Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Preserving the legacy of biodiversity

Seed security is the first step towards food security. The International Maize and Wheat Improvement Center (CIMMYT) preserves 28,000 unique seed samples of maize and 150,000 of wheat at its genebank in Mexico.

The Global Seed Vault in Svalbard opened in 2008. Since then, CIMMYT has duplicated and deposited 50 million seeds — 170,000 samples of maize and wheat — at Svalbard.

This year, CIMMYT sent 24 boxes of seed, with 332 samples of maize and 15,231 samples of wheat.

Join these seeds on a journey, as they travel more than 8,000 km from CIMMYT’s genebank in Mexico to the Global Seed Vault in the Arctic.

A supermarket, rather than a museum

This treasure, kept in the global network of genebanks, is key to ensuring sustainable, nutritious agricultural systems for future generations.

The purpose of genebanks is not just to preserve seed, but to use its biodiversity to address the needs of the future — and the needs of today.

Climate change is already impacting resource-poor farmers and consumers in low- and middle-income countries. Researchers and breeders at CIMMYT are rolling out solutions to these challenges, based on the diverse genetic resources kept in the genebank. As a result, farmers can use new varieties that yield more, need less inputs, and are more tolerant to drought or heat.

Our internal estimates show that about 30% of maize and more than 50% of wheat grown worldwide can be traced to CIMMYT germplasm.

Humanity’s legacy

Maize and wheat originated about 10,000 years ago. Since then, it’s survived war, drought, diseases, migration, birds, low yields — and the hard choice between feeding children or planting again.

Keepers of genebanks around the world are only the depositors of this legacy, which belongs to all humanity. CIMMYT will continue to preserve these seeds and to make their biodiversity available to researchers and famers, to solve today’s and tomorrow’s most pressing issues.

Cover photo: A NordGen staff member brings a box of seed into the Global Seed Vault in Svalbard, Norway. (Photo: Thomas Sonne/Common Ground Media for NordGen)

Fawligen registered in Bangladesh

Ispahani and AgBiTech are pleased to announce the formal registration of a biological control for Fall Armyworm in Bangladesh.

This rapid assessment and registration despite the ongoing lockdown due to Covid-19 is the result of months of collaborative hard work and support from members representing multiple organizations including USAID, CIMMYT, the Ministry of Agriculture, Bangladesh Agricultural Research Institute, Plant Protection Wing of Agricultural Extension, and the Fall Armyworm National Task Force.

Read more here: https://www.prnewswire.com/news-releases/fawligen-registered-in-bangladesh-301061228.html

Coronavirus lockdown diets look the same the world over: Bread, beans, and comfort food

Of the 6,000 plant species that have been cultivated by humans, just nine of them account for 66% of cultivated crops, according to the FAO’s 2019 report from the Commission on Genetic Resources for Food and Agriculture. Of the 7,774 local breeds of livestock worldwide, 26% are in danger of becoming extinct.

That poses dangers for the robustness of the environment, the safety of our food supply chain, and even our potential exposure to pandemics, due to diseases that jump from animals to humans. It also makes our food less nutritious, less interesting—and less unique.

The COVID-19 crisis could offer a chance to reassess the way we eat—to revamp the diversity of our diets and our food systems, revisiting local and forgotten foods, particularly when it comes to fruits and vegetables.

Read more here: https://fortune.com/2020/04/18/coronavirus-cooking-comfort-food-beans-bread-lockdown-diet-menu-yeast-covid-19/ 

Why Conserving Biodiversity Is Crucial to Prevent Future Pandemics

“Today, 7.8 billion humans exploit almost each and every ecosystem of the planet. Livestock have followed humans in most of these ecosystems and are now far more numerous than wild vertebrates,” Frederic Baudron, a systems agronomist at the International Maize and Wheat Improvement Centre, said in an interview. For example, there are 4.7 billion cattle, pigs, sheep and goats and 23.7 billion chickens on Earth. “We live on an increasingly ‘cultivated planet’, with new species assemblages and new opportunities for pathogens to move from one species to another.”

However, the biodiversity crisis is seldom considered a global issue and often not a pressing one, and conservationists say it isn’t written about as often as it should be. “Media coverage for the biodiversity crisis is eight-times lower than for the climate crisis”, according to Baudron. “We need to reduce the frequency of pandemics like COVID-19 by conserving and restoring biodiversity globally, most crucially in disease hotspots.”

Read more here: https://science.thewire.in/environment/why-conserving-biodiversity-is-crucial-to-prevent-future-pandemics/

Safeguarding biodiversity is essential to prevent the next COVID-19

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

While the world’s attention is focused on controlling COVID-19, evidence points at the biodiversity crisis as a leading factor in its emergence. At first glance, the two issues might seem unrelated, but disease outbreaks and degraded ecosystems are deeply connected. Frédéric Baudron, systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and Florian Liégeois, virologist at the Institut de Recherche pour le Développement (IRD) share their insights on the current COVID-19 crisis and the link between biodiversity loss and emerging infectious diseases.

What trends are we seeing with infectious diseases like COVID-19?

We see that outbreaks of infectious diseases are becoming more frequent, even when we account for the so-called “reporting bias”: surveillance of such events becoming better with time and surveillance being better funded in the North than in the South.

60% of infectious diseases are zoonotic, meaning that they are spread from animals to humans and 72% of these zoonoses originate from wildlife. COVID-19 is just the last in a long list of zoonoses originating from wildlife. Other recent outbreaks include SARS, Ebola, avian influenza and swine influenza. As human activities continue to disturb ecosystems worldwide, we are likely to see more pathogens crossing from wildlife to humans in the future. This should serve as a call to better manage our relationship with nature in general, and wildlife in particular.

Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)
Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)

Why are we seeing more cases of diseases crossing from animals to humans? Where are they coming from?

Evidence points to bushmeat trade and consumption as the likely driver for the emergence of COVID-19. The emergence of SARS and Ebola was also driven by bushmeat consumption and trade. However, when looking at past outbreaks of zoonoses caused by a pathogen with a wildlife origin, land use changes, generally due to changes in agricultural practices, has been the leading driver.

Pathogens tends to emerge in well known “disease hotspots,” which tend to be areas where high wildlife biodiversity overlaps with high population density. These hotspots also tend to be at lower latitude. Interestingly, many of these are located in regions where CIMMYT’s activities are concentrated: Central America, East Africa and South Asia. This, in addition to the fact that agricultural changes are a major driver of the emergence of zoonoses, means that CIMMYT researchers may have a role to play in preventing the next global pandemic.

Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)
Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)

How exactly does biodiversity loss and land use change cause an increase in zoonotic diseases?

There are at least three mechanisms at play. First, increased contact between wildlife and humans and their livestock because of encroachment in ecosystems. Second, selection of wildlife species most able to infect humans and/or their livestock — often rodents and bats — because they thrive in human-dominated landscapes. Third, more pathogens being carried by these surviving wildlife species in simplified ecosystems. Pathogens tend to be “diluted” in complex, undisturbed, ecosystems.

The fast increase in the population of humans and their livestock means that they are interacting more and more frequently with wildlife species and the pathogens they carry. Today, 7.8 billion humans exploit almost each and every ecosystem of the planet. Livestock have followed humans in most of these ecosystems and are now far more numerous than wild vertebrates: there are 4.7 billion cattle, pigs, sheep and goats and 23.7 billion chickens on Earth! We live on an increasingly “cultivated planet,” with new species assemblages and new opportunities for pathogens to move from one species to another.

Wildlife trade and bushmeat consumption have received a lot of attention as primary causes of the spread of these viruses. Why has there been so little discussion on the connection with biodiversity loss?

The problem of biodiversity loss as a driver of the emergence of zoonoses is a complex one: it doesn’t have a simple solution, such as banning wet markets in China. It’s difficult to communicate this issue effectively to the public. It’s easy to find support for ending bushmeat trade and consumption because it’s easy for the public to understand how these can lead to the emergence of zoonoses, and sources of bushmeat include emblematic species with public appeal, like apes and pangolins. Bushmeat trafficking and consumption also gives the public an easy way to shift the blame: this is a local, rather than global, issue and for most of us, a distant one.

There is an inconvenient truth in the biodiversity crisis: we all drive it through our consumption patterns. Think of your annual consumption of coffee, tea, chocolate, sugar, textiles, fish, etc. But the biodiversity crisis is often not perceived as a global issue, nor as a pressing one. Media coverage for the biodiversity crisis is eight times lower than for the climate crisis.

The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)
The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)

Agriculture is a major cause of land use change and biodiversity loss. What can farmers do to preserve biodiversity, without losing out on crop yields?

Farming practices that reduce the impact of agriculture on biodiversity are well known and form the foundation of sustainable intensification, for which CIMMYT has an entire program. A better question might be what we can do collectively to support them in doing so. Supportive policies, like replacing subsidies by incentives that promote sustainable intensification, and supportive markets, for example using certification and labeling, are part of the solution.

But these measures are likely to be insufficient alone, as a large share of the global food doesn’t enter the market, but is rather consumed by the small-scale family farmers who produce it.

Reducing the negative impact of food production on biodiversity is likely to require a global, concerted effort similar to the Paris Agreements for climate. As the COVID-19 pandemic is shocking the world, strong measures are likely to be taken globally to avoid the next pandemic. There is a risk that some of these measures will go too far and end up threatening rural livelihoods, especially the most vulnerable ones. For example, recommending “land sparing” — segregating human activities from nature by maximizing yield on areas as small as possible —  is tempting to reduce the possibility of pathogen spillover from wildlife species to humans and livestock. But food production depends on ecosystem services supported by biodiversity, like soil fertility maintenance, pest control and pollination. These services are particularly important for small-scale family farmers who tend to use few external inputs.

How can we prevent pandemics like COVID-19 from happening again in the future?

There is little doubt that new pathogens will emerge. First and foremost, we need to be able to control emerging infectious diseases as early as possible. This requires increased investment in disease surveillance and in the health systems of the countries where the next infectious disease is most likely to emerge. In parallel, we also need to reduce the frequency of these outbreaks by conserving and restoring biodiversity globally, most crucially in disease hotspots.

Farming tends to be a major driver of biodiversity loss in these areas but is also a main source of livelihoods. The burden of reducing the impact of agriculture on biodiversity in disease hotspots cannot be left to local farmers, who tend to be poor small-scale farmers: it will have to be shared with the rest of us.

Cover photo: Forests in the land of the Ese’eja Native Community of Infierno, in Peru’s Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)

Systems thinking at work in South Asia’s food production

A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)

In 2009, state governments in Northwest India implemented a policy designed to reduce groundwater extraction by prohibiting the usual practice of planting rice in May and moving it to June, nearer the start of monsoon rains.

Although the policy did succeed in alleviating pressure on groundwater, it also had the unexpected effect of worsening already severe air pollution. The reason for this, according to a recent study published in Nature Sustainability, is that the delay in rice planting narrowed the window between rice harvest and sowing of the subsequent crop — mainly wheat — leaving farmers little time to remove rice straw from the field and compelling them to burn it instead.

Even though burning crop residues is prohibited in India, uncertainty about the implementation of government policy and a perceived lack of alternatives have perpetuated the practice in Haryana and Punjab states, near the nation’s capital, New Delhi, where air pollution poses a major health threat.

Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress - Dreamstime.com; Image 11205929)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress – Dreamstime.com; Image 11205929)

Decades of research for development have enabled researchers at the International Maize and Wheat Improvement Center (CIMMYT), the Indian Council of Agricultural Research (ICAR) and other partners to identify potential solutions to this problem.

One particularly viable option focuses on the practice of zero tillage, in which wheat seed is sown immediately after rice harvest through the rice straw directly into untilled soil with a single tractor pass.

In a new blog published as part of the Chicago Council on Global Affairs’ Field Notes series, CIMMYT scientists Hans Braun and Bruno Gerard discuss the combination of agronomic and breeding conditions required to make zero tillage work, and propose a fundamental shift away from current incentives to maximize the region´s cereal production.

Read the full article:
Field Notes – Systems thinking at work in South Asia’s food production

Why heirloom tortillas are an endangered species

Corn is one of the most widely produced crops in the world, and Mexico is home to at least 60 recorded unique landraces, the traditional, locally adapted strains. Preserving these ancient varieties is key for future sustainability, explains geneticist Martha Willcox, who works with the Mexico-based International Maize and Wheat Improvement Center (CIMMYT) to conserve the genes of dwindling crops. But left in the hands of aging campesinos, ancestral maize is at risk of becoming extinct. And the consequent loss of biodiversity, the FAO warned in its 2010 report, will have a major impact on the ability of humankind—which will number nine billion by 2050—to combat food insecurity in the face of climate change.

Read more here: https://www.macleans.ca/society/why-heirloom-tortillas-are-an-endangered-species/

One-minute science: Trent Blare and blue maize products

Some of Mexico’s favorite dishes are taking on a new hue with blue corn chips, blue tortillas or blue tamales. But should breeders, millers, processors and farmer organizations invest in expanding the production of blue maize and blue maize products? Are consumers really interested, and are they willing to pay more?

CIMMYT markets and value chain specialist Trent Blare explains, in one minute, the results of his study, which gives insight into Mexican consumers’ preferences and demand for blue maize tortillas. Consumers near Mexico City perceived blue maize tortillas to taste better and were willing to pay up to a third more to buy them for special family events or to consume them in a restaurant .

Pests and diseases and climate change: Is there a connection?

Responsible for 80% of the food we eat and 98% of the oxygen we breathe, plants are a pillar of life on earth. But they are under threat. Up to 40 percent of food crops are lost to plant pests and diseases each year according to the FAO.

When disease outbreaks occur, the impacts can be devastating. In the 1840s, the Irish potato famine, caused by the fungal disease late blight, killed around one million people and caused another million to emigrate.

The recent invasion of desert locusts throughout the horn of Africa – the worst in decades – shows how vulnerable crops are to pests as well.

The desert locust is one of the most destructive pests in the world, with one small swarm covering one square kilometer eating the same amount of food per day as 35,000 people. The outbreak could even provoke a humanitarian crisis, according to the FAO.

How does climate change affect pests and diseases?

Climate change is one factor driving the spread of pests and diseases, along with increasing global trade.  Climate change can affect the population size, survival rate and geographical distribution of pests; and the intensity, development and geographical distribution of diseases.

Temperature and rainfall are the big drivers of shifts in how and where pests and diseases spread, according to experts.

“In general, an increase in temperature and precipitation levels favors the growth and distribution of most pest species by providing a warm and humid environment and providing necessary moisture for their growth,” says Tek Sapkota, agricultural systems and climate change scientist at the International Maize and Wheat Improvement Center (CIMMYT).

However, when temperatures and precipitation levels get too high, this can slow the growth and reproduction of some pest species and destroy them by washing their eggs and larvae off the host plant, he explains.

This would explain why many pests are moving away from the tropics towards more temperate areas. Pests like warmer temperatures – but up to a point. If it is too hot or too cold, populations grow more slowly. Since temperate regions are not currently at the optimal temperature for pests, populations are expected to grow more quickly in these areas as they warm up.

Crop diseases are following a similar pattern, particularly when it comes to pathogens like fungi.

Movement towards the earth’s poles

Research shows that since 1960, crop pests and diseases have been moving at an average of 3 km a year in the direction of the earth’s north and south poles as temperatures increase.

Tar spot, a fungal disease native to Latin America, which can cause up to 50% of yield losses in maize, was detected for the first time in the US in 2015. Normally prevalent in tropical climates, the disease has started emerging in non-tropical regions, including highland areas of Central Mexico and many counties in the US.

Maize-producing counties in the USA vulnerable to tar spot complex (TSC) calculated based on climate similarity. Khondoker Mottaleb et al. 2018

The southern pine beetle, one of the most destructive insects invading North America, is moving north as temperatures rise and is likely to spread throughout northeastern United States and into southeastern Canada by 2050.

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops. Photo: CIMMYT/Petr Kosina

Wheat rusts, which are among the greatest threats to wheat production around the world, are also adapting to warmer climates and becoming more aggressive in nature, says Mandeep Randhawa, CIMMYT wheat breeder and wheat rust pathologist.

“As temperatures rise, larger quantities of spores are produced that can cause further infection and could potentially result in pathogenic changes through faster rate of their evolution.”

Scientists recently reported that stem rust had emerged in the UK for the first time in 60 years. Climate changes over the past 25 years are likely to have encouraged conditions for infection, according to the study.

Rising CO2 levels

Rising carbon dioxide (CO2) levels could also affect pests indirectly, by changing the architecture of their host plant and weakening its defenses.

“Elevated CO2 concentrations, as a result of human activity and influence on climate change, will most likely influence pests indirectly through the modification in plant chemistry, physiology and nutritional content,” says Leonardo Crespo, CIMMYT wheat breeder.

Rising CO2 concentrations and temperatures could also provide a more favorable environment for pathogens like fungi, reports the International Panel on Climate Change (IPCC).

Despite high confidence among scientists that climate change will cause an increase in pests and diseases, predicting exactly when and where pests and diseases will spread is no easy task. There is significant variation between different species of pests and types of pathogens, and climate models can only provide estimates of where infection or outbreaks might occur.

Keeping pests and disease pandemics at bay

To address these uncertainties, experts increasingly recognize the need to monitor pest and disease outbreaks and have called for a global surveillance system to monitor these and improve responses.

Recent technological tools like the suitcase-sized mobile lab MARPLE, which tests pathogens such as wheat rust in near real-time and gives results within 48 hours, allow for early detection. Early warning systems are also crucial tools to warn farmers, researchers and policy makers of potential outbreaks.

Breeding pest- and disease-resistant varieties is another environmentally friendly solution, since it reduces the need for pesticides and fungicides. Collaborating with scientists worldwide, CIMMYT works on developing wheat and maize varieties resistant to diseases, including Fusarium Head Blight (FHB), wheat rust, wheat blast for wheat and maize lethal necrosis (MLN) for maize.

A ladybug (or ladybird) beetle sits on a wheat spike of an improved variety growing in the field in Islamabad, Pakistan. Photo credit: A. Yaqub/CIMMYT.

Beneficial insects can also act as a natural pest control for crops. Ladybugs, spiders and dragonflies act as natural predators for pests like aphids, caterpillars and stem borers. Other solutions include mechanical control measures such as light traps, pheromone traps and sticky traps, as well as farming practice controls such as crop rotation.

The United Nations has declared this year as the International Year of Plant Health, emphasizing the importance of raising global awareness on how “protecting plant health can help end hunger, reduce poverty, protect biodiversity and the environment, and boost economic development.”

As part of this initiative, CIMMYT will host the 24th Biannual International Plant Resistance to Insects (IPRI) conference from March 2-4. The conference will cover topics including plant-insect interactions, breeding for resistance, and phenotyping technologies for predicting pest resistant traits in plants.

Cover photo: A locust swarm in north-east Kenya. The UN Food and Agriculture Organization has warned that the swarms already seen in Somalia, Kenya and Ethiopia could range further afield. Photograph: Sven Torfinn/FAO

‘Sharing’ or ‘sparing’ land?

Any fifth grader is familiar with the Cretaceous-Tertiary mass extinction, which saw dinosaurs — and three quarters of all species alive at that time — disappear from Earth, probably after it was struck by a very large asteroid. However, few people are aware the planet is currently going through a similar event of an equally large magnitude: a recent report from the World Wide Fund for Nature highlighted a 60% decline in the populations of over 4,000 vertebrate species monitored globally since 1970. This time, the culprit is not an asteroid, but human beings. The biggest threat we represent to other species is also the way we meet one of our most fundamental needs: food production.

As a response, scientists, particularly ecologists, have looked for strategies to minimize trade-offs between agriculture and biodiversity. One such strategy is “land sparing,” also known as the “Borlaug effect.” It seeks to segregate production and conservation and to maximize yield on areas as small as possible, sparing land for nature. Another strategy is “land sharing” or “wildlife-friendly farming,” which seeks to integrate production and conservation in the same land units and make farming as benign as possible to biodiversity. It minimizes the use of external inputs and retains unfarmed patches on farmland.

A heated debate between proponents of land sparing and proponents of land sharing has taken place over the past 15 years. Most studies, however, have found land sparing to lead to better outcomes than land sharing, in a range of contexts. With collaborators from CIFOR, UBC and other organizations, I hypothesized that this belief was biased because researchers assessed farming through a narrow lens, only looking at calories or crop yield.

Many more people today suffer from hidden hunger, or lack of vitamins and minerals in their diets, than lack of calories. Several studies have found more diverse and nutritious diets consumed by people living in or near areas with greater tree cover as trees are a key component of biodiversity. However, most of these studies have not looked at mechanisms explaining this positive association.

Forests for food

Studying seven tropical landscapes in Bangladesh, Burkina Faso, Cameroon, Ethiopia, Indonesia, Nicaragua and Zambia, we found evidence that tree cover directly supports diets in four landscapes out of seven. This may be through the harvest of bushmeat, wild fruits, wild vegetables and other forest-sourced foods. The study further found evidence of an agroecological pathway — that forests and trees support diverse crop and livestock production through an array of ecosystem services, ultimately leading to improved diets — in five landscapes out of seven. These results clearly demonstrate that although land sparing may have the best outcomes for biodiversity, it would cut off rural households from forest products such as forest food, firewood and livestock feed. It would also cut off smallholder farms from ecosystem services provided by biodiversity, and smallholders in the tropics tend to depend more on ecosystem services than on external inputs.

In Ethiopia, previous research conducted by some of the same authors has demonstrated that multifunctional landscapes that do not qualify as land sparing nor as land sharing may host high biodiversity whilst being more productive than simpler landscapes. They are more sustainable and resilient, provide more diverse diets and produce cereals with higher nutritional content.

The debate on land sparing vs. sharing has largely remained confined to the circles of conservation ecologists and has seldom involved agricultural scientists. As a result, most studies on land sparing vs. sharing have focused on minimizing the negative impact of farming on biodiversity, instead of looking for the best compromises between agricultural production and biodiversity conservation.

To design landscapes that truly balance the needs of people and nature, it is urgent for agronomists, agricultural economists, rural sociologists and crop breeders to participate in the land sparing vs. sharing debate.

Read more:
Testing the Various Pathways Linking Forest Cover to Dietary Diversity in Tropical Landscapes

This study was made possible by funding from the UK’s Department for International Development (DFID), the United States Agency for International Development (USAID) through the project Agrarian Change in Tropical Landscapes, and by the CGIAR Research Programs on MAIZE and WHEAT.

A wake-up call for the fertilizer industry

When you hear the words ‘plant nutrition’ or ‘fertilizer’, do you think of sustainability?

Many might not but the recent gathering of plant nutrition experts in Versailles at the High Level Forum on Sustainable Plant Nutrition might indicate that the tide is turning.

“This event is a first of its kind. Here you have the fertilizer industry, which is relatively conservative, and yet there are speakers such as Mostafa Terrab of the OCP Group or Svein Tore Holsether of Yara who are pushing this future agenda,” said Bruce Campbell, Director of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

“If I was from the fertilizer industry, I would really wake up, as perhaps is happening with some companies. If you look at the airlines industry, you see some super visionary players and others who are not. I feel that there could be players in this group who could be as visionary: looking at cutting down the energy inputs into fertilizer production, working together with governments to reform subsidies that promote over-fertilization, working towards precision fertilizer application. If the fertilizer industry wants to gain the trust of a more and more discerning public, then they need to show climate leadership,” Campbell remarked.

Early plant vigor can be improved through the use of direct seeders, which place fertilizer close to the seed. (Photo: Wasim Iftikar / CIMMYT)

The right time and place

Although fertilizer use revolutionized agriculture and allowed farmers to grow better crops on less land, plant nutrients are often vilified because of the negative environmental impact caused by their improper use.

For this reason, experts often speak of the 4R stewardship principles of fertilizer: right fertilizer source, at the right rate, at the right time, and in the right place.

“The industry needs solid science to back up agricultural technology solutions in the realms of both nutrient and water management. Regarding the right placement, right time and the right quantity of fertilizer, mechanization solutions — such as direct seeders, which place fertilizer close to the seed — can really increase nutrient use efficiency and improve plant early vigor. Together with a wide range of partners, CIMMYT has been using these across smallholder systems of Asia, Africa and Latin America,” highlighted Martin Kropff, Director General of the International Maize and Wheat Improvement Center (CIMMYT), during one of the panel discussions.

In order to scale up the most relevant scientific findings and extension efforts, the focus should be on using available fertilizers better. This goes hand in hand with better management of organic matter and soils. There is a human element too: farmers’ efficiency could be improved with better advice especially targeted at extension offices or service providers.

At the event, David Nabarro challenged the fertilizer industry to take the lead in reforming the broken food system. (Photo: Marta Millere/CIMMYT)
At the event, David Nabarro challenged the fertilizer industry to take the lead in reforming the broken food system. (Photo: Marta Millere/CIMMYT)

S for sustainability

In order to identify the missing link of sustainability, just a day before the launch of the forum, the International Fertilizer Association (IFA) created a new Scientific Panel on Responsible Plant Nutrition. This group of international experts will provide objective knowledge and assessments for the fertilizer industry and other stakeholders to develop a more responsible plant nutrition system.

Bruno Gérard, Director of CIMMYT’s Sustainable Intensification research program and a member of the panel, spoke about CIMMYT’s unique selling proposition. “CIMMYT has a significant research agenda and experience in better nutrient management in wheat- and maize-based systems. In regions such as South Asia, the challenge is to produce more or the same with less and better fertilizers through improved management practices. Instead in Sub-Saharan Africa, the focus is on giving better access and knowledge so that farmers can produce more with adequate fertilizer inputs.”

Being part of the panel will give CIMMYT the opportunity to better link up with the fertilizer industry and contribute to improved fertilizer use in term of profitability, yield stability and risk, accessibility but also — from an environmental perspective — minimize the footprint of fertilizer through better agronomic practices and management.

The High Level Forum on Plant Nutrition took place on November 18-20, 2019, in Versailles, France.

Policy brief highlights opportunities to promote balanced nutrient management in South Asia

Hafiz Uddin, a farmer from Ulankhati, Tanpuna, Barisal, Bangladesh. He used seeder fertilizer drills to plant mung beans on one acre of land, which resulted in a better yield than planting manually. (Photo: Ranak Martin)
Hafiz Uddin, a farmer from Ulankhati, Tanpuna, Barisal, Bangladesh. He used seeder fertilizer drills to plant mung beans on one acre of land, which resulted in a better yield than planting manually. (Photo: Ranak Martin)

Over the last few decades, deteriorating soil fertility has been linked to decreasing agricultural yields in South Asia, a region marked by inequities in food and nutritional security.

As the demand for fertilizers grows, researchers are working with government and businesses to promote balanced nutrient management and the appropriate use of organic amendments among smallholder farmers. The Cereal Systems Initiative for South Asia (CSISA) has published a new policy brief outlining opportunities for innovation in the region.

Like all living organisms, crops need access to the right amount of nutrients for optimal growth. Plants get nutrients — like nitrogen, phosphorus, and potassium, in addition to other crucially important micronutrients — from soils and carbon, hydrogen, oxygen from the air and water. When existing soil nutrients are not sufficient to sustain good crop yields, additional nutrients must be added through fertilizers or manures, compost or crop residues. When this is not done, farmers effectively mine the soil of fertility, producing short-term gains, but undermining long-term sustainability.

Nutrient management involves using crop nutrients as efficiently as possible to improve productivity while reducing costs for farmers, and also protecting the environment by limiting greenhouse gas emissions and water quality contamination. The key behind nutrient management is appropriately balancing soil nutrient inputs — which can be enhanced when combined with appropriate soil organic matter management — with crop requirements. When the right quantities are applied at the right times, added nutrients help crops yields flourish. On the other hand, applying too little will limit yield and applying too much can harm the environment, while also compromising farmers’ ability to feed themselves or turn profits from the crops they grow.

Smallholder farmers in South Asia commonly practice poor nutrition management with a heavy reliance on nitrogenous fertilizer and a lack of balanced inputs and micronutrients. Declining soil fertility, improperly designed policy and nutrient management guidelines, and weak fertilizer marketing and distribution problems are among the reasons farmers fail to improve fertility on their farms. This is why it is imperative to support efforts to improve soil organic matter management and foster innovation in the fertilizer industry, and find innovative ways to target farmers, provide extension services and communicate messages on cost-effective and more sustainable strategies for matching high yields with appropriate nutrient management.

Cross-country learning reveals opportunities for improved nutrient management. The policy brief is based on outcomes from a cross-country dialogue facilitated by CSISA earlier this year in Kathmandu. The meeting saw researchers, government and business stakeholders from Bangladesh, India, Nepal, and Sri Lanka discuss challenges and opportunities to improving farmer knowledge and access to sufficient nutrients. Several key outcomes for policy makers and representatives of the agricultural development sector were identified during the workshop, and are included in the brief.

Extension services as an effective way to encourage a more balanced use of fertilizers among smallholder farmers. There is a need to build the capacity of extension to educate smallholders on a plant’s nutritional needs and proper fertilization. It also details how farmers’ needs assessments and human-centered design approaches need to be integrated while developing and delivering nutrient application recommendations and extension materials.

Nutrient subsidies must be reviewed to ensure they balance micro and macro-nutrients. Cross-country learning and evidence sharing on policies and subsidies to promote balanced nutrient application are discussed in the brief, as is the need to balance micro and macro-nutrient subsidies, in addition to the organization of subsidy programs in ways that assure farmers get access the right nutrients when and where they are needed the most. The brief also suggests additional research and evidence are needed to identify ways to assure that farmers’ behavior changes in response to subsidy programs.

Market, policy, and product innovations in the fertilizer industry must be encouraged. It describes the need for blended fertilizer products and programs to support them. A blend is made by mixing two or more fertilizer materials. For example, particles of nitrogen, phosphate and small amounts of secondary nutrients and micronutrients mixed together. Experience with blended products are uneven in the region, and markets for blends are nascent in Bangladesh and Nepal in particular. Cross-country technical support on how to develop blending factories and markets could be leveraged to accelerate blended fertilizer markets and to identify ways to ensure equitable access to these potentially beneficial products for smallholder farmers.

Download the CSISA Policy and Research Note:
Development of Balanced Nutrient Management Innovations in South Asia: Lessons from Bangladesh, India, Nepal, and Sri Lanka.

The CSISA project is led by CIMMYT with partners the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI) and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

Nurture soil as our food and climate insurance

Kassim Massi and Joyce Makawa have learned how conservation agriculture nurtures the soil of their 2.5-acres farm in Lemu, Malawi, and helps them to better cope with regular dry spells and storm rains. With four children and two grandchildren, their livelihoods depend on rainfed crop farming, in particular maize, the main staple in Malawi, and a few goats and free-range poultry. The International Maize and Wheat Improvement Center (CIMMYT) introduced them to conservation agriculture, along with five other families in their community.

“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains. “The mulch also helps to limit water runoff when there are heavy rains. I don’t see the streams of mud flowing out of this plot like for my other field where I only planted maize as usual on ridges,” he adds.

Massi and Makawa started small, on a quarter acre, testing maize and maize-pigeon pea intercropping under conservation agriculture. Later they diversified to a maize-groundnut rotation with pigeon pea alleys, while introducing different drought-tolerant maize varieties on their plot. Pigeon pea and groundnut are legume crops that enrich the soil in nitrogen via nodules that host specific bacteria called rhizobia in their root systems. Massi and Makawa also put layers of maize stalks and groundnut haulms on the ground after harvest, creating a mulch that not only enriches the soil in organic matter but retains soil moisture and improves soil structure.

While they got only two bags of 50kg maize grain from their conventionally tilled maize field, they harvested almost three times more maize grain plus three bags of groundnuts, and two and half bags of pigeonpea from the 0.1 hectares grown under conservation agriculture. “This plot has become our food insurance and we plan to expand it.”

Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)
Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)

Good for the soil and good for the farmer

“Building healthy soils over the years is one of the great impacts of conservation agriculture,” explains Christian Thierfelder, an agronomist with CIMMYT in Zimbabwe. “With no tillage, legume rotation or intercropping and crop residue management, a beneficial soil pore structure is developed over time. This enables water to infiltrate into the soil where it is available for plant growth in times of drought or during in-season dry spells.”

Under the GIZ-funded Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe initiative, the different ecosystem services that soils bring have been measured against the typical ploughed maize monocropping system. Fifteen year-long experiments show that 48.5mm more water infiltrates per hour under no-till as compared with the conventional method. Soil erosion is reduced by 64% for ripline-seeded maize with legume intercropping. At the Henderson Research station in Zimbabwe where soil erosion loss has been quantified, it means 90 metric tons per hectare of topsoil saved over twelve years.

“Conservation agriculture is good for the soil, and it is good for the farmer. The maize-legume intercropping under conservation agriculture provides very good financial return to labor and investment in most rural communities we worked with,” Thierfelder notes.

Climate mitigation or resilience?

There is growing recognition of the importance of soils in our quest for sustainability.

Soils play for instance an important role in climate regulation. Plants fix carbon dioxide (CO2) through photosynthesis and when those plants die and decompose, the living organisms of the soil, such as bacteria, fungi or earthworms, transform them into organic matter. That way, soils capture huge quantities of the carbon emissions that fuel climate change. This soil organic carbon is also essential for our food security because it retains water, and soil nutrients, essential for growing crops.

The quantity of carbon soils capture depends on the way farmers grow their crops. Conservation agriculture improves soil biodiversity and carbon sequestration by retaining crop residues as mulch, compared to conventional practices.

“Research shows that practices such as conservation agriculture can restore soil organic carbon at the level of four per thousand when farmers apply all principles of conservation agriculture: no-till, soil cover and crop diversification,” explains Marc Corbeels, agronomist seconded to CIMMYT from Cirad. Increasing soil organic content stocks globally by 0.4% per year is the objective of the “4 per 1000” initiative as a way to mitigate climate change and improve food security. At global level, sequestrating 0.4% more soil organic carbon annually combined with stopping deforestation would counteract the annual rise in atmospheric CO2.

The overall soil organic carbon sequestration potential of conservation agriculture should however not be overestimated,” Corbeels warns. “Carbon sequestration is complex and context-specific. It depends for instance on the type of soils and the initial soil organic status, and the crop and biomass productivity as enough crop residues should be produced.”

“Now farmers in Malawi, Zambia and Zimbabwe are facing prolonged drought and, in some parts, farming communities got hit by flash floods. With degraded and barren soils in this tropical environment, it is a disaster. In my experience, more than mitigation, improved climate resilience is a bigger benefit of conservation agriculture for the farmers”, Corbeels says.

“Science is important to build up solid evidence of the benefits of a healthy soil and push forward much-needed policy interventions to incentivize soil conservation,” Thierfelder states.

Scaling out conservation agriculture practices is what has driven him over the past decade in southern Africa.

“One big lesson I learnt from my years of research with farmers is that if you treat well your soil, your soil will treat you well. Conservation agriculture adopters like Kassim Massi and his family are more resilient to these successive shocks. We need more farmers like them to achieve greater food security and climate resilience in the region,” he concludes.

December 5, we are celebrating World Soil Day under the theme “Stop Soil Erosion, Save our Future!” As CIMMYT’s research shows, farmers cannot deliver sustainable food security without healthy soils, as the farming land producing our staple crops provide important environmental services as well. CIMMYT calls for soil-smart agriculture and food systems.