Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

How ancient wild relatives of wheat could safeguard our food supply

A new study by CIMMYT, published in Global Change Biology, reveals that ancient wild relatives of wheat, which have adapted to extreme environmental conditions for millions of years, could be key to securing our future food supply. These wild varieties offer valuable genetic traits that can help modern wheat resist diseases, build climate resilience, and reduce agricultural emissions, making them essential for adapting to increasingly challenging growing conditions.

Read the full story.

Building Resilience in Tigray: How CSA is pioneering sustainable agriculture in Ethiopia

Farmer Gidey explaining to the CIMMYT research team and implementing partners the multiple benefits of the CSA intervention in Folfolo village (Photo: Desalegne Tadesse).

Agricultural activities, particularly the production of cereal crops and major staple foods like maize, wheat, teff, barley, and sorghum, are vital to the livelihoods of rural communities in Ethiopia. For example, about 80% of agricultural operations in the Tigray region’s Adwa district are related to cereal production. However, this, as well as agriculture in general, is highly susceptible to the effects of climate variability and change, which have a direct influence on farming communities’ rural livelihoods.

With support from the Development Fund (DF), CIMMYT is collaborating with several partners to address the challenges caused by climate variability in agriculture through the implementation of Climate-Smart Agriculture (CSA) technologies and practices. Efforts are currently focused on the Folfolo and Lalay Logomti watersheds in Adwa, where CSA demonstration sites are being implemented through Ethiopia’s Climate Adaptation and Rural Development (CARD)-II Program.

On 2 August 2024, CIMMYT scientists and experts from CSA-implementing partners under the CARD-II program visited the CSA demonstration sites to observe the ongoing activities, interact with farmers, and share their thoughts on progress so far.

Rehabilitating the natural environment

Since 2021, CIMMYT and partners, including the Relief Society of Tigray (REST), iDE, Women Empowerment Action, ORDA-Ethiopia, and HELVETAS, have been implementing numerous CSA-related activities on hillsides, farmlands, homesteads, and gullies. These activities provide multiple benefits for farmers to ensure food and nutrition security and include the management of natural resources, such as creating an arboretum, constructing trenches, and planting indigenous trees and forage plants in the upper catchments. Lower catchments and farmlands are undergoing biological and physical reclamation of gullies and riverbanks, trench construction, percolation ponds, crop diversification, and homestead plantations.

Moti Jaleta, a CIMMYT agricultural economist coordinating the implementation of CSA activities under the CARD-II Program, was excited by the visit and the effort farmers and partners have put into rehabilitating the natural environment and degraded croplands. He was also impressed by the food and feed crop technologies farmers have integrated into the rehabilitation work, as well as the overall benefits farmers have witnessed from their efforts.

“It is crucial to understand that the benefits of CSA technologies often extend beyond boosting yields,” said CIMMYT systems agronomist Tesfaye Shiferaw, who passionately described the program’s successes so far. “For example, in smallholder farming systems facing terminal droughts, an improvement in soil moisture content that would extend crop growth duration by just ten days can mean the difference between a complete crop failure and a normal yield.”

“This underscores the vital role of CSA technologies, especially under challenging conditions,” he explained. “During our field visit to those sites, such anecdotes were repeatedly emphasized.”

Natural resource management activity demo site at Gedeba watershed in Folfolo village (Photo: Desalegne Tadesse).

Streams begin to flow

Farmer testimonies from the field attest to the numerous benefits of CSA practices. “This area was known for its high runoff and water erosion some years ago,” said Giday Hagos, a 70-year-old farmer from Folfolo village. “Producing crops and engaging in other agricultural pursuits seemed unimaginable. But following the intervention of the CSA, I was very excited when the streams at the mountain’s base began to flow, and I started farming immediately using the stream for supplementary irrigation.”

Hagos used to grow cereal crops, but he was excited to make use of the potential offered by CSA technologies and has now shifted to market-driven commodities. “Last year, I was able to generate an income of about ETB 90,000 (approx. $815) from the sale of onions,” he explained. “And this year, expanded the farming activities to other areas by renting additional plots.”

The program was designed to increase productivity, adaptation, and sustainability while enhancing resilience to climate shocks through mitigation. So far, the successes are numerous. Upper catchment hills have seen an increase in vegetation cover, degraded lands have undergone regeneration, water runoff has decreased, groundwater yield has increased, streams and springs are thriving, soil moisture and forage availability have increased, and farmers have diversified their crop and livestock production. These are just a few of the multiple effects of the CSA technologies and practices implemented at the watershed level by the local farming community, the Relief Society of Tigray (REST), the Ethiopian government, and other local partners. The adoption of CSA technologies has also provided greater opportunities to reduce the harmful effects of climate change on agriculture and improve rural livelihoods.

Farmer Gidey Hagos, a champion farmer who practices CSA to grow maize intercropping with fruits and other crops using the percolation ponds at Folfolo watershed (Photo: Desalegne Tadesse).

Melinda Smale: Exploring the Economic Value of Crop Diversity Conservation

Melinda Smale’s groundbreaking work in agricultural economics, particularly her collaboration with CIMMYT, has played a pivotal role in advancing the understanding of crop diversity conservation. At CIMMYT, Smale worked with plant breeders and agronomists to analyze maize landraces and wheat genetic diversity, contributing to the development of strategies that support sustainable agriculture and food security. Her research has informed CIMMYT’s efforts to preserve biodiversity and enhance the resilience of farming systems, directly aligning with the organization’s mission to improve global food security through science and innovation.

Read the full story.

Ancient Wild Relatives Hold Key to Climate-Proofing Global Wheat Supply

CIMMYT, Mexico, August 27, 2024 — Crop wild relatives that have survived changing climates for millions of years may provide the solution to adapting wheat, humanity’s most widely grown crop, to climate change. Two new studies led by the International Maize and Wheat Improvement Center (CIMMYT) reveal how tapping into this ancient genetic diversity can revolutionize wheat breeding and safeguard global food security.

As the weather becomes more erratic and extreme, wheat — providing 20% of all calories and protein globally and serving as the primary staple food for 1.5 billion people in the Global South — faces unprecedented threats. These include heat waves, delayed rains, flooding, and new pests and diseases.

“We’re at a critical juncture,” says Dr. Matthew Reynolds, co-author of both studies. “Our current breeding strategies have served us well, but they must now address more complex challenges posed by climate change.”

The research points to a vast, largely untapped reservoir of nearly 800,000 wheat seed samples stored in 155 genebanks worldwide. These include wild relatives and ancient, farmer-developed varieties that have withstood diverse environmental stresses over millennia. Although only a fraction of this genetic diversity has been utilized in modern crop breeding, it has already delivered significant benefits.

Photo CIMMYT: Wheat diversity spikes

Proven impacts of wild wheat genes

One of the studies, a review published today in Global Change Biology (GCB)*, documents the immense impact of wild relatives’ traits, including on environmental sustainability. It finds that the cultivation of disease-resistant wheat varieties has avoided the use of an estimated 1 billion liters of fungicide just since 2000.

“Without transferring disease-resistant genes from wild relatives to wheat, fungicide use would have easily doubled, harming both human and environmental health,” says Dr. Susanne Dreisigacker, Molecular Breeder at CIMMYT and co-author of the review.

Sharing of new wheat breeding lines through the CIMMYT-led International Wheat Improvement Network, comprising hundreds of partners and testing sites around the world, increases productivity worth USD 11 billion of extra grain every year. The extra productivity has saved millions of hectares of forests and other natural ecosystems from cultivation.

The review highlights other key breakthroughs using wheat wild relatives, including:

  • Some experimental wheat lines incorporating wild traits show up to 20% more growth under heat and drought conditions compared to current varieties.
  • Genes from a wheat wild relative have generated the first crop ever bred to interact with soil microbes, reducing the production of nitrous oxide, a potent greenhouse gas, and enabling the plants to use nitrogen more efficiently.
  • New, high-yielding cultivars in Afghanistan, Egypt and Pakistan were developed using wild genes and have been released as they are more robust to the warming climate.

“Breeding the first beneficial interaction with the soil microbiome — in this case biological nitrification inhibition, or BNI-wheat — is a landmark achievement by CIMMYT and JIRCAS, opening up a whole new spectrum of opportunities to boost cropping systems’ resilience and reduce environmental footprints,” says Victor Kommerell, co-author of the GCB review, and Director of CropSustaiN, a new research initiative to determine the global climate mitigation and food security potential of BNI wheat.

The second study in Nature Climate Change* showcases the urgent need to scale-up exploration and use of genetic diversity for improved climate resilience. Among the traits needed are deeper, more extensive root systems for better water and nutrient access; photosynthesis that performs well across a wider temperature range; better heat tolerance in reproductive processes; and improved survival during delayed rains or temporary flooding.

“Tapping into the complex climate-resilient traits so urgently needed today requires both access to greater genetic diversity and a paradigm shift in breeding approaches,” explains co-author of the GCB review, Dr. Julie King of Nottingham University.

Modern crop breeding has focused on a relatively narrow pool of ‘star athletes’: elite crop varieties that are already high performers and that have known, predictable genetics. In contrast, the genetic diversity of wild wheat relatives offers complex climate-resilient traits — but their use has been more time-consuming, costly and riskier than traditional breeding approaches with elite varieties. Now, new technologies have changed that equation.

Making the impossible possible

“We have the tools to quickly explore genetic diversity that was previously inaccessible to breeders,” explains Dr. Benjamin Kilian, co-author of the review and coordinator of the Crop Trust’s Biodiversity for Opportunities, Livelihoods and Development (BOLD) project that supports conservation and use of crop diversity globally.

Among these tools are next-generation gene sequencing, big-data analytics, and remote sensing technologies, including satellite imagery. The latter allows researchers to routinely monitor traits like plant growth rate or disease resistance at unlimited numbers of sites globally.

However, realizing the full potential of these genetic resources will require global cooperation. “The most significant impacts will come through widespread sharing of genetic resources and technologies,” says Dr. Kilian.

New technologies allow crop researchers to precisely identify and transfer beneficial traits from wild relatives, making what has been seen as a risky, time-consuming process into a targeted, efficient strategy for climate-proofing crops. “Satellite technology turns the planet into a laboratory,” says Dr. Reynolds, “Combined with artificial intelligence to super-charge crop-breeding simulations, we can identify whole new solutions for climate resilience.”

This research, which also applies to any crop with surviving wild relatives, promises to enhance global food security and make cropping systems more environmentally sustainable. Developing more resilient and efficient wheat varieties will help feed a global population while reducing agriculture’s environmental footprint.

Photo CIMMYT: Wheat diversity spikes

Study information and links

*Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. King J, Dreisigacker S, Reynolds M et al., 2024. Global Change Biology (Study available under embargo upon request)

*New wheat breeding paradigms for a warming climate. Xiong, W., Reynolds, M.P., Montes, C. et al. Nat. Clim. Chang. (2024).  https://doi.org/10.1038/s41558-024-02069-0

 

Note to editors

About CIMMYT

Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat cropping systems in the developing world. Learn more at staging.cimmyt.org

About the Crop Trust

The Crop Trust is an international organization working to conserve crop diversity and protect global food and nutrition security. At the core of the Crop Trust is an endowment fund dedicated to providing guaranteed long-term financial support to key genebanks worldwide. The Crop Trust supports the Svalbard Global Seed Vault and coordinates large-scale projects worldwide to secure crop diversity and make it available for use, globally forever and for the benefit of everyone. The Crop Trust is recognized as an essential element of the funding strategy of the International Treaty on Plant Genetic Resources for Food and Agriculture. Learn more at www.croptrust.org

About the Biodiversity for Opportunities, Livelihoods and Development (BOLD) Project

BOLD is a 10-year project to strengthen food and nutrition security worldwide by supporting the conservation and use of crop diversity. The project works with national genebanks, pre-breeding and seed system partners globally. Funded by the Government of Norway, BOLD is led by the Crop Trust in partnership with the Norwegian University of Life Sciences and the International Plant Treaty.

Learn more at https://bold.croptrust.org/

For more information, contact:
Lynda Mwakisha (Nairobi, Kenya): lmwakisha@burness.com; +254 704 589 177
Jelle Boone, CIMMYT: J.BOONE@cgiar.org

Wheat breeding strategies for increased climate resilience

Wheat breeding strategies for increased climate resilience

With the challenges of climate change already affecting plant breeding, especially warmer days and warmer nights, the time to future proof the world’s food supply is now. In order to make the best-informed changes, scientists at CIMMYT ran simulations mimicking five scenarios that might play out over the next 70+ years.

The researchers used 3,652 breeding line records from six global nurseries administered by the International Wheat Improvement Network, which is coordinated by CIMMYT, and involves hundreds of partners and testing sites worldwide. Researchers ran the data through five different climate change scenarios, ranging from stable to severe.

Along with colleagues from Henan Agricultural University, Zhengzhou, China, ICARDA, and the Chinese Academy of Agricultural Sciences, CIMMYT scientists published their research in Nature Climate Change.

The results showed that less than one-third of wheat varieties adapted well to the warming the planet has already seen in the last 10 years. As temperatures increased in the simulation, researchers found a clear connection between rising temperatures and lower stability for a variety. As the global wheat-growing area becomes warmer and experiences more frequent heatwaves, breeding programs have to look beyond just yield optimization.

“Stability is key for breeding programs and farmers,” said co-lead author Matthew Reynolds, CIMMYT distinguished scientist and head of wheat physiology. “Knowing that a specific variety works well in a specific environment and produces an expected amount of yield allows farmers better plan their crop futures.”

“We performed the analysis from different perspectives, so that climate effects and appropriate adjustment suggestions for current breeding models can be considered from climate change, gene selection and/or gene–environment interaction perspectives,” said co-lead author Wei Xiong, CIMMYT Senior Scientist and Agricultural System Modeler.

The paradox of breeding elite lines

Local and regional breeding programs, as well as targeted breeding by CIMMYT, contribute to gene pools that overlap for many key agronomic traits, which limit genetic diversity.

“It is an unintended consequence,” said Reynolds. “As conventional breeding focuses on crossing the best and elite material, such focus can actually reduce genetic diversity.”

This ‘paradox’ shows the need to increase genetic variability and environmental diversification in breeding programs that are developing higher-yielding climate-resilient cultivars. Breeding programs also need to target traits associated with improved adaptation to increased temperatures and tolerance to heatwaves, which requires multidisciplinary integration.

Looking to the past for answers

Over the past 10,000 years, the climate has been unusually stable, meaning modern, domesticated bread wheat has not been exposed to wide swings in temperature that are forecast for the next 100 years. Wild wheat relatives, like Triticeae, have had millions of years of experience in weathering changing climates.

CIMMYT has a pre-breeding program that examines wild wheat races and more exotic sources for climate resilience traits. When such traits are identified genetically, new breeding techniques such as gene editing can be employed and breeding models refined.

To activate these new techniques, several barriers need to be overcome, including more sharing of germplasm between countries and breeding teams, the use of faster breeding cycles where appropriate and improved understanding of genes that improve heat tolerance without a yield penalty.

With reduced climate resilience and slow cultivar development, the need to increase genetic variability for climate adaptation is urgent, particularly in developing countries, where warming rate is unprecedented, and breeding cycles tend to be longer than in developed countries.

“Faced with more climate variability, breeders need to revisit their breeding strategies to integrate genetic diversity that confers climate resilience without penalties to productivity,” said Reynolds.

CropSustaiN BNI Wheat Mission

The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)—and to accelerate breeding and farmer access to BNI wheat varieties.

With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI crops’ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.

The challenge

Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest ‘crop’ consumer of nitrogen-based fertilizer—a relatively nitrogen-inefficient cereal—at the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.

A solution: BNI-wheat

BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.

A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.

Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.

 

Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.

Other BNI-crops

CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.

Objectives and outcomes

This high risk, high reward mission aims to:

  • Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
  • Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
  • Work with stakeholders on policy change that enables BNI crops production and markets

Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.

Wheat spikes against the sky at CIMMYT’s El BatĂĄn, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)

A collaborative effort

CIMMYT is the lead implementer of Novo Nordisk Foundation’s mission funding. CropSustaiN’s interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.

The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.

Impact on climate change mitigation and Nationally Determined Contributions (NDCs)

The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.

International public goods, governance, and management

CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.

Invitation to join the mission

The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.

Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundation’s Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.

Additional reference material

  1. BNI International Consortium (Japan International Research Center for Agricultural Sciences, JIRCAS)
  2. Nitrification inhibitors: biological and synthetic (German Environment Agency, Umweltbundesamt)
  3. CropSustaiN: new innovative crops to reduce the nitrogen footprint form agriculture
  4. Annual Technical Report 2024. CropSustaiN: A new paradigm to reduce the nitrogen footprint from agriculture
  5. BNI-Wheat Future: towards reducing global nitrogen use in wheat
  6. CIMMYT Publications Repository

Helping farmers access waterlogged agricultural lands amid prevailing food insecurity in Sudan

In conflict-ridden Sudan, Gadarif State in Eastern Sudan is the most important region for sorghum production, with about 5-6 million feddan (5.18-6.22 acres) cultivated on an annual basis on large scale farms equipped with agricultural machinery. However, like the country, the state is covered with vertisols, clay-rich soils that shrink and swell with changes in moisture content, that become waterlogged and cannot be properly cultivated during rainy season.

To address the issue, technical experts from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) are mapping areas affected by waterlogging in two localities, namely El Fashaga and El Nahal, to identify the most suitable lands to establish large drainage implementing sites integrated with improved crop varieties of sorghum. This work is part of CIMMYT’s Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which works with farmers and herders to reduce their need for humanitarian assistance in conflict-affected Sudan.

“To address the issue of vertisols affected by water logging in Al Gadarif, the prominent agricultural region in Sudan, we used the map developed by ICRISAT in 2023 and consulted with local farmers to identify 100 hectares El Fashaga and El Nahal localities to improve drainage and avoid waterlogging,” said Gizaw Desta, senior scientist at ICRISAT.

Waterlogging is common on poorly drained soil or when heavy soil is compacted, preventing water from being drained away. This leaves no air spaces in the saturated soil, and plant roots literally drown. Waterlogging can be a major constraint to plant growth and production and, under certain conditions, will cause plant death. In Gadarif state, 2.3 million hectares and 1.8 million hectares of vertisols are under high and moderate waterlogging conditions that impair crop production during the rainy season, leading to food insecurity if not reversed with appropriate agricultural practices.

Experts evaluate the compacted soil. (Photo: CIMMYT)

“For years, my farm has been flooded by water during the rainy season, and I cannot cultivate sorghum as plants die of water suffocation”, said Ali Ahmed, a farmer from Al-Saeeda area of ​​Al-Nahal locality who is affected by waterlogging. “Alternatively, we as farmers affected by waterlogging were forced to cultivate watermelon instead of our main staple food sorghum. This shift in the crops we cultivate is hardly affecting our income.  I am glad that ICRISAT is working to establish drainage systems and address waterlogging within our lands.”

“At SASAS, we strive to ensure that farmers have access to fertile lands and other agricultural inputs. We work with our partners to address all problems facing farmers including waterlogging to help farmers continue producing their staple food and cash crops,” said Abdelrahman Kheir, SASAS chief of party in Sudan.

Linking sustainable agricultural methods

While agricultural food systems feed the world, they also account for nearly a third of the world’s greenhouse gas (GHG) emissions. Reducing the negative environmental footprint of agrifood systems while at the same time maintaining or increasing yields is one of the most important endeavors in the world’s efforts to combat climate change.

One promising mechanism is carbon credits, a set of sustainable agricultural practices designed to enhance the soil’s ability to capture carbon and decrease the amount of GHG’s released into the atmosphere.

Farmers generate these carbon credits based on their reduction of carbon released and then sell these credits in the voluntary carbon market, addressing the critical concern of sustainably transforming agricultural systems without harming farmers’ livelihoods.

Two is better than one

Conservation Agriculture (CA) is a system that involves minimum soil disturbance, crop residue retention, and crop diversification, among other agricultural practices. Its potential to mitigate threats from climate change while increasing yields has made it increasingly popular.

Using remote sensing data and surveys with farmers in the Indian states of Bihar and Punjab, four CIMMYT researchers quantified the effect on farmer’s incomes by combining CA methods with carbon credits. Their findings were published in the April 22, 2024, issue of Scientific Reports.

Previous CIMMYT research has shown that implementing three CA practices: efficient fertilizer use, zero-tillage, and improved rice-water management could achieve more than 50% of India’s potential GHG reductions, amounting to 85.5 million tons of CO2.

“Successfully implemented carbon credit projects could reward farmers when they adopt and continue CA practices,” said Adeeth Cariappa, lead author and environmental and resource economist at CIMMYT. “This creates a win–win scenario for all stakeholders, including farmers, carbon credit businesses, corporate customers, the government, and the entire economy.”

Farmers would enjoy an additional income source, private sectors would engage in employment-generating activities, the government would realize cost savings, and economic growth would be stimulated through the demand generated by these activities.

Less carbon and more income

The researchers found by adopting CA practices in wheat production season, farmers can reduce GHG emissions by 1.23 and 1.97 tons of CO2 per hectare of land in Bihar and Punjab States, respectively.

The researchers determined that CA practices, when combined with carbon credits, could boost farmer income by US $18 per hectare in Bihar and US $30 per hectare in Punjab. In Punjab, however, there is a ban on burning agricultural residue, which reduces potential earnings from carbon markets to US $16 per hectare.

“More farmers engaging CA methods is an overall positive for the environment,” said Cariappa. “But convincing individual farmers can be a struggle. By showing them that carbon credits are another potential source of income, along with increased yields, the case for CA is that much stronger.”

While the potential benefits are significant, there are challenges to linking CA and carbon credits.

“To achieve these potential benefits, carbon credit prices must rise, and projects must be carefully planned, designed, monitored, and implemented,” said Cariappa. “This includes selecting the right interventions and project areas, engaging with farmers effectively, and ensuring robust monitoring and implementation mechanisms.”

Eight-year study in India by CGIAR and ICAR scientists suggests adoption of Conservation Agriculture can boost yields and manage an increasing carbon footprint

Twenty-twenty four is set to become one of the hottest years on record. Warmer temperatures are destabilizing ecosystems, threatening human life, and weakening our food systems. On Earth Overshoot Day, CIMMYT calls for increased attention to the interplay between environmental health and efficient, abundant food production through sustainable practices.

Food systems are one of the top contributors to greenhouse gas (GHG) emissions, accounting for one-third of all human-caused GHG emissions. While contributing to climate change, food production is also sorely impacted by it, undermining agrarian livelihoods and the ability to feed an increasing global population. Extreme and unpredictable weather is causing economic hardship, food and nutrition insecurity, and use of environmentally harmful practices.

In the Western Indo-Gangetic Plains of India, rice and wheat are the dominant staple crops, grown yearly in rotations covering more than 13 million hectares. But conventional tillage-based methods have been unable to increase yields. Some of these traditional methods based on intensive tillage have harmed the soil, exhausted aquifers, and increased GHG emissions, without raising crop yields. CGIAR soil and climate scientists and agronomists have partnered to find solutions that help increase rice and wheat production, while minimizing harmful environmental effects.

One of the CA-based practice research fields at ICAR-CSSRI. (Photo: Nima Chodon/CIMMYT)

At CIMMYT, we interviewed a group of CGIAR scientists who recently published a long-term study on sustainable intensification in the Western Indo-Gangetic Plains. Their work, conducted at the Central Soil and Salinity Research Institute (ICAR-CSSRI) in Karnal, India, demonstrates how integrating Conservation Agriculture (CA)-based principles into cropping systems can support climate-resilient and sustainable food systems.

“Today, agriculture faces many challenges, such as increasing input costs to maintain yield in the face of climate change and ensuring the sustainability of agricultural land,” said Mahesh Gathala, senior scientist at CIMMYT.

He mentioned that the collaborative research spanned over eight years, covering various crops and cropping cycles, and studying seven scenarios representing different farming practices. One scenario was based on farmers’ existing practices, while the other six involved combining and integrating the agronomic management practices and crop diversification options based on CA principles. The team collected data on yield, profitability, soil health, global warming potential, and fertilizer use, to name critical factors.

Gathala highlighted, “The findings are consistent with our previous research conclusions, while reinforcing the significant compounding impact of Conservation Agriculture-based cropping practices in the region, in the long-run.”

According to M.L. Jat, a former CIMMYT scientist who is global director for ICRISAT’s Resilient Farm and Food Systems Program, the CA-based measures that emerged from this research are applicable in much of the Western Indo-Gangetic Plains and beyond.

“Most of our research trials over some 2-5 years have provided substantial evidence in favor of Conservation Agriculture-based cropping diversification and sustainable intensification,” Jat said. “However, this study is one of very few long-term, collaborative research trials that provide strong evidence for policy decisions on resilient, climate-smart cropping system optimization to boost yields and nutrition, while improving soil health and fighting climate change.”

Other lead authors of the publication, Timothy Krupnik, principal scientist at CIMMYT and CGIAR South Asia, and Tek Sapkota, the Climate Change Science lead at CIMMYT, provided further explanation of important lessons from this eight-year study.

Two CA-based practice research scenarios at ICAR-CSSRI. (Photo: Nima Chodon/CIMMYT)
How does CA contribute to the sustainable and conscious use of natural resources? In what ways could CA be framed to governments to develop policies that do a better job of feeding us nutritious food while contributing to climate change adaptation and mitigation?

Tek Sapkota: Conservation Agriculture promotes the production of nutritious, diversified crops, sustainable yield improvements, climate change adaptation, economic benefits, and environmental protection. Governments can support these initiatives through financial incentives, subsidies, investment in research and extension services, and the development of supporting infrastructure and market access. This support further enables farmers to implement and benefit from sustainable agricultural practices.

CIMMYT and CGIAR-led projects in South Asia, like CSISA/SRFSI/TAFFSA, have already recorded some wins for CA implementation. What are some immediate implications of this study on CIMMYT’s ability to deliver this knowledge to more smallholders in the region?

Timothy Krupnik: The ICAR-CIMMYT partnership establishes long-term experiments, or living labs, across diverse ecologies to build trust among smallholder farmers, extension workers, and stakeholders. These initiatives aim to demonstrate CA’s benefits, as part of sustainable intensification. The science-based evidence generated will be co-owned by partners, through their extension networks, and shared with farm communities to highlight CA’s advantages. Additionally, the study supports reducing carbon footprints, contributing to climate change mitigation and sustainable agricultural practices and potentially used by carbon market players to disseminate CA.

Apart from climate resilience, could you explain what are the economic benefits of diversification in the rice-wheat dominant systems?

Tek Sapkota: Diversifying away from rice-wheat cropping systems provides significant economic benefits beyond climate resilience. It enhances income stability, improves resource use efficiency, maintains soil health, reduces production costs (such as irrigation expenses and water usage), and opens up new market opportunities. Diversification contributes to the creation of more sustainable and profitable farming systems.

How can CGIAR and national agricultural research and extension systems promote more widespread adoption of these technologies by farmers in South Asia and beyond?

Tek Sapkota: By establishing a multi-stakeholder platform for learning, knowledge sharing, and developing adoption pathways, CGIAR Research Centers could work together with national partners to create programs that support capacity building and knowledge transfer. Another crucial step would be to collaboratively adapt and customize the technology to local production conditions ensuring smooth implementation at the grassroots level. Additionally, it is important to encourage innovations in policies, markets, institutions and financial mechanisms to facilitate scaling.

Read excerpts of the full journal article: Enhancing productivity, soil health, and reducing global warming potential through diverse conservation agriculture cropping systems in India’s Western Indo-Gangetic Plains

Sowing seeds of change to champion Conservation Agriculture

Florence Mutize’s thriving fields of maize, in Bindura, a small town in Mashonaland Central region of Zimbabwe, serve as living proof of the successes of Conservation Agriculture (CA), a sustainable cropping system that helps reverse soil degradation, augment soil health, increase crop yields, and reduce labor requirements while helping farmers adapt to climate change. The seeds of her hard work are paying off, empowering her family through education and ensuring that a nutritious meal is always within reach.

“I have been dedicated to these CA trials since 2004, starting on a small plot,” said Mutize. “Now, with years of experience and adaptation to changing climates, I’ve seen my yields increase significantly, harvesting up to a tonne of maize on a 30 by 30m plot using direct seeding and ripping techniques together with crop residue to cover the soil and rotating maize with soybean.”

Mutize is one of many mother trial host farmers implementing CA principles through the CGIAR Ukama Ustawi regional initiative in Bindura. A mother trial is a research approach involving testing and validating a suite of climate-smart agriculture technologies to identify the best-performing ones which can then be adopted on a larger scale.

Nestled in the Mazowe valley, Bindura experiences a subtropical climate characterized by hot, dry summers and mild, wet winters, ideal for agricultural production. But the extremes of the changing climate, like imminent dry spells and El Niño-induced threats, are endangering local farmers. Yet, smallholder farmers like Mutize have weathered the extremes and continued conducting mother trials, supported by the agriculture extension officers of the Agricultural and Rural Development Advisory Services (ARDAS) Department of the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development.

“Where I once harvested only five bags of maize, rotating maize with soybeans now yields 40 bags of maize and 10 bags of soybeans,” Mutize proudly shares.

The UU-supported CA program also extends to farmers in Shamva, like Elphas Chinyanga, another mother trial implementer since 2004.

Elphas Chinyanga and his son inspect maize cobs in their field. (Photo: CIMMYT)

“From experimenting with various fertilization methods to introducing mechanized options like ripping and direct seeding, these trials have continuously evolved,” said Chinyanga. “Learning from past experiences, we have gotten much more benefits and we have incorporated these practices into other fields beyond the trial area. I am leaving this legacy to my children to follow through and reap the rewards.”

Learning has been a crucial element in the dissemination of CA technologies, with CIMMYT implementing refresher training together with ARDAS officers to ensure that farmers continue to learn CA principles. As learning is a progressive cycle, it is important to package knowledge in a way that fits into current training and capacity development processes.

Pre-season refresher training with mother trial host farmers and extension in Hereford, Zimbabwe. (Photo: CIMMYT)

This process could also be labelled as “scaling deep” as it encourages farmers to move away from conventional agriculture technologies. Reciprocally, scientists have been learning from the experiences of farmers on the ground to understand what works and what needs improvement.

Inspired by the successes of his peers in Shamva, Hendrixious Zvomarima joined the program as a host farmer and saw a significant increase in yields and efficiency on his land.

“For three years, I have devoted time to learn and practice what other farmers like Elphas Chinyanga were practicing. It has been 14 years since joining, and this has been the best decision I have made as it has improved my yields while boosting my family’s food basket,” said Zvomarima.

The longevity and success of the initiative can be attributed to committed farmers like Mutize, Chinyanga, and Zvomarima, who have been part of the program since 2004 and are still executing the trials. Farmer commitment, progressive learning, and cultivating team spirit have been the success factors in implementing these trials. CIMMYT’s long-term advocacy and learning from the farmers has been key to a more sustainable, resilient, and empowered farming community.

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

Unlocking Zambia’s maize potential through crop diversity

While maize is the primary staple food crop in Zambia, its productivity on farmers’ fields reaches on average only about 20 percent of what it could achieve with good agronomic practices. Some reasons for this inefficiency are use of traditional varieties, low fertilizer use, and ineffective weed and pest control.

Closing the gap between potential and realized yields would have major benefits for farmers in Zambia, both in terms of income and food security at the household and national levels. One possibility to increase maize productivity is by increasing crop diversity through the inclusion of legumes in maize-based farming systems. This could be done through intercropping, growing legumes in the rows between maize plants, or crop rotations and alternating maize and legumes in the same field from season to season.

CIMMYT scientists, along with collaborators from the Zambia Agriculture Research Institute (ZARI) and the University of Zambia’s School of Agricultural Science, set out to determine which cropping systems might lead to increased productivity for maize farmers in Zambia and their results were published in the journal Field Crops Research.

“There is great potential in Zambia to increase yields to help ensure food security,” said Mulundu Mwila, PhD candidate and scientist at ZARI. “We wanted to determine the cropping systems that offered the most benefits.”

Setting up the study

For this research, ZARI and CIMMYT scientists established maize-based cropping systems trials, comprising maize monocropping, and maize-legume rotations and intercrops under both ‘conventional’ tillage, and Conservation Agriculture, across 40 farms in a variety of agroecological zones in Zambia.  The team also conducted household surveys in the same communities hosting the on-farm trials to determine the share of households with enough cultivated land to benefit from the tested cropping systems.

Researchers found that the tested cropping systems produced more maize per hectare compared to non-trial host farms in the same region. The greatest positive effect uncovered was that maize-legume rotations in Zambia’s Eastern Province had the potential to increase maize yield by 1 to 2 tons per hectare, per growing season. “The Eastern Province trials showed better results because of stable and adequate rainfall amounts and distribution and because of using groundnut as a rotation crop,” said Mwila.

Researchers attributed the small effect of legumes on maize yield in the Southern Province to low levels of biomass production and nitrogen fixation, due to low and erratic rainfall, and to low residue incorporation because of livestock grazing. Conversely, the small effect of legumes on maize yield in the Northern Province might be attributed to the high rainfall amount in the region, leading to high rates of leaching of residual nitrogen during the growing season as well as the use of common beans as the preceding crop.

Finding the right amount of land

With evidence showing the potential benefits of maize-legume rotations, the availability of land is a constraint for small farms across sub-Saharan Africa, thus it is important to quantify the land area needed for farmers to implement maize-legume rotations.

“Our findings match prior research showing the benefits of maize-legume rotations in Eastern Zambia” said Silva. “However, implementing maize-legume rotations remains a challenge for many smallholders due to small farm sizes.”

Nearly 35, 50, and 70% of the surveyed farms in the Northern, Eastern, and Southern Provinces, respectively, had enough land to achieve the same level of maize production obtained on their farm with the yields of the maize-legume rotations tested in the on-farm trials. “With our findings showing increased maize yields, and our efforts to determine the amount of land needed for food and nutrition security at household level, the next steps can be to facilitate methods to disseminate this information to policy makers and to farmers that have enough land area to benefit from diversified cropping systems,” said Silva.

For farmers with not enough land to reap the benefits of maize-legume rotations, intercropping legumes within the maize has shown promising results. The researchers also call for further research to specify the contributing factors to small farms not seeing benefits from maize-legume rotations.

CIMMYT scientists deliver training to improve agriculture in Uzbekistan

Scientists from the Research Institute of Plant Genetic Resources in Uzbekistan (RIPGR) attended training on gene bank management and genetic resources, coordinated by CIMMYT-TĂŒrkiye on 13-20 April 2024. Hosted at the Turkish Department of Agricultural Economics and Project Management (TAGEM), the training is supported by the World Bank Group, which is helping Uzbekistan to modernize the country’s agriculture. With one of the highest levels of wheat consumption in Central Asia, the modernization project aims to increase Uzbekistan’s wheat yield and meet demand for the crop.

The course included lectures on status and activity of the Turkish Seed Germplasm Bank (TSGB), policy instruments and international perspectives on plant genetic resources, herbarium techniques, biotechnology studies, and genetic resources. Uzbek scientists also became acquainted with scientific laboratories, visiting the field station in İkizce Gölbaßı and learned about the breeding, pathology, and agronomy activities at the station as well as the collaboration activities between CGIAR Research Centers and TAGEM.

Country-wide expertise

In addition to sessions at CIMMYT’s office in TĂŒrkiye, participants also visited the National Gene Bank in Ankara and the National Gene Bank of Izmir.

At the latter location, experts delivered sessions on a range of topics, such as the Plant Diversity and Genetic Resources Program of TĂŒrkiye; in vitro and cryopreservation techniques; the conservation, data recording, and documentation of plant genetic resources; conservation and utilization of vegetable genetic resources; conservation studies on mushroom genetic resources; studies on wheat genetic resources and wheat breeding at the international winter wheat breeding program; regional collaboration to combat wheat rust disease in Central and West Asia and North Africa (CWANA); and international winter wheat breeding strategies.

In addition to the seminar sessions, the participants also visited several locations to familiarize themselves with scientific processes in field and laboratory conditions. They visited the field gene banks, guided by Fatih Çağir, who provided brief information about the fruit genetic resources activities of TĂŒrkiye. They also visited the plant collection activities and herbarium techniques laboratory, the National Gene Bank, Herbarium, Fungarium & Seed Physiology Laboratory of the Plant Genetics Resources Department & Plant Tissue Center, and the Regional Cereal Rust Research Center.

The importance of the training course for Uzbek scientists is to study the system of rational use, conservation, and management of plant genetic resources of TĂŒrkiye and to introduce new innovative knowledge in Uzbekistan. It also consists of discussing aspects related to bilateral cooperation and sustainable development in the field of plant genetic resources as well gene bank management.

The delegation from Uzbekistan, on behalf of the Ministry of Agriculture of the Republic of Uzbekistan, and the director of the Research Institute of Plant Genetic Resources, Zafarjon Mashrapovich Ziyaev, expressed their deep gratitude to the organizers and departments for this training course.

There’s an increasing interest for hubs in Mexico

Walking methodologies for CIMMYT’s South Pacific hub (Photo: CIMMYT)

“We know about what CIMMYT has done with the hubs here in Mexico, so we’re trying to understand how this methodology works, what happens within the research platforms, in the parcels, the relationship between these two spaces, the technological menus, and how that menu is reaching up to farmers,” says Emmanuel Ekom, from the Ernest and Young team (organization which in the framework of Excellence in Agronomy, a CGIAR initiative) studies how innovation is rising in agriculture.

“We understand that CIMMYT in Mexico has been able to create an innovation approach that prioritizes the farmer. I came from Nigeria with my team, and we are delving ourselves into this approach to comprehend its functioning and see if we can replicate these brilliant ideas in several other countries of the Global South. So, we have visited many interesting hubs in all Mexico,” says Emmanuel.

“One of the most interesting things we were able to experience in one of the hubs was that the mayor from a small town was trained by CIMMYT staff. He understood what the agriculture conservation involves and had contributed to share this knowledge to his people”, mentions Emmanuel who also highlights the participation and inclusion from both private, public, and teaching institutions in the operation of the hubs.

“You could see their faces fill with excitement, especially farmer women when they were talking about how much time they could have saved if they had used the technology developed by CIMMYT and its collaborators. Such methodology is not only making life easier, but it’s also driving farmer women to increase their incomes and helping them save time so that they concentrate on other things. Just the same, I was able to see how the gender-based approach is coping with CIMMYT’s goal and that’s impressive”, says Emmanuel.

“I saw first-hand how the hubs’ function had made an impact on farmers lives, but the most interesting part was seeing both hubs’ managers and farmers get along very well. Every time we went to a parcel, our plan was to only visit one farmer but sometimes we ended up visiting 10 or 15, and the manager would go and chat with them. And I think that’s amazing”, says Emmanuel, for whom the experience of the hubs in Mexico will allow him to draw up the path to replicate this methodology in other latitudes.

This blog piece was originally published in Spanish. 

Digital solutions advance soil health for sustainable food systems and climate resilience

Panelists at the “Digging Deeper: Advancements in Soil Health Monitoring for Sustainable Food Systems and Climate Resilience” side event, hosted by IFDC at the Africa Fertilizer and Soil Health (AFSH) Summit held in Nairobi. (Photo: Marion Aluoch/CIMMYT)

Farmers interact with soils daily, supporting the entire food system. Empowering them with tools for research and scalable learning initiatives is crucial.

Speaking as a panelist at the 2024 Africa Fertilizer and Soil Health (AFSH) summit, Paswel Marenya, CIMMYT senior scientist, emphasized the need to enhance farmers’ capacities to effectively utilize digital tools.

“Digital tools do not inherently lead to impactful changes unless they enhance farmers’ capabilities in managing soil health,” said Marenya. “The potential of a digital tool should enable farmers to shorten the cycle from receiving information to applying new techniques.”

Paswel Marenya, senior scientist at CIMMYT. (Photo: Marion Aluoch/CIMMYT)

Simple, easy to use tools

One promising solution is the development of user-friendly platforms that synthesize essential information from cutting-edge research into practical tools.

“In partnership with IFDC, CIMMYT is currently collaborating to develop an interface that synthesizes essential information into a user-friendly digital platform. This interface would be complemented by tools that allow for on-site testing,” said Marenya.

“CIMMYT aims to design digital tools that not only improve access to information but enhance the farmers’ ability to learn, innovate, and adapt. This approach promises real progress beyond more recommendations,” said Marenya.

This sentiment was echoed by Leigh Winowiecki, soil and land health global research lead at CIFOR-ICRAF, who discussed advancements in soil health monitoring and highlighted the Land Degradation Surveillance Framework (LDSF) which collects data on various indicators of soil health.

Leigh Ann Winowiecki, global research lead for soil and land health at CIFOR-ICRAF. (Photo: Marion Aluoch/CIMMYT)

Addressing the forum as the keynote speaker for the side event titled, “Digging deeper: Advancement in soil health monitoring for sustainable food systems and climate resilience,” Winowiecki showcased the global implementation and impact of the framework, noting its implementation in 40 countries.

“This framework is a field-based method that collects data on various indicators of soil health, land degradation, and vegetation diversity across landscapes,” Winowiecki said.

The findings from the framework guide practical interventions to mitigate soil erosion and influence policy.

Annie Wakanyi, director of partnerships & business development at One Acre Fund, highlighted how they prioritize farmers by providing high-quality inputs on credit, ensuring they are distributed near their farm fields, and offering training on usage, as well as assisting farmers in accessing markets for the surplus they produce.

Annie Wakanyi, director of global government partnerships, One Acre Fund. (Photo: Marion Aluoch/CIMMYT)

The private sector’s role was addressed by Jonathan Atkinson, Farm Service Unit Africa, who introduced the “cost to serve model” to understand the dynamics between costs and return on investments for farmers. He emphasized the need for practical, scalable approaches for soil health interventions that cater for commercial activities.

Jonathan Atkinson, farm service unit Africa. (Photo: Marion Aluoch/CIMMYT)

Professor Nalivata of Lilongwe University of Agriculture and Natural Resources emphasized the importance of addressing soil erosion to achieve soil health in Africa using Malawi as a case study. He discussed policy implementation on fertilizer, promoting climate-smart agricultural practices and research as strategies implemented to address soil degradation in Malawi, calling for more initiatives like incentives for farmers and building human capacity.

“This can be achieved if we maintain a collaborative approach involving government, academia, the private sector, and donor communities to transform soil health and improve livelihoods,” said Nalivata.

Latha Nagarajan, SOILS consortium director IFDC’s USAID-funded soils initiative. (Photo: Marion Aluoch/CIMMYT)

Latha Nagarajan, in her presentation on the IFDC’s USAID-funded soils initiative, highlighted how the initiative improves livelihoods through innovative soil management. She explained the ‘space to place’ approach, which integrates spatial remote sensing data with place-specific soil health data to enhance soil management decisions, increasing efficiency, resilience, and sustainability.