, including the Malabo Declaration on Agriculture and Postharvest Losses, Agenda 2063 and Comprehensive Africa Agriculture Development Program (CAADP).

“The power of food is its connection. If we get it right, it brings us to a healthy people and a healthy planet,” said Gunhild Anker Stordalen, the founder and executive chair of EAT Foundation.

The launch in Ethiopia of the EAT–Lancet Commission report on healthy diets from sustainable food systems took place in the African Union headquarters in Addis Ababa. (Photo: CIMMYT)
The launch in Ethiopia of the EAT–Lancet Commission report on healthy diets from sustainable food systems took place in the African Union headquarters in Addis Ababa. (Photo: CIMMYT)

New report calls for urgent diet and food system changes to sustainably feed world

smallerEAT-LancetCoverA new report by more than 30 world-leading experts in health and environmental sustainability offers a roadmap for a global food system that provides a healthy, sustainable diet for the world’s 10 billion people by 2050.

The report, Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems, represents the first comprehensive review of what constitutes a healthy diet from a sustainable food system.

Published jointly by EAT, a global non-profit foundation founded to catalyze a food system transformation, and The Lancet, the world’s leading medical journal, the report links diets with human health and environmental sustainability. It lays out five global scientific strategies to achieve healthy diets and sustainable food production by the year 2050: shifting diets, producing healthy food, sustainably intensifying food production, improving land and water governance, and reducing food loss and waste.

The report urges substantial dietary shifts and specific courses of action from consumers, policymakers, businesses and government agencies alike to transform the world’s food system. As the report states, “Without action, the world risks failing to meet the UN Sustainable Development Goals (SDGs) and the Paris Agreement, and today’s children will inherit a planet that has been severely degraded and where much of the population will increasingly suffer from malnutrition and preventable disease.”

The report emphasizes eating diets heavy in fruits, nuts, vegetables and whole grains and light on meat, as current Western-style diets are already straining the global food system’s environmental impact and pushing planetary limits. According to CIMMYT consultant and leading nutritionist Julie Miller Jones of St. Catherine University, USA, eating whole grain foods reduces obesity and the risk of almost all chronic diseases.

Given that the food system drives nearly 30 percent of greenhouse gas emissions, occupies 40 percent of land and causes 80 percent of biodiversity loss, increasing healthy, resource-saving foods and reducing unhealthy and unsustainably produced foods is an essential step in securing future environmental sustainability.

The founder and executive chair of EAT, Gunhild Stordalen, commented at the report’s launch event January 17 in Olso, Norway: “No single sector, technology or entity can fix it alone but, for the first time, we have a clear direction and initial targets to align and guide our actions.”

Read the full report here: http://www.thelancet-press.com/embargo/EATComm.pdf.

Read the summary here: https://eatforum.org/content/uploads/2019/01/EAT-Lancet_Commission_Summary_Report.pdf

The itsy bitsy spider can make a big impact in agriculture

Face of an adult male Phidippus audax male jumping spider. (Photo: Opoterser/Wikimedia Commons)
Face of an adult male Phidippus audax male jumping spider. (Photo: Opoterser/Wikimedia Commons)

A new study explores how conservation agriculture in southern Africa supports spider populations and diversity in fields, which could help mitigate pest damage and potentially lead to higher yields for farmers. According to the Food and Agriculture Organization of the United Nations (FAO), herbivorous insects such as aphids, caterpillars and weevils destroy about one fifth of the world’s total crop production each year. Spiders can help keep voracious pests in-check, but conventional farming practices (e.g. tilling, crop residue removal and monoculture) can harm or drastically reduce these beneficial bio-control agents.

There are more than 45,000 identified spider species around the world. From glaciers to tropical rainforests, they inhabit every terrestrial ecosystem on earth. Some can even live in tidal zones, and at least one species inhabits fresh water. While we tend to associate spiders with webs, only about 50 percent of the species catch their prey this way; the rest hunt on plants, on the ground or below it, using a variety of tactics such as stalking, stabbing, crushing – even seduction.

Although spiders have been around for 300 million years, some species are at risk of extinction due to habitat loss and fragmentation. Drastic reductions in vegetation – whether from a new parking lot or a tilled field – removes the food source that attracts their prey. Bare ground exposes their nesting sites and themselves, which makes it harder to hunt and easier to be hunted by birds and small mammals.

At the Chinhoyi University of Technology experimental farm in Zimbabwe, a team of researchers aimed to determine the response of spiders under different agricultural practices. Conventional farmers often prepare their fields for planting by physically breaking up and inverting the top 6-10 inches of soil. This practice of ploughing prepares a fine soil tilth, which makes it easier to plant; it breaks up and buries weeds, and reduces soil compaction to aerate the soil. But tilling also increases topsoil erosion from wind and water. It accelerates soil carbon decomposition, reduces soil water infiltration and disrupts microorganisms living in the soil, including beneficial insects and spiders.

The researchers conducted two experiments over the 2013/2014 and 2014/2015 cropping seasons to see how tilling, crop residue retention (i.e. leaving stalks and post-harvest organic matter in the field), fertilizer application and weeding affected ground- and plant-wandering spider species. They hypothesized that spider abundance and diversity would increase with lower levels of soil disturbance and more plant cover.

The results showed direct seeding into no-till soil increased the abundance of spiders and the diversity of species. Mulching also showed a positive effect. Contrary to their hypotheses and results from temperate regions, the application of fertilizer and intense weeding did not affect the spider community. The researchers attributed this to the difference in climatic conditions (tropical vs. temperate) of this study in southern Africa.

“Often the government’s and farmer’s immediate reaction to a crop pest issue is to apply a pesticide, but we can make use of biological control agents, which may be cheaper and less damaging for the environment,” says Christian Thierfelder, a co-author of the study. Thierfelder is a cropping systems agronomist and conservation agriculture specialist with the International Maize and Wheat Improvement Center (CIMMYT) with long-term experience in sustainable intensification.

“Spiders, ants and beetles all do a really good job with little or no cost to the farmer,” he adds. “For us, it’s quite fascinating to see simple agronomic practices to affect and control crop pests. This also provides new avenues of dealing with the fall armyworm, an invasive species which has devastated crops across the majority of sub-Saharan Africa countries.”

A robust number of studies from Europe, Australia and North America have shown the link between conservation agriculture and biodiversity, but Thierfelder says that research on biodiversity in agronomic systems is relatively new in southern Africa. While the study in Zimbabwe helps fill this gap, more research is needed to show the connection between the abundance of spiders, beetles and ants with the suppression of insect pest activity.

For more information, read Spider community shift in response to farming practices in a sub-humid agroecosystem in southern Africa.

This research was jointly funded by Chinhoyi University of Technology (CUT) and the German Academic Exchange Program (DAAD). The CGIAR Research Program on Maize (MAIZE) supported this study through Christian Thierfelder’s contributions.

SACAU’s Majola Mabuza at COP24: How soil can help meet climate targets

.embed-container { position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; } .embed-container iframe, .embed-container object, .embed-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }

Majola Mabuza, Program Officer, The Southern African Confederation of Agricultural Unions. (Video: UNFCCC)

KATOWICE, Poland (CIMMYT) — Agricultural scientists attending U.N. COP24 climate talks in Katowice, Poland are discussing a wide range of potential solutions to slow global warming and meet targets laid out in the Paris Agreement on climate change.

The agreement, which has been under intense discussion by negotiators, requires keeping global temperatures in check — to no more than 1.5 degrees Celsius above pre-industrial levels.

Delegates participating in a side event session on agriculture, which produces about a third of global greenhouse gas emissions, discussed the role of soil, presenting scientific evidence of the value of recarbonization. Much of the carbon that was formerly stored in soil, which acts as a carbon sink, has been released into the atmosphere, contributing to global temperature increases.

Majola Mabuza, program officer responsible for policy at the non-profit Southern African Confederation of Agricultural Unions (SACAU), participated in the panel on Monday evening and discussed various risks farmers face and hurdles that need to be overcome.

Mabuza, an agricultural economist, whose research interests span institutional economics of farmers’ organizations, food security and the economics of non-conventional agricultural enterprises, shared some views with CIMMYT about recarbonization.

Q: What is the scale of the role soil plays in climate change?

A: The global carbon pool in soils — at a depth of 2 meters — is three times that of carbon found in the atmosphere. As such, both increases in soil organic carbon and protection against losses from this pool are important strategies for environmental protection. Management practices that raise soil organic carbon have co-benefits such as increased productivity and resilience and can in turn improve food security and sustainable rural development.

Land use changes such as intensification of agriculture or converting grasslands into plow lands often turn them into carbon sources, releasing huge amount of carbon into the atmosphere. The time scales of the source and sink function of soils are fundamentally different: whereas building up belowground carbon stocks takes hundreds or thousands of years, depleting these stocks can be measured in decades or even days, [for example in the case of] forest or grassland fires.

Q: Will soil be the silver bullet to meet food security and climate change goals?

A: Not necessarily a silver bullet. To address climate change and improve food security, a lot is required from various actors. For instance, at this conference, we have learned of food that is produced, but almost a third of it is lost or goes to waste along the chain. Lost or wasted food also contributes to emissions in various forms. So, fixing the issue of soils alone will not win the battle, a lot more issues need to be fixed.

At the production stage, soils have an important role to play in reducing carbon emissions. Soil acts as a sink for carbon, the greenhouse gases that contribute to global warming. Agricultural management approaches such as conservation agriculture and agroforestry simultaneously improve soil carbon, soil fertility and water conservation. More food will be produced on the same land to meet the needs of the growing population.

Q: What will you speak about at the COP24 side event Soils Advantage: Transforming Agriculture by Recarbonizing the Earth’s Soil?

A: Farmers are essentially the managers of land and soils and are by far responsible for whatever happens to the soil. Are farmers, including smallholders, aware of the connection between soil activities and climate change? Do they know the carbon content in their farms? What incentives are there for farmers to build soil organic carbon within their farm plans? What lessons have we learnt with the promotion of such programs as organic farming, conservation agriculture and/or climate-smart agriculture that we can tag along in the drive to transform agriculture by recarbonizing the soil? While some advocate for rewarding better practices or performance on soil carbon in financial markets by attracting higher land values, lower interest rates on loans, or lower insurance premiums, how practical will this be in developing countries where most smallholders do not own the land they produce from?

Q: What is the purpose of recarbonizing?

A: The purpose is essentially to take carbon back to the soil. A lot of human activities, including deforestation, repeated soil tillage — industrial agriculture — and burning of fossil fuels have disrupted the carbon cycle, taking it out of balance. Too much of the carbon that was once in the soil has been released to the atmosphere, hence a lot of it is now in the atmosphere and some in the ocean, but not enough where it once was and where it is more beneficial for sustainable food production and food security — in soil.

Q: How is recarbonization achieved?

A: The most feasible route is to cover the soil with plants and trees, promote organic farming, conservation agriculture, agroforestry, and climate-smart agriculture practices. Plant photosynthesis has the remarkable ability to capture atmospheric CO2, release the oxygen back into the atmosphere, and convert the carbon into sugars, which are used by plants for growth. A considerable proportion of the captured CO2 is released through the plant’s roots to feed soil microorganisms, which in turn assist the plant in acquiring nutrients. Soil microorganisms use this energy to make soil carbon and humus. If left undisturbed, soil humus can lock carbon into place for an average lifetime of hundreds to thousands of years.

Q: Are there efforts underway to do this?

A: Current programs include organic farming, conservation agriculture and climate-smart agriculture.

Q: In terms of wheat and maize, will this have an impact? 

A: A great impact. Maize and wheat are the main staples for the poor in Africa and Asia respectively. If we build our soil recarbonizing program around such staple crops.

Q: What is the impact of crop rotations on soil?

A: Crop rotation is an important practice of any sustainable agricultural system. Crop rotation has the following major benefits: It improves soil fertility — as legumes such as groundnuts and beans fix nitrogen in the soil for the benefit of cereals such as maize. Farmers use less chemical fertilizer because legumes in the soil fix the nitrogen naturally. It helps to reduce weeds, diseases and pests by breaking their lifecycles as crops are rotated. It reduces the risk of crop failure in case of drought or disease and improves crop yield.

Soils Advantage: Transforming Agriculture by Recarbonizing the Earth’s Soil was held on Dec. 11, 2018 at 6:30-9:00 p.m. in the Bieszczady side event room in section G at the COP24 venue.

Gratitude for soil

If we take care of our soils, our soils will take care of us. (Photo: Shashish Maharjan/CIMMYT)
If we take care of our soils, our soils will take care of us. (Photo: Shashish Maharjan/CIMMYT)

On December 5, we celebrate World Soil Day. This year the theme is “Be the solution to soil pollution.” Most of you may not have been aware that such a day even existed or perhaps even question the reason why the world even dedicates an entire day to celebrate soil. The authors of this article are soil scientists; we have devoted our professional careers to studying soil. Perhaps we are biased, but we use this opportunity to enlighten readers with a greater appreciation for the importance of this thin layer of our planet we call soil.

Humankind has a conflicting relationship with soil. In English, “dirt” and “dirty” are synonyms for unclean, calling a man or a woman “dirty” is a terrible insult. A baby’s dirty diapers are said to be “soiled.” But if we dig deeper into human consciousness, we find a different story.

For Hindus, the Panchtatva defines the universal laws of life. Everything, including life, is composed of five basic elements: Akash, space or sky; Vayu, air; Jal, water; Agni, fire; and Prithvi, earth or soil. In the Judeo-Christian tradition, the first two human beings on the planet were Adam and Eve. In Hebrew, the original language of the Bible’s Old Testament, the name Adam means “earth” or “soil” and Eve means “life.” These images and symbols portray that human life originally derived from soil.

It gets even deeper: The English terms “human” and “humanity” are rooted in the Greek word “humus,” the fertile black topsoil.

When we use the words “soil” and “dirt” as derogatory terms, we literally define ourselves as soil. Soil is important and here are a few reasons why.

Soil is absolutely critical for the survival of our species and of all living life on the planet. Over 90 percent of all food produced in the world comes from soil and a greater percentage of the world’s freshwater passes through soil.

Arguably, climate change is the greatest threat to our species. Despite mitigation efforts by the global community, soil is frequently forgotten. However, soil holds roughly two and a half times the amount of carbon held in the atmosphere and in all of the plants and animals combined.

Soil is also the greatest reservoir of biodiversity on the planet. In one pinch of soil, there are over 1 billion individual organisms and 1 million unique species, most of which we know almost nothing about. In one handful of soil, there are more living organisms than the total number of human beings that have ever walked on the planet. As all of our antibiotics have been derived from soil microorganisms, the secrets to fighting all kinds of diseases are just under your feet.

In Nepal, soil is deeply interrelated with culture. From birth to death, Nepalese use soil in many rituals: naming ceremonies, birthday celebrations, soiling on Ashar 15, local healing and medicine, etc.

The government of Nepal has set ambitious targets for increasing the levels of organic matter in soil. This is essential to ensure that the soils that have sustained Nepali civilization for centuries will continue to sustain future generations. We need to encourage farmers and land managers in Nepal to maintain terracing on steeply sloped lands to protect against soil erosion. It is also important to appropriately use agrochemicals, such as pesticides and inorganic fertilizers, to improve soil health and crop productivity.

Soil has been polluted by heavy metals, effluents from chemical industries, indiscriminate use of agrochemicals, urbanization without proper planning, networking of roads without considering the carrying capacity of the soil and other factors. So let’s not overlook the importance of soil. We need to value the cleansing properties of soil, particularly riverine soils, and prevent these areas from continuing as the dumping grounds and sewers of Kathmandu and other cities.

On this day, the day when we celebrate soil, take a moment to look under your feet and marvel at the beauty and complexity of soil.

If we take care of our soils, our soils will take care of us.

New digital maps to support soil fertility management in Nepal

KATHMANDU, Nepal (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) is working with Nepal’s Soil Management Directorate and the Nepal Agricultural Research Council (NARC) to aggregate historic soil data and, for the first time in the country, produce digital soil maps. The maps include information on soil PH, organic matter, total nitrogen, clay content and boron content. Digital soil mapping gives farmers and natural resource managers easy access to location-specific information on soil properties and nutrients, so they can make efficient and localized management decisions.

As part of CIMMYT’s Nepal Seed and Fertilizer (NSAF) project, researchers used new satellite imagery that enabled the resolution of the maps to be increased from 1×1 km to 250×250 m. They have updated the web portal to make it more user friendly and interactive. When loaded onto a smartphone, the map can retrieve the soil properties information from the user’s exact location if the user is within areas with data coverage. The project team is planning to produce maps for the whole country by the end of 2019.

CIMMYT scientist David Guerena talks about the role of the new digital maps to combat soil fertility problems in Nepal.
CIMMYT scientist David Guerena talks about the role of the new digital maps to combat soil fertility problems in Nepal.

At a World Soil Day event in Nepal, CIMMYT soil scientist David Guerena presented the new digital soil maps to scientists, academics, policymakers and other attendees. Guerena explained the role this tool can play in combatting soil fertility problems in Nepal.

These interactive digital maps are not simply visualizations. They house the data and analytics which can be used to inform site-specific integrated soil fertility management recommendations.

The first high-resolution digital soil maps for the Terai region have been produced with support from the data assets from the National Land Use Project, developed by Nepal’s Ministry of Agriculture and Livestock Development. These maps will be used to guide field programming of the NSAF project, drive the development of market-led fertilizer products, and inform and update soil management recommendations. The government of Nepal can use the same information to align policy with the needs of farmers and the capacity of local private seed and fertilizer companies.

In 2017, 16 scientists from Nepal’s Soil Management Directorate, NARC and other institutions attended an advanced digital soil mapping workshop where they learned how to use different geostatistical methods for creating soil maps. This year, as part of the NSAF project, four NARC scientists attended a soil spectroscopy training workshop and learned about digitizing soil data management and using advanced spectral methods to convert soil information into fertilizer recommendations.

Soil data matters

Soil properties have a significant influence on crop growth and the yield response to management inputs. For farmers, having access to soil information can make a big difference in the adoption of integrated soil fertility management.

Farmer motivation and decision-making relies heavily on the perceived likeliness of obtaining a profitable return at minimized risk. This largely depends on the yield response to management inputs, such as improved seeds and fertilizers, which depends to a large extent on site-specific soil properties and variation in agro-ecological conditions. Therefore, quantitative estimates of the yield response to inputs at a given location are essential for estimating the risks associated with these investments.

The digital soil maps can be accessed at https://nsafmap.github.io/.

The Nepal Seed and Fertilizer project is funded by the United States Agency for International Development (USAID) and is a flagship project in Nepal. The objective of the NSAF is to build competitive and synergistic seed and fertilizer systems for inclusive and sustainable growth in agricultural productivity, business development and income generation in Nepal.

New Soil Intelligence System for India provides high-quality data using modern analytics

NEW DELHI (CIMMYT) — The new Soil Intelligence System (SIS) for India will help the states of Andhra Pradesh, Bihar and Odisha rationalize the costs of generating high-quality soil data and build accessible geospatial information systems based on advanced geostatistics. The SIS initiative will rely on prediction rather than direct measurements to develop comprehensive soil information at scale. The resulting data systems will embrace FAIR access principles — findable, accessible, interoperable, and reproducible — to support better decision-making in agriculture.

SIS is a $2.5 million investment funded by the Bill & Melinda Gates Foundation. This initiative is led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with numerous partners including the International Food Policy Research Institute (IFPRI), World Soil Information (ISRIC), the Andhra Pradesh Space Applications Center (APSAC), and the state governments and state agriculture universities of Andhra Pradesh and Bihar. The initiative runs from September 2018 through February 2021.

“SIS will make important contributions towards leveraging soil information for decision-making in Indian agriculture by devising new soil health management recommendations,” explained Andrew McDonald, CIMMYT’s Regional Team Leader for Sustainable Intensification and Project Leader for the Cereal Systems Initiative for South Asia (CSISA). Researchers and scientists will combine mapping outputs with crop response and landscape reconnaissance data through machine-learning analytics to derive precise agronomy decisions at scale.

Farmers will be the primary beneficiaries of this initiative, as they will get more reliable soil health management recommendations to increase yields and profits. SIS will also be useful to state partners, extension and agricultural development institutions, the private sector and other stakeholders who rely on high-quality soil information. Through SIS, scientists and researchers will have an opportunity to receive training in modern soil analytics.

The SIS initiative aims to facilitate multi-institutional alliances for soil health management and the application of big data analytics to real-world problems. These alliances will be instrumental for initiating broader discussions at the state and national levels about the importance of robust data systems, data integration and the types of progressive access policies related to ‘agronomy at scale’ that can bring India closer to the Sustainable Development Goals.

CIMMYT scientist Shishpal Poonia places a soil sample on the Tracer instrument for soil spectroscopy analysis.
CIMMYT scientist Shishpal Poonia places a soil sample on the Tracer instrument for soil spectroscopy analysis.

Better soil analysis

Spectroscopy enables precise soil analysis and can help scientists identify appropriate preventive and rehabilitative soil management interventions. The technology is also significantly faster and more cost-effective than wide-scale wet chemistry-based soil analysis.

As part of the CSISA project, led by CIMMYT and funded by the Bill & Melinda Gates Foundation, two new soil spectroscopy labs were recently set up in Andhra Pradesh and Bihar, in collaboration with the state departments of agriculture. One lab is now operating at the Regional Agricultural Research Station (RARS) in Tirupati, Andhra Pradesh; and the other one at Bihar Agricultural University (BAU Sabour), in Bhagalpur, Bihar.

“The support from CIMMYT through the Gates Foundation will contribute directly to bringing down the cost of providing quality soil health data and agronomic advisory services to farmers in the long run,” said K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University. “We will also be able to generate precise digital soil maps for land use planning. The greatest advantage is to enable future applications like drones to use multi-spectral imagery and analyze rapidly large areas and discern changes in soil characteristics in a fast and reliable manner.”

Under the SIS initiative, soil spectroscopy results will be validated with existing gold standard wet chemistry methods. They will also be integrated with production practice data collected from the ground level, through new statistical tools.

K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.
K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.

Precise predictive models

Drawing information from a limited number of soil observations from a sample dataset, digital soil mapping (DSM) uses (geo)statistical models to predict the soil type or property for locations where no samples have been taken.

“These ‘unsampled locations’ are typically arranged on a regular grid,” explained Balwinder Singh, CIMMYT scientist and Simulation Modeler, “so DSM produces gridded — raster — soil maps at a specific spatial resolution — grid cell or pixel size — with a spatial prediction made for each individual grid cell.”

“Adopting DSM methods, combined with intelligent sampling design, could reduce the strain on the soil testing system in terms of logistics, quality control and costs,” noted Amit Srivastava, a geospatial scientist at CIMMYT. “Improving digital soil mapping practices can also help create the infrastructure for a soil intelligence system that can drive decision-making at scale.”

In partnership with state government agencies and the Bill & Melinda Gates Foundation, CIMMYT will continue to support the expansion of digital soil mapping and soil analysis capacity in India. The CSISA project and the SIS initiative are helping to deliver soil fertility recommendations to farmers, an important step towards the sustainable intensification of agriculture in South Asia.

For more details, contact Balwinder Singh, Cropping System Simulation Modeler, CIMMYT at Balwinder.SINGH@cgiar.org.

An example of digital soil mapping (DSM), showing pH levels of soil in the state of Bihar. (Map: Amit Kumar Srivastava/CIMMYT)
An example of digital soil mapping (DSM), showing pH levels of soil in the state of Bihar. (Map: Amit Kumar Srivastava/CIMMYT)

Fighting hidden hunger from the ground up: the powerful link between soils and nutritious food

Conserving organic matter in soils improves vital nutrients in wheat, according to new study in Ethiopia. On World Food Day, CIMMYT Systems Agronomist Frédéric Baudron highlights the role of healthy soils as a tool for fighting malnutrition, in an article published on The Conversation.

The study by Baudron and Stephen A. Wood of The Nature Conservancy found that wheat grown on soils rich in organic matter, especially near the forest, had more essential nutrients like zinc and protein. Ethiopia faces varying levels of hidden hunger: a deficiency in vitamins and minerals in food, despite rising yields.

In Ethiopia and many low and middle-income countries, Nitrogen-based fertilizers are out of reach for farmers. But low-cost techniques like agroforestry, minimum tillage, and planting nitrogen-fixing legumes can help African farmers enhance soils, and have been successfully implemented in different African farming systems. The study found that wheat farms near forests had richer soils due to decomposing trees and plants, and more livestock manure, pointing to the benefits of an integrated approach.

1

2

The researchers conclude that healthy soils are an important tool for “feeding the world well” and achieving Zero Hunger, one of the Sustainable Development Goals. “The finding offers a new solution in addressing growing malnutrition,” writes Baudron.

Read the article: Study in Ethiopia links healthy soils to more nutritious cereals on The Conversation.

Original study: Wood SA and Baudron F. 2018. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agriculture, Ecosystems & Environment 266 (100-108). https://doi.org/10.1016/j.agee.2018.07.025