Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Rockefeller Foundation Invests in Nature to Support Indigenous Peoples and Rainforest Communities at COP29

At COP29, the Rockefeller Foundation highlighted its support for CIMMYT through a grant focused on advancing regenerative agricultural practices on farms in Mexico. This collaboration underscores CIMMYT’s pivotal role in driving sustainable farming solutions that enhance food security, environmental resilience, and biodiversity conservation. By integrating regenerative techniques into agrifood systems, CIMMYT contributes to global efforts to mitigate climate change while safeguarding the productivity and health of vital ecosystems.

Read the full story.

Climate Hits Barley, World Bank Boosts Gender Equality

Climate change-induced drought is jeopardizing barley production in Mexico’s Altiplano, which supplies 93% of the country’s barley, putting both local and global beer supplies at risk. To combat this, CIMMYT and Heineken Mexico have launched the “Cultivando un MĂ©xico Mejor” program, which promotes conservation agriculture practices to optimize water use, retain soil moisture, and increase yields. This initiative aims for 100% sustainably produced barley by 2030, helping farmers adapt to climate challenges while supporting the brewing industry’s sustainability goals.

Read the full story.

The increasing frequency of drought challenges agriculture sustainability and livelihood of smallholder farmers

Crops struggling to grow in drought conditions, Bihar (Photo: Moben Ignatius/CIMMYT)

Agriculture is one of the sectors most affected by droughts, which can last for months or even years. In Bihar, where rain-fed agriculture is the primary source of livelihood for many, droughts can be devastating for rural farmers. The growing threat of climate change to crop production and farming practices calls for adopting alternative farming methods. In 2022-23, many districts in Bihar experienced drought conditions.

To better understand the impact of drought on crop production practices and farmers’ livelihoods, researchers from CSISA, a CIMMYT-led project, conducted a survey in Bihar during both the Kharif and Rabi seasons of 2022-23, the year of the drought. In the Kharif season, 518 farmers from 11 districts, 39 blocks, and 79 villages were surveyed, while 339 farmers participated in the Rabi season survey. The primary goal of this data collection was to assess the impact of drought on agricultural practices and provide evidence to guide policy and decision-making processes.

The survey collected data on 123 variables related to rice production, including land preparation, cropping patterns for 2022 and 2021, crop establishment methods, irrigation management, fertilizer application, and weed management. Farmers also shared their perceptions of how the drought had altered their rice production practices and affected their livelihoods compared to the previous year.

For many farmers, the experience of the drought was harsh. Magni Singh from East Champaran reflected on the challenges: “This year (2022), the drought hit us hard. I could only plant paddy on a small piece of land, but with no rain, there was not much harvest. Our fragmented land makes efficient irrigation almost impossible, and relying on rain feels like gambling with each season. Farming in these conditions is becoming increasingly unsustainable.”

Similarly, Shanti Devi of Banka shared her struggles: “The season started with drought, and we struggled to get water to the crops. By the time the rain came, it was too late – it came during the harvest and damaged the crop. I couldn’t afford fertilizers in time, which made things worse. Every year, it feels like we’re battling both nature and rising costs.”

This drought impact assessment by CSISA is also valuable for further research, particularly for comparing rice production practices between drought and non-drought years. Such comparisons can help researchers and policymakers develop effective drought mitigation strategies tailored to farmers’ needs.

An electric pump used to irrigate a paddy field in Buxar, Bihar (Photo: Nima Chodon/CIMMYT)

Read more about these livelihoods framework at Drought Impact Assessment in Bihar – August 2024https://acrobat.adobe.com/id/urn:aaid:sc:AP:66f00f6f-df17-4b13-9fee-2e0050de12ea 

For further research and analysis, primary data from the survey can be accessed at CIMMYT data verse

This year’s World Food Prize underscores the value of seed banks and their stewards

The World Food Prize this year celebrates the essential role of genebanks in global food security—a mission at the heart of CIMMYT’s work. Through its maize and wheat collections, CIMMYT’s genebank preserves crop diversity that is critical for developing resilient, climate-adapted varieties. Highlighted by former CIMMYT maize curator Denise Costich, this recognition underscores the value of conserving genetic resources, which allow CIMMYT and its partners to create solutions for a rapidly changing agricultural landscape. As a vital part of the global genebank network, CIMMYT’s efforts ensure that biodiversity remains a foundation for food security and resilience worldwide.

Read the full story.

A blueprint for soil health initiatives

Ethiopia’s agricultural and food production systems face significant challenges due to soil acidity. Approximately 41% of the country’s cultivated land is affected, with 28% of this area being highly acidic. Heavy rainfall and inherent soil properties are significant drivers of this, and practices like continuous residue removal greatly accelerate these conditions.  

Stakeholders attending the national workshop on acid soil management in Addis Ababa, Ethiopia (Photo: CIMMYT)

The resulting acidic soil conditions can severely limit the uptake of critical nutrients, leading to lower yields and poorer crop responses to inputs. As a result, Ethiopia’s soil acidity conditions constrain the production and productivity of the country’s main staple crops and compromise efforts to achieve national food security. To help address these problems, policymakers, technical experts, and development partners in Ethiopia have come together to advocate for innovative data-driven solutions to remediate acid soils to raise crop yields and promote sustainable economic growth.  

“At a national workshop convened by CIMMYT and the One CGIAR initiative on Excellence in Agronomy on 29 July 2024 in Addis Ababa, experts from CGIAR, the Ministry of Agriculture (MoA), the Ethiopian Institute of Agricultural Research (EIAR), universities, regional research institutes, the national soil health task force, NGOs, and other key stakeholders gathered to discuss acid soil management in Ethiopia. Participants emphasized that proper management of soil acidity could increase fertilizer use efficiency from 20% to as much as 90%, depending on the initial acidity levels and specific nutrients involved.

Tackling soil acidity 

“Acidic soils are complex and widespread, affecting millions of hectares of arable land in Ethiopia,” said Tesfaye Shiferaw, an agronomist with CIMMYT’s Sustainable Agrifood Systems program and regional lead for the One CGIAR initiative on Excellence in Agronomy. “We understand the situation well and have developed innovative solutions under the GAIA project to address the issue. The spatial targeting framework created within the project represents a significant breakthrough, which the MoA has incorporated into Ethiopia’s nationwide acid soil reclamation initiative.”

Feto Esimo, Director General of EIAR, highlighted, “Addressing soil acidity is critical for enhancing food security and economic development in Ethiopia. A few years ago, we appealed to partners to intensify their efforts in creating sustainable strategies with lasting impacts for future generations. We are now seeing the GAIA project’s ongoing efforts effectively addressing these issues and offering potential solutions.”

The GAIA project approach 
Project research team monitoring and evaluating the field activities in Jimma Zone-Ethiopia (Photo: CIMMYT)

Researchers on the GAIA project have been evaluating alternative approaches to managing soil acidity, with a particular focus on lime application. This method aims to reduce aluminum toxicity and improve the availability of essential nutrients such as phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) in the soil. Additionally, liming decreases the solubility and leaching of heavy metals and offers benefits for legumes, such as increased microbial activity and enhanced biological nitrogen fixation. The GAIA team’s detailed evaluation includes core activities like spatial targeting to identify priority areas for liming, determining optimal lime application rates, and assessing profitability for specific crop types.

The primary goal in Ethiopia is to guide targeted investments for effective soil health reclamation and increased agricultural productivity through liming and enhanced nutrient management. The project aims to establish a strategic spatial targeting framework, serving as both a policy tool and a blueprint for soil health management. This framework is designed to optimize lime application, ensuring it is prioritized in areas where it can deliver the highest return on investment for farmers and the government. Project outcomes also include expanding this framework for broader application.

Major project outcomes in Ethiopia 

The GAIA research team conducted an in-depth investigation into the interactions between lime and fertilizer, developed a workflow and an essential policy tool integrated into the Ethiopian National Soil Information System (NSIS), and presented evidence-based recommendations on acid soil remediation to national and regional policy forums. The following significant system-level accomplishments have resulted from CIMMYT and partners’ research-driven recommendations.

Firstly, the Ethiopian Ministry of Agriculture (MoA) recognizes the GAIA project’s model as a successful blueprint for implementing and scaling up acid soil remediation nationwide. The government has launched a plan to reclaim 300,000 hectares of acidic cropland in 2024–2025, targeting around 10% of affected areas identified through the spatial targeting framework. To support this initiative, 1.4 billion ETB (approximately 12 million USD) has been allocated to manage acidic agricultural land. Additionally, at the National Stakeholder Consultation Forum on Acid Soils held in Bonga town, South-Western Region, in April 2023, the Ethiopian government prioritized soil acidity as a key focus. Since then, the government has reinforced its commitment to soil health programs, incorporating lime as an essential input alongside improved seeds and fertilizer.

These storylines were highlighted in July 2024 during a national working group meeting aimed at streamlining acid soil management strategies across Ethiopia. The meeting, led by GAIA and EiA in collaboration with the MoA and supported by the One CGIAR initiative EiA, underscored the strategic progress made by the GAIA project in addressing soil acidity. According to Feto Esimo, Director General of the EIAR, these advancements signify a substantial improvement, promising a lasting impact beyond the current agricultural season. He expressed appreciation for the project’s achievements and advocated for its expansion to serve as a model for similar soil health programs across the country.

Lime is the most widely used remedy, and its effectiveness in increasing yields when combined with fertilizer is well-documented,” noted Temesgen Desalegn, Director of Natural Resources Management Research at EIAR. “In this context,” he continued, “the GAIA project is timely, offering a multifaceted approach to soil health management, not limited to acid soils. The project’s model has been widely welcomed and could provide a comprehensive strategy for other soil health initiatives in Ethiopia.”

National working group on acid soil management workshop participants in Addis Ababa (Photo: CIMMYT)

The national working group meeting reached a consensus on recognizing project outcomes that drive system-level impacts. This effort to build a strong consensus extends beyond Ethiopia; it reflects a broader continental trend, highlighted by the Africa Fertilizer and Soil Health Action Plan: 2024–2034. This plan emerged from the Africa Fertilizer and Soil Health Summit held in May 2024 in Nairobi, Kenya, under the theme ‘Listen to the Land,’ organized by the African Union.

The GAIA project, funded by the Bill & Melinda Gates Foundation (BMGF), supports large-scale rehabilitation of acid soils in East Africa through data-driven insights and evidence-based recommendations for decision-makers. Led by CIMMYT in collaboration with various partners across Ethiopia, Kenya, Rwanda, and Tanzania, the project works in partnership with the Excellence in Agronomy (EiA) initiative of the One CGIAR. In Ethiopia, GAIA is implemented in cooperation with the Ethiopian Institute of Agricultural Research (EIAR).

Helping herders access grazing lands and water sources amid prevailing food insecurity in Sudan

In parts of the conflict-ridden Sudan, including the eastern regions such as Kassala and Gadarif, rainfall is sparse and recurring droughts caused by climate change compound the issue. Consequently, perennial grasses that are supposed to grow back year after year are dramatically disappearing.

In addition, uncontrolled and heavy grazing in large areas in Sudan is also negatively affecting soil by increasing erosion, and cattle hooves can compact the soil, preventing plant roots from receiving enough oxygen, water, and nutrients.

Due to these factors, many pastoralist groups in east Sudan are seeking grazing resources outside their recognized tribal territory. A major problem for these groups has been the recurrent droughts and the deterioration of pasture areas, which has forced them to stay longer in areas with rich grazing, thus competing with other groups and leading to frictions and conflicts.

Livestock-Food Systems Development (LFSD) is a component of the Sustainable Agrifood Systems Approach for Sudan (SASAS), funded by USAID, focused on the dairy and meat subsector of the livestock sector. The LFSD aims to enhance the utilization of appropriate forage and feeding options through the demarcation of migratory routes to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

Along with partners, Practical Action and International Livestock Research Institute (ILRI), LFSD, is establishing a 50 km migratory route demarcation from Al Hindiiyya to Banqir in the Atbara River locality, Kassala State, East Sudan. These routes connect villages to public grazing land for livestock to pass through without impacting farmland.

The intervention also includes reseeding 1,000 feddans (around 420 hectares) of grazing lands and creating water ponds for animals during the rainy season. SASAS is also enhancing water harvesting by using a tractor to increase soil moisture. The two interventions were recommended by local communities and agriculture and animal resources authorities in Kassala state.

“As the rainy season is commencing, we started working with the local communities and reseeding the targeted areas in rural Kassala and River Atbara localities as recommended by the Ministry of Agriculture,” said Dr. Abdallah Osman, Project Manager, Practical Action.

Reseeding around 1,000 feddans of grazing lands in River Atbara Locality, Kassala (Photo:Suliman Fadlalla/CIMMYT )

“To ensure the best results, we used a mix of five high-quality seed types, all of which were recommended by the Kassala State Ministry of Agriculture,” Osman said.

The reseeding will serve 15 villages and enhance grazing lands for over 100,000 animals in the area. In addition, water storing capacity will be increased by constructing 15 large water ponds.

“For the past decades, our grazing lands had diminished gradually, and we face huge challenges in feeding our livestock, especially during dry seasons. In most cases, we had to buy costly fodder and water trucking,” said Ahmed Hassan, a community leader and a herder from River Atbara Locality, Kassala State. “We feel very proud to participate in reseeding the grazing lands in our areas, as this will increase grass yield and quality, enabling us to feed our animals better.”

The intervention also aims to rehabilitate animal migratory route demarcations to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

“As farmers, we suffer a lot from animals that cross into our agricultural fields and destroy our crops. We are relieved that reseeding will create more grazing lands for herders, and the demarcation of animal routes will help reduce the chronic seasonal conflicts between farmers and herders,” said Haw Osman, a farmer from Am Safri, Kassala Rural locality.

“At SASAS, we strive to ensure that herders have access to rich grazing lands. We work with our partners to address all problems linked to overgrazing, reseeding pasture lands, and treating the causes of conflict between herders and farmers. We involve local communities in creating clear animal migration routes away from farms and increasing water sources for animals through water harvesting projects,” said Abdelrahman Kheir, SASAS Chief of Party in Sudan.

Water harvesting to create water ponds for animals in River Atbara Locality, Kassala State (Photo: Suliman Fadlalla/CIMMYT )
SASAS partners work with local communities in rural Kassala and River Atbara to mark animal migration routes for animals (Photo: Suliman Fadlalla/CIMMYT)

Wild wheat: The key to food security in a warming world

About a billion liters of fungicide.

That’s how much farmers have saved this century, through use of disease-resistant wheat varieties. Modern wheat can thank its “wild relatives” — grassy cousins millions of years old and tested through extremes of earth’s climate — for most of its resistance genes.

Despite such remarkable achievements in wheat breeding, we’ve only scratched the surface of the genetic potential in wheat’s wild relatives. With climate change intensifying and the rapid evolution and spread of pathogens — a new strain of fungus can circulate in the jet stream—it’s imperative that we increase investment in researching this largely untapped genetic diversity. Doing so could revolutionize wheat production, ensuring food security while dramatically reducing agriculture’s environmental footprint.

Without such efforts, epidemics or pandemics could devastate yields, potentially leading to massive applications of toxic agrochemicals and increased selection pressure for pests and diseases to develop resistance. The consequences would be far-reaching, impacting not only food security and the environment, but also geopolitical stability, potentially triggering human migration and conflict.

Today, wheat is the most widely grown crop on Earth, providing 20% of all human protein and calories and serving as the primary staple food for 1.5 billion people in the Global South.

However, with its future under threat, standard breeding approaches can no longer keep up with the pace of climate change. Research shows that climate shifts from 1980-2008 reduced wheat harvests by 5.5%, and global wheat production falls 6% for every degree-centigrade increase in temperature.

Wheat science urgently requires enhanced investments to scale up genetic studies of wild relatives, utilizing next-generation breeding tools. These tools include gene sequencing technologies, big-data analytics, and remote sensing technologies. Satellite imagery makes the planet a laboratory, allowing researchers to monitor traits like plant growth or disease resistance globally. Artificial intelligence can super-charge breeding simulations and quickly identify promising genes that enhance climate-resilience.

The basic genetic resources are already available: more than 770,000 unique seed samples are stored in 155 seed banks across 78 countries. These samples represent the full scope of known wheat genetic diversity, from modern varieties to ancient wild relatives and landraces developed at the dawn of agriculture.

What’s missing is funding to accelerate the search for specific genes and combinations that will fortify wheat against harsher conditions. This requires political will from key decision-makers and public interest. Nothing is more important than food security and the environmental legacy we leave to our children.

Harnessing the power of microorganisms

The genetic variation in seed banks is largely absent in modern wheat, which became genetically separate from other grass species 10,000 years ago and has undergone recent science-based breeding, constricting its diversity. Wheat needs its cousins’ diversity to thrive in a changing climate.

Beyond climate resilience and disease resistance, wild wheat relatives offer another exciting avenue for environmental benefits: enhanced interactions with beneficial microorganisms. These ancient grasses have evolved intricate relationships with soil microbes largely absent in modern wheat.

Some wild wheat relatives can inhibit soil microbes that convert ammonium to nitrate. While both are usable nitrogen forms for plants, nitrate is more prone to loss through leaching or gaseous conversion. Slowing this process of conversion, called nitrification, has profound implications for sustainable agriculture, potentially mitigating greenhouse gas emissions, improving nitrogen-use efficiency, and decreasing synthetic fertilizer use.

As proof of concept, the first and only crop (so far) bred to promote microbiome interaction is wheat, using a gene from a wild relative (Leymus racemosus) to slow nitrification.

In addition, wild relatives often form more effective symbiotic relationships with beneficial soil fungi and bacteria, enhancing nutrient uptake, drought tolerance, and natural pest defenses. Reintroducing these traits could reduce chemical inputs while improving soil health and biodiversity.

The benefits extend beyond the field. Wheat varieties that use water and nutrients more efficiently could reduce agricultural runoff, protecting water bodies. Enhanced root systems could increase soil carbon sequestration, contributing to climate change mitigation.

By systematically exploring wild wheat’s microbial interaction traits, wheat varieties can be developed that not only withstand climate challenges but also actively contribute to environmental restoration.

This represents a paradigm shift from crop protection through chemicals to resilience through biological synergies. Indeed, even a fraction of the US $1.4 trillion spent annually on agrochemical crop protection could work wonders to fortify wheat against present and future challenges.

The path forward is clear: increased investment in researching wild wheat relatives can yield a new generation of wheat varieties that are not just climate-resilient, but also environmentally regenerative. This will be a crucial step towards sustainable food security in a changing world.

Original Publication in El PaĂ­s.

How effective soil aggregate management can boost productivity and climate resilience

Soils are the bedrock for plant health and sustenance, but how do we protect and enhance them to maximize their nutritional potential? Years of conventional farming practices have left many soils depleted, raising urgent concerns about how to rejuvenate them. The recent El Niño event during the 2023/24 farming season in southern Africa, bringing extreme weather conditions—ranging from prolonged droughts to intense floods—has exposed the vulnerability of these soils. Poorly managed soils, already strained by years of excessive tillage and lack of cover, struggle to retain moisture under such stress, leading to crop failures even after rainfall.

However, conservation agriculture (CA) offers a vital solution. By improving soil structure and moisture retention, CA practices provide a lifeline for crops in challenging conditions. Recognizing this, CIMMYT scientists are actively promoting CA among smallholder farmers across sub-Saharan Africa, highlighting its critical role in sustaining soil health and resilience in the face of climate challenges.

Isaiah Nyagumbo demonstrating soil aggregate stability (CIMMYT)

Described as lumps of soil particles that bind together strongly, soil aggregates play a vital role in maintaining soil health, supporting plant growth, and sustaining agricultural productivity. Formed by the combined effects of biological, chemical, and physical processes, the structure and stability of soil aggregates are crucial for several soil functions—primarily water infiltration, root growth, and resistance to erosion. Soil aggregates consist of various soil particles, including sand, silt, clay, and organic matter. There are different types of soil aggregates, including macroaggregates (>0.25 mm) and microaggregates (<0.25 mm), with macroaggregates typically more stable and beneficial for soil structure and functions.

Demonstrating the value of soil aggregate stability
A CIMMYT researcher holding a soil aggregate from a CA field (CIMMYT)

Imagine three soil aggregate samples taken from the same field but under different management regimes—from virgin soil that has not been previously cropped, to land under conservation agriculture practices for the last 5 to 8 years, and soil conventionally ploughed annually before crop planting for many years. When these soil aggregates are gently immersed in clear water, stark differences can be noted. The aggregates from conventionally tilled soil, weakened by years of intensive cultivation, quickly disintegrate, turning the water murky and brown.

In contrast, the aggregates from virgin soil remain intact, preserving the water’s clarity even after several hours. The CA soil aggregates exhibit much better stability than those from the conventionally tilled soil but fail to remain as intact as those from the natural virgin soil. A simple lesson is drawn from this demonstration! Restoring degraded soils is a serious challenge. Even after 5 years of CA practices, soil organic carbon levels may only show modest improvement, and the aggregates, while more stable, still don’t match the condition of aggregates from virgin soil.

Soil recovery from a degraded state is a slow process that is not “a walk in the park.” Transitioning from conventional tillage to CA is challenging and slow, requiring years to rebuild organic matter and improve aggregate stability. Patience and careful soil management are vital, as degradation can occur rapidly, but recovery is a lengthy process. However, incorporating organic soil amendments like manure and compost, along with diversifying crops by introducing legumes such as cowpea, groundnut, soybean, mucuna, and pigeon pea, can accelerate this recovery. While degradation occurs rapidly, soil restoration demands a long-term commitment, but the rewards are worth the effort.

Exploring conservation agriculture as a source to improve soil health

Conservation agriculture is built on three key principles: reduced soil disturbance, permanent soil cover, and diverse crop rotation. Minimizing soil disturbance helps preserve soil structure, while permanent soil cover shields the soil against splash erosion and boosts microbial activity. Crop rotation enhances soil fertility, maintains aggregate structure, and disrupts pest and disease cycles. These principles are essential for soil recovery and the retention of organic matter.

Among these, permanent soil cover is often the most challenging for farmers to implement, yet it is critical for effective soil management. Demonstrating its importance, a simple test with water applied to soil samples with varying levels of cover illustrates splash erosion effects.

“Such a simple test mimics real-life conditions farmers face during rains. Soils without cover suffer significant erosion, while those with minimal or substantial cover show reduced erosion and improved water retention. This emphasizes the importance of maintaining permanent soil cover to foster microbial activity and enhance soil health,” highlighted Isaiah Nyagumbo, cropping systems agronomist.

In a nutshell, soil aggregate management is fundamental to climate resilience and agricultural sustainability. Through the adoption of conservation agriculture practices, smallholder farmers can significantly improve soil health, enhance water and nutrient retention, and increase crop resilience to climate stress. The journey from degraded to healthy soil is long and challenging, but with careful management and patience, the benefits are profound and lasting. By understanding and implementing these principles, farmers can build a more sustainable and resilient food system.

How ancient wild relatives of wheat could safeguard our food supply

A new study by CIMMYT, published in Global Change Biology, reveals that ancient wild relatives of wheat, which have adapted to extreme environmental conditions for millions of years, could be key to securing our future food supply. These wild varieties offer valuable genetic traits that can help modern wheat resist diseases, build climate resilience, and reduce agricultural emissions, making them essential for adapting to increasingly challenging growing conditions.

Read the full story.

Building Resilience in Tigray: How CSA is pioneering sustainable agriculture in Ethiopia

Farmer Gidey explaining to the CIMMYT research team and implementing partners the multiple benefits of the CSA intervention in Folfolo village (Photo: Desalegne Tadesse).

Agricultural activities, particularly the production of cereal crops and major staple foods like maize, wheat, teff, barley, and sorghum, are vital to the livelihoods of rural communities in Ethiopia. For example, about 80% of agricultural operations in the Tigray region’s Adwa district are related to cereal production. However, this, as well as agriculture in general, is highly susceptible to the effects of climate variability and change, which have a direct influence on farming communities’ rural livelihoods.

With support from the Development Fund (DF), CIMMYT is collaborating with several partners to address the challenges caused by climate variability in agriculture through the implementation of Climate-Smart Agriculture (CSA) technologies and practices. Efforts are currently focused on the Folfolo and Lalay Logomti watersheds in Adwa, where CSA demonstration sites are being implemented through Ethiopia’s Climate Adaptation and Rural Development (CARD)-II Program.

On 2 August 2024, CIMMYT scientists and experts from CSA-implementing partners under the CARD-II program visited the CSA demonstration sites to observe the ongoing activities, interact with farmers, and share their thoughts on progress so far.

Rehabilitating the natural environment

Since 2021, CIMMYT and partners, including the Relief Society of Tigray (REST), iDE, Women Empowerment Action, ORDA-Ethiopia, and HELVETAS, have been implementing numerous CSA-related activities on hillsides, farmlands, homesteads, and gullies. These activities provide multiple benefits for farmers to ensure food and nutrition security and include the management of natural resources, such as creating an arboretum, constructing trenches, and planting indigenous trees and forage plants in the upper catchments. Lower catchments and farmlands are undergoing biological and physical reclamation of gullies and riverbanks, trench construction, percolation ponds, crop diversification, and homestead plantations.

Moti Jaleta, a CIMMYT agricultural economist coordinating the implementation of CSA activities under the CARD-II Program, was excited by the visit and the effort farmers and partners have put into rehabilitating the natural environment and degraded croplands. He was also impressed by the food and feed crop technologies farmers have integrated into the rehabilitation work, as well as the overall benefits farmers have witnessed from their efforts.

“It is crucial to understand that the benefits of CSA technologies often extend beyond boosting yields,” said CIMMYT systems agronomist Tesfaye Shiferaw, who passionately described the program’s successes so far. “For example, in smallholder farming systems facing terminal droughts, an improvement in soil moisture content that would extend crop growth duration by just ten days can mean the difference between a complete crop failure and a normal yield.”

“This underscores the vital role of CSA technologies, especially under challenging conditions,” he explained. “During our field visit to those sites, such anecdotes were repeatedly emphasized.”

Natural resource management activity demo site at Gedeba watershed in Folfolo village (Photo: Desalegne Tadesse).

Streams begin to flow

Farmer testimonies from the field attest to the numerous benefits of CSA practices. “This area was known for its high runoff and water erosion some years ago,” said Giday Hagos, a 70-year-old farmer from Folfolo village. “Producing crops and engaging in other agricultural pursuits seemed unimaginable. But following the intervention of the CSA, I was very excited when the streams at the mountain’s base began to flow, and I started farming immediately using the stream for supplementary irrigation.”

Hagos used to grow cereal crops, but he was excited to make use of the potential offered by CSA technologies and has now shifted to market-driven commodities. “Last year, I was able to generate an income of about ETB 90,000 (approx. $815) from the sale of onions,” he explained. “And this year, expanded the farming activities to other areas by renting additional plots.”

The program was designed to increase productivity, adaptation, and sustainability while enhancing resilience to climate shocks through mitigation. So far, the successes are numerous. Upper catchment hills have seen an increase in vegetation cover, degraded lands have undergone regeneration, water runoff has decreased, groundwater yield has increased, streams and springs are thriving, soil moisture and forage availability have increased, and farmers have diversified their crop and livestock production. These are just a few of the multiple effects of the CSA technologies and practices implemented at the watershed level by the local farming community, the Relief Society of Tigray (REST), the Ethiopian government, and other local partners. The adoption of CSA technologies has also provided greater opportunities to reduce the harmful effects of climate change on agriculture and improve rural livelihoods.

Farmer Gidey Hagos, a champion farmer who practices CSA to grow maize intercropping with fruits and other crops using the percolation ponds at Folfolo watershed (Photo: Desalegne Tadesse).

Melinda Smale: Exploring the Economic Value of Crop Diversity Conservation

Melinda Smale’s groundbreaking work in agricultural economics, particularly her collaboration with CIMMYT, has played a pivotal role in advancing the understanding of crop diversity conservation. At CIMMYT, Smale worked with plant breeders and agronomists to analyze maize landraces and wheat genetic diversity, contributing to the development of strategies that support sustainable agriculture and food security. Her research has informed CIMMYT’s efforts to preserve biodiversity and enhance the resilience of farming systems, directly aligning with the organization’s mission to improve global food security through science and innovation.

Read the full story.

Ancient Wild Relatives Hold Key to Climate-Proofing Global Wheat Supply

CIMMYT, Mexico, August 27, 2024 — Crop wild relatives that have survived changing climates for millions of years may provide the solution to adapting wheat, humanity’s most widely grown crop, to climate change. Two new studies led by the International Maize and Wheat Improvement Center (CIMMYT) reveal how tapping into this ancient genetic diversity can revolutionize wheat breeding and safeguard global food security.

As the weather becomes more erratic and extreme, wheat — providing 20% of all calories and protein globally and serving as the primary staple food for 1.5 billion people in the Global South — faces unprecedented threats. These include heat waves, delayed rains, flooding, and new pests and diseases.

“We’re at a critical juncture,” says Dr. Matthew Reynolds, co-author of both studies. “Our current breeding strategies have served us well, but they must now address more complex challenges posed by climate change.”

The research points to a vast, largely untapped reservoir of nearly 800,000 wheat seed samples stored in 155 genebanks worldwide. These include wild relatives and ancient, farmer-developed varieties that have withstood diverse environmental stresses over millennia. Although only a fraction of this genetic diversity has been utilized in modern crop breeding, it has already delivered significant benefits.

Photo CIMMYT: Wheat diversity spikes

Proven impacts of wild wheat genes

One of the studies, a review published today in Global Change Biology (GCB)*, documents the immense impact of wild relatives’ traits, including on environmental sustainability. It finds that the cultivation of disease-resistant wheat varieties has avoided the use of an estimated 1 billion liters of fungicide just since 2000.

“Without transferring disease-resistant genes from wild relatives to wheat, fungicide use would have easily doubled, harming both human and environmental health,” says Dr. Susanne Dreisigacker, Molecular Breeder at CIMMYT and co-author of the review.

Sharing of new wheat breeding lines through the CIMMYT-led International Wheat Improvement Network, comprising hundreds of partners and testing sites around the world, increases productivity worth USD 11 billion of extra grain every year. The extra productivity has saved millions of hectares of forests and other natural ecosystems from cultivation.

The review highlights other key breakthroughs using wheat wild relatives, including:

  • Some experimental wheat lines incorporating wild traits show up to 20% more growth under heat and drought conditions compared to current varieties.
  • Genes from a wheat wild relative have generated the first crop ever bred to interact with soil microbes, reducing the production of nitrous oxide, a potent greenhouse gas, and enabling the plants to use nitrogen more efficiently.
  • New, high-yielding cultivars in Afghanistan, Egypt and Pakistan were developed using wild genes and have been released as they are more robust to the warming climate.

“Breeding the first beneficial interaction with the soil microbiome — in this case biological nitrification inhibition, or BNI-wheat — is a landmark achievement by CIMMYT and JIRCAS, opening up a whole new spectrum of opportunities to boost cropping systems’ resilience and reduce environmental footprints,” says Victor Kommerell, co-author of the GCB review, and Director of CropSustaiN, a new research initiative to determine the global climate mitigation and food security potential of BNI wheat.

The second study in Nature Climate Change* showcases the urgent need to scale-up exploration and use of genetic diversity for improved climate resilience. Among the traits needed are deeper, more extensive root systems for better water and nutrient access; photosynthesis that performs well across a wider temperature range; better heat tolerance in reproductive processes; and improved survival during delayed rains or temporary flooding.

“Tapping into the complex climate-resilient traits so urgently needed today requires both access to greater genetic diversity and a paradigm shift in breeding approaches,” explains co-author of the GCB review, Dr. Julie King of Nottingham University.

Modern crop breeding has focused on a relatively narrow pool of ‘star athletes’: elite crop varieties that are already high performers and that have known, predictable genetics. In contrast, the genetic diversity of wild wheat relatives offers complex climate-resilient traits — but their use has been more time-consuming, costly and riskier than traditional breeding approaches with elite varieties. Now, new technologies have changed that equation.

Making the impossible possible

“We have the tools to quickly explore genetic diversity that was previously inaccessible to breeders,” explains Dr. Benjamin Kilian, co-author of the review and coordinator of the Crop Trust’s Biodiversity for Opportunities, Livelihoods and Development (BOLD) project that supports conservation and use of crop diversity globally.

Among these tools are next-generation gene sequencing, big-data analytics, and remote sensing technologies, including satellite imagery. The latter allows researchers to routinely monitor traits like plant growth rate or disease resistance at unlimited numbers of sites globally.

However, realizing the full potential of these genetic resources will require global cooperation. “The most significant impacts will come through widespread sharing of genetic resources and technologies,” says Dr. Kilian.

New technologies allow crop researchers to precisely identify and transfer beneficial traits from wild relatives, making what has been seen as a risky, time-consuming process into a targeted, efficient strategy for climate-proofing crops. “Satellite technology turns the planet into a laboratory,” says Dr. Reynolds, “Combined with artificial intelligence to super-charge crop-breeding simulations, we can identify whole new solutions for climate resilience.”

This research, which also applies to any crop with surviving wild relatives, promises to enhance global food security and make cropping systems more environmentally sustainable. Developing more resilient and efficient wheat varieties will help feed a global population while reducing agriculture’s environmental footprint.

Photo CIMMYT: Wheat diversity spikes

Study information and links

*Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. King J, Dreisigacker S, Reynolds M et al., 2024. Global Change Biology (Study available under embargo upon request)

*New wheat breeding paradigms for a warming climate. Xiong, W., Reynolds, M.P., Montes, C. et al. Nat. Clim. Chang. (2024).  https://doi.org/10.1038/s41558-024-02069-0

 

Note to editors

About CIMMYT

Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat cropping systems in the developing world. Learn more at staging.cimmyt.org

About the Crop Trust

The Crop Trust is an international organization working to conserve crop diversity and protect global food and nutrition security. At the core of the Crop Trust is an endowment fund dedicated to providing guaranteed long-term financial support to key genebanks worldwide. The Crop Trust supports the Svalbard Global Seed Vault and coordinates large-scale projects worldwide to secure crop diversity and make it available for use, globally forever and for the benefit of everyone. The Crop Trust is recognized as an essential element of the funding strategy of the International Treaty on Plant Genetic Resources for Food and Agriculture. Learn more at www.croptrust.org

About the Biodiversity for Opportunities, Livelihoods and Development (BOLD) Project

BOLD is a 10-year project to strengthen food and nutrition security worldwide by supporting the conservation and use of crop diversity. The project works with national genebanks, pre-breeding and seed system partners globally. Funded by the Government of Norway, BOLD is led by the Crop Trust in partnership with the Norwegian University of Life Sciences and the International Plant Treaty.

Learn more at https://bold.croptrust.org/

For more information, contact:
Lynda Mwakisha (Nairobi, Kenya): lmwakisha@burness.com; +254 704 589 177
Jelle Boone, CIMMYT: J.BOONE@cgiar.org

Wheat breeding strategies for increased climate resilience

Wheat breeding strategies for increased climate resilience

With the challenges of climate change already affecting plant breeding, especially warmer days and warmer nights, the time to future proof the world’s food supply is now. In order to make the best-informed changes, scientists at CIMMYT ran simulations mimicking five scenarios that might play out over the next 70+ years.

The researchers used 3,652 breeding line records from six global nurseries administered by the International Wheat Improvement Network, which is coordinated by CIMMYT, and involves hundreds of partners and testing sites worldwide. Researchers ran the data through five different climate change scenarios, ranging from stable to severe.

Along with colleagues from Henan Agricultural University, Zhengzhou, China, ICARDA, and the Chinese Academy of Agricultural Sciences, CIMMYT scientists published their research in Nature Climate Change.

The results showed that less than one-third of wheat varieties adapted well to the warming the planet has already seen in the last 10 years. As temperatures increased in the simulation, researchers found a clear connection between rising temperatures and lower stability for a variety. As the global wheat-growing area becomes warmer and experiences more frequent heatwaves, breeding programs have to look beyond just yield optimization.

“Stability is key for breeding programs and farmers,” said co-lead author Matthew Reynolds, CIMMYT distinguished scientist and head of wheat physiology. “Knowing that a specific variety works well in a specific environment and produces an expected amount of yield allows farmers better plan their crop futures.”

“We performed the analysis from different perspectives, so that climate effects and appropriate adjustment suggestions for current breeding models can be considered from climate change, gene selection and/or gene–environment interaction perspectives,” said co-lead author Wei Xiong, CIMMYT Senior Scientist and Agricultural System Modeler.

The paradox of breeding elite lines

Local and regional breeding programs, as well as targeted breeding by CIMMYT, contribute to gene pools that overlap for many key agronomic traits, which limit genetic diversity.

“It is an unintended consequence,” said Reynolds. “As conventional breeding focuses on crossing the best and elite material, such focus can actually reduce genetic diversity.”

This ‘paradox’ shows the need to increase genetic variability and environmental diversification in breeding programs that are developing higher-yielding climate-resilient cultivars. Breeding programs also need to target traits associated with improved adaptation to increased temperatures and tolerance to heatwaves, which requires multidisciplinary integration.

Looking to the past for answers

Over the past 10,000 years, the climate has been unusually stable, meaning modern, domesticated bread wheat has not been exposed to wide swings in temperature that are forecast for the next 100 years. Wild wheat relatives, like Triticeae, have had millions of years of experience in weathering changing climates.

CIMMYT has a pre-breeding program that examines wild wheat races and more exotic sources for climate resilience traits. When such traits are identified genetically, new breeding techniques such as gene editing can be employed and breeding models refined.

To activate these new techniques, several barriers need to be overcome, including more sharing of germplasm between countries and breeding teams, the use of faster breeding cycles where appropriate and improved understanding of genes that improve heat tolerance without a yield penalty.

With reduced climate resilience and slow cultivar development, the need to increase genetic variability for climate adaptation is urgent, particularly in developing countries, where warming rate is unprecedented, and breeding cycles tend to be longer than in developed countries.

“Faced with more climate variability, breeders need to revisit their breeding strategies to integrate genetic diversity that confers climate resilience without penalties to productivity,” said Reynolds.

CropSustaiN BNI Wheat Mission

The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)—and to accelerate breeding and farmer access to BNI wheat varieties.

With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI crops’ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.

The challenge

Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest ‘crop’ consumer of nitrogen-based fertilizer—a relatively nitrogen-inefficient cereal—at the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.

A solution: BNI-wheat

BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.

A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.

Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.

 

Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.

Other BNI-crops

CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.

Objectives and outcomes

This high risk, high reward mission aims to:

  • Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
  • Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
  • Work with stakeholders on policy change that enables BNI crops production and markets

Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.

Wheat spikes against the sky at CIMMYT’s El BatĂĄn, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)

A collaborative effort

CIMMYT is the lead implementer of Novo Nordisk Foundation’s mission funding. CropSustaiN’s interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.

The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.

Impact on climate change mitigation and Nationally Determined Contributions (NDCs)

The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.

International public goods, governance, and management

CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.

Invitation to join the mission

The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.

Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundation’s Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.

Additional reference material

  1. BNI International Consortium (Japan International Research Center for Agricultural Sciences, JIRCAS)
  2. Nitrification inhibitors: biological and synthetic (German Environment Agency, Umweltbundesamt)
  3. CropSustaiN: new innovative crops to reduce the nitrogen footprint form agriculture
  4. Annual Technical Report 2024. CropSustaiN: A new paradigm to reduce the nitrogen footprint from agriculture
  5. BNI-Wheat Future: towards reducing global nitrogen use in wheat
  6. CIMMYT Publications Repository

Helping farmers access waterlogged agricultural lands amid prevailing food insecurity in Sudan

In conflict-ridden Sudan, Gadarif State in Eastern Sudan is the most important region for sorghum production, with about 5-6 million feddan (5.18-6.22 acres) cultivated on an annual basis on large scale farms equipped with agricultural machinery. However, like the country, the state is covered with vertisols, clay-rich soils that shrink and swell with changes in moisture content, that become waterlogged and cannot be properly cultivated during rainy season.

To address the issue, technical experts from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) are mapping areas affected by waterlogging in two localities, namely El Fashaga and El Nahal, to identify the most suitable lands to establish large drainage implementing sites integrated with improved crop varieties of sorghum. This work is part of CIMMYT’s Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which works with farmers and herders to reduce their need for humanitarian assistance in conflict-affected Sudan.

“To address the issue of vertisols affected by water logging in Al Gadarif, the prominent agricultural region in Sudan, we used the map developed by ICRISAT in 2023 and consulted with local farmers to identify 100 hectares El Fashaga and El Nahal localities to improve drainage and avoid waterlogging,” said Gizaw Desta, senior scientist at ICRISAT.

Waterlogging is common on poorly drained soil or when heavy soil is compacted, preventing water from being drained away. This leaves no air spaces in the saturated soil, and plant roots literally drown. Waterlogging can be a major constraint to plant growth and production and, under certain conditions, will cause plant death. In Gadarif state, 2.3 million hectares and 1.8 million hectares of vertisols are under high and moderate waterlogging conditions that impair crop production during the rainy season, leading to food insecurity if not reversed with appropriate agricultural practices.

Experts evaluate the compacted soil. (Photo: CIMMYT)

“For years, my farm has been flooded by water during the rainy season, and I cannot cultivate sorghum as plants die of water suffocation”, said Ali Ahmed, a farmer from Al-Saeeda area of ​​Al-Nahal locality who is affected by waterlogging. “Alternatively, we as farmers affected by waterlogging were forced to cultivate watermelon instead of our main staple food sorghum. This shift in the crops we cultivate is hardly affecting our income.  I am glad that ICRISAT is working to establish drainage systems and address waterlogging within our lands.”

“At SASAS, we strive to ensure that farmers have access to fertile lands and other agricultural inputs. We work with our partners to address all problems facing farmers including waterlogging to help farmers continue producing their staple food and cash crops,” said Abdelrahman Kheir, SASAS chief of party in Sudan.