Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Nitrogen in agriculture

Nitrogen is the most essential nutrient in crop production but also one of the most challenging to work with. The compound is central to global crop production  particularly for major cereals  but while many parts of the world do not have enough to achieve food and nutrition security, in others excess nitrogen from fertilizer leaks into the environment with damaging consequences. 

What is nitrogen? 

Around 78% of the Earth’s atmosphere is made up of nitrogen gas or N2  a molecule made of two nitrogen atoms glued together by a stable, triple bond.  

Though it makes up a large portion of the air we breathe, most living organisms can’t access it in this form. Atmospheric nitrogen must go through a natural process called nitrogen fixation to transform before it can be used for plant nutrition 

Why do plants need nitrogen? 

In both plants and humans, nitrogen is used to make amino acids  which make the proteins that construct cells  and is one of the building blocks for DNA. It is also essential for plant growth because it is a major component of chlorophyll, the compound by which plants use sunlight energy to produce sugars from water and carbon dioxide (photosynthesis). 

The nitrogen cycle 

The nitrogen cycle is the process through which nitrogen moves from the atmosphere to earth, through soils and is released back into the atmosphere  converting in and out of its organic and inorganic forms. 

It begins with biological nitrogen fixation, which occurs when nitrogen-fixing bacteria that live in the root nodules of legumes convert organic matter into ammonium and then nitrate. Plants are able to absorb nitrate from the soil and break it down into the nitrogen they need, while denitrifying bacteria convert excess nitrate back into inorganic nitrogen which is released back into the atmosphere. 

The process can also begin with lightning, the heat from which ruptures the triple bonds of atmospheric nitrogen, freeing its atoms to combine with oxygen and create nitrous oxide gas, which dissolves in rain as nitric acid and is absorbed by the soil. 

Excess nitrate or that lost through leaching  in which key nutrients are dissolved due to rain or irrigation  can seep into and pollute groundwater streams. 

A diagram shows the process through which nitrogen moves from the atmosphere to earth, through soils and is released back into the atmosphere – converting in and out of its organic and inorganic forms. (Graphic: Nancy Valtierra/CIMMYT)
A diagram shows the process through which nitrogen moves from the atmosphere to earth, through soils and is released back into the atmosphere – converting in and out of its organic and inorganic forms. (Graphic: Nancy Valtierra/CIMMYT)

What about nitrogen fertilizer? 

For thousands of years, humans didn’t need to worry about nitrogen, but by the turn of the Twentieth Century it was evident that intensive farming was depleting nitrate in the soil, which raised concerns about the world’s rising population and a possible food crisis.  

In 1908, a German chemist named Fritz Haber devised a process for combining atmospheric nitrogen and hydrogen under extreme heat and pressure to create liquid ammonia  a synthetic nitrogen fertilizer. He later worked with chemist and engineer Carl Bosch to industrialize this process and make it commercially available for farmers.  

Once production was industrialized, synthetic nitrogen fertilizer  used in combination with new, high-yielding seed varieties  helped drive the Green Revolution and significantly boost global agricultural production from the late 1960s onwards. During this time Mexico became self-sufficient in wheat production, as did India and Pakistan, which were on the brink of famine.  

In today’s intensive agricultural systems, synthetic nitrogen fertilizer has become increasingly crucial. Worldwide, companies currently produce over 100 million metric tons of this product every year, and the Food and Agriculture Organization of the United Nations predicts that demand will continue to rise steadily, especially in Africa and South Asia. 

Is it sustainable? 

As demand continues to rise worldwide, the challenge of nitrogen management is to provide enough to meet global food security needs while minimizing the flow of unused nitrogen  which is 300 times more polluting than carbon dioxide  to the environment.  

While many regions remain short of available nitrogen to achieve food and nutrition security, in others nearly half of the fertilizer nitrogen applied in agriculture is leaked into the environment, with negative consequences including increased environmental hazards, irreparable land degradation and the contamination of aquatic resources. 

This challenge can be addressed by improving nitrogen use efficiency  a complex calculation which often involves a comparison between crop biomass (primarily economic yield) or nitrogen content/uptake (output) and the nitrogen applied (input) through any manure or synthetic fertilizer.  Improving this ratio not only enhances crop productivity but also minimizes environmental losses through careful agronomic management and helps improve soil quality over time.  

Currently, average global nitrogen use efficiency does not exceed 50%, which falls short of the estimated 67% needed to meet global food demand in 2050 while keeping surplus nitrogen within the limits for maintaining acceptable air and water qualities.  

Cutting-edge technological options for nitrogen management are on the horizon, though in the short-term nitrogen use efficiency can best be improved at farmer-level, by targeting fertilizer applicationuse of slow-release nitrogen fertilizers, using precision nitrogen application tools (Green Seeker) or fertigation using micro irrigation. 

A woman in India uses a precision spreader to apply fertilizer on her farm. (Photo: Wasim Iftikar)
A woman in India uses a precision spreader to apply fertilizer on her farm. (Photo: Wasim Iftikar)

Blue-sky technology 

Much progress has been made in developing technologies for an efficient nitrogen management, which along with good agronomy are proven to enhance crop nitrogen harvest and nitrogen use efficiency with lower surplus nitrogen. 

Scientists are investigating the merits of biological nitrification inhibition, a process through which a plant excretes material which influences the nitrogen cycle in the soil. Where this process occurs naturally  in some grasses and wheat wild relatives  it helps to significantly reduce nitrogen emissions. 

In 2007, scientists discovered biological nitrification traits in wheat relative and in 2018 they succeeded in transferring them into a Chinese spring wheat variety. The initial result showed low productivity and remains in the very early stages of development, but researchers are keen to assess whether this process could be applied to commercial wheat varieties in the future. If so, this technology could be a game changer for meeting global nitrogen use efficiency goals. 

Taking stock of the national toolbox

The Government of Ethiopia has consistently prioritized agriculture and sees it as a core component of the country’s growth. However, despite considerable efforts to improve productivity, poor management of soil health and fertility has been an ongoing constraint. This is mainly due to a lack of comprehensive site-and context-specific soil health and fertility management recommendations and dissemination approaches targeted to specific needs.

The government envisions a balanced soil health and fertility system that helps farmers cultivate and maintain high-quality and fertile soils through the promotion of appropriate soil-management techniques, provision of required inputs, and facilitation of appropriate enablers, including knowledge and finance.

So far, a plethora of different research-for-development activities have been carried out in support of this effort, including the introduction of tools which provide location-specific fertilizer recommendations. For example, researchers on the Taking Maize Agronomy to Scale in Africa (TAMASA) project, led by the International Maize and Wheat Improvement Center (CIMMYT), have created locally calibrated versions of Nutrient Expert® (NE) — a tool for generating fertilizer recommendations — for maize farmers in Ethiopia, Nigeria and Tanzania.

Nutrient Expert® is only one of the many fertilizer recommendation tools which have been developed in recent years covering different levels of applicability and accuracy across spatial scales and users, including smallholder farmers, extension agents and national researchers. However, in order to make efficient use of all the resources available in Ethiopia, there is a need to systematically evaluate the merits of each tool for different scales and use cases. To jump start this process, researchers from the TAMASA project commissioned an assessment of the tools and frameworks that have been developed, adapted and promoted in the country, and how they compare with one another for different use-cases. Seven tools were assessed, including Nutrient Expert®, the Ethiopian Soil Information System (EthioSIS) and RiceAdvice.

For each of these, the research team asked determined how the tool is currently being implemented — for example, as an app or as a generic set of steps for recommendation generation — and its data requirements, how robust the estimates are, how complicated the interface is, how easy it is to use, the conditions under which it performs well, and the spatial scale at which it works best.

Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Combining efforts and information

The results of this initial assessment indicate that the type of main user and the scale at which decisions are made varied from tool to tool. In addition, most of the tools considered have interactive interfaces and several — including Nutrient Expert® and RiceAdvice — have IT based platforms to automate the optimization of fertilizer recommendations and/or analyze profit. However, the source codes for all the IT based platforms and tools are inaccessible to end-users. This means that if further evaluation and improvements are to be made, there should be a means of collaborating with developers to share the back-end information, such as site-specific response curves and source codes.

Because most of the tools take different approaches to making fertilizer application site-specific, each of them renders unique strengths and trade-offs. For example, Nutrient Expert® may be considered strong in its approach of downscaling regionally calibrated responses to field level recommendations based on a few site-specific responses from farmers. By contrast, its calibration requires intensive data from nutrient omission trials and advice provision is time consuming.

Overall, the use of all the Site-Specific Decision-Support Tools (SSDST) has resulted in improved grain yields compared to when farmers use traditional practices, and this is consistent across all crops. On average, use of Nutrient Expert® improved maize, rice and wheat yields by 5.9%, 8.1% and 4.9%, respectively. Similarly, the use of RiceAdvice resulted in a 21.8% yield advantage.

The assessment shows that some of the tools are useful because of their applicability at local level by development agents, while others are good because of the data used to develop and validate them. However, in order to benefit the agricultural system in Ethiopia from the perspective of reliable fertilizer-use advisory, there is a need to develop a platform that combines the merits of all available tools. To achieve this, it has been suggested that the institutions who developed the individual tools join forces to combine efforts and information, including background data and source codes for IT based tools.

While the COVID-19 pandemic has disrupted efforts to convene discussions around this work, CIMMYT has and will continue to play an active advocacy role in supporting collaborative efforts to inform evidence-based reforms to fertilizer recommendations and other agronomic advice in Ethiopia and the wider region. CIMMYT is currently undertaking a more rigorous evaluation of these tools and frameworks as a follow up on the initial stocktaking activity.

Wheat disease common to South America jumps to Africa

Pawan Kumar Singh, head, wheat pathology, International Maize and Wheat Improvement Center (CIMMYT) says that the fast-acting and devastating fungal disease known as wheat blast was first spotted in Africa in the Zambian rainfed wheat production system in the 2017-2018 crop cycle.

Read more here: https://www.scidev.net/sub-saharan-africa/agriculture/news/wheat-disease-common-to-asia-jumps-to-africa.html

Latin America poised to lead the next 50 years in food systems and agrobiodiversity research

With global agriculture in stasis and under threat from climate change, Latin America’s role to address these challenges through innovation and partnerships is crucial. This was the main takeaway from a 2020 World Food Prize roundtable event, where representatives from four CGIAR centers discussed opportunities for increased investment in Latin America for developing innovations to improve global agriculture and agro-biodiversity.

The event was moderated by Natasha Santos, the Vice President of Global Stakeholders Strategy and Affairs for Bayer Crop Sciences. Speaking online from Brazil, Santos stressed the importance of private sector partnerships in Latin America for achieving sustainable growth and development.

Jesus Quintana, the Managing Director for the Americas, the Alliance of Bioversity International and CIAT opened the event with a short description of his organization’s work with development finance to promote sustainable development in the Amazon. “With USAID,” he said, “we are searching for business models that strengthen local innovations and social businesses to conserve biodiversity, including agri-food systems.”

Picking up on the idea of agri-food systems, Bram Govaerts, Interim Deputy Director General, Director of Integrated Development and Representative for the Americas, International Maize and Wheat Improvement Center (CIMMYT), noted that the World Food Programme will receive the Nobel Peace Prize 50 years after Norman Borlaug – whose work was the inspiration for the CGIAR – became the first recipient of the prestigious award from the fields of food and agriculture. The span between awards, Govaerts said, serves as notice that much important work still remains in the fight against hunger and nutrition insecurity worldwide.

In this vein, Govaerts described CIMMYT’s work with a program called AgroTutor, which delivers site-specific data and recommendations tailored to farmers’ needs that help improve yields and facilitate more profitable market interactions.

 

The continuing mission to eradicate global hunger and promote development in the face of climate change can be uniquely addressed in the Andes, said Ginya Truitt Nakata, Regional Director for Latin America and the Caribbean, International Potato Center (CIP). Home to 85 of the world’s 110 biological life zones, Truitt Nakata said CIP’s Andean Initiative would use the mountains as a living laboratory for co-investigation of agricultural challenges with networks of smallholder farmers.

“The data and lessons we draw from these spaces will have application for farmers around the world,” she said.

As the event centered around recent CGIAR innovations in Latin American, Ruben G. Echeverría, Senior Research Fellow, International Food Policy Research Institute (IFPRI), said the greatest need, system-wide, is the bottleneck of ideas and innovations prior to implementation. For this reason, IFPRI is developing project incubation facilities to scale up innovations for stronger, further-reaching impact with farmers. “This work requires partnerships with public and private finance to help transform our knowledge into impact for food systems,” he said.

Following the short presentations, the roundtable opened a conversation that focused on the need for inclusiveness in research, private sector partnerships, and data collection supported by monitoring and learning.

“As the CG system, we are talking about participatory development with farmers – women, men and youth. It takes a little longer but the adoption rates [of innovation] are much higher,” Truitt Nakata said.

Agriculture in Latin America, like other regions of the world, also struggles with “brain drain,” losing talented young people to other sectors of the employment market. “So, when we talk about youth,” Echeverría responded, “We need more than participation. It’s about attracting young people to agricultural opportunities through IT and finance.”

Focusing on the technical side of innovation, Govaerts and Quintana cited the need for improved use of data.

“We need to multi-purpose data and use monitoring in real time to ensure better return on investment,” said Govaerts, “We need to know where we made progress and where we made mistakes.” Quintana endorsed that sentiment, “Careful monitoring of projects should be the heart of collaborative work, to generate baselines so we can accurately measure our impact and make more responsible use of resources.”

Given the wealth of ideas exchanged in the hour-long event, Marco Ferroni, the Chair of the CGIAR System Management Board, said the presentations showed the indispensable value of the region’s to food system and agrobiodiversity research.

“Latin America is the world’s largest food exporting region and important producer of ecosystem services that shape global weather patterns and climate… Motivated by the need to increase the scope of our impact, partnerships help us achieve critical mass in terms of data, analysis and delivery to stakeholders. For all these reasons, and others, Latin American food systems need and deserve policy attention and investment,” Ferroni said.

FOR MORE INFORMATION AND MEDIA CONTACTS:

Bioversity/CIAT: Adriana Varón a.p.varon@cgiar.org

CIMMYT: Ricardo Curiel: r.curiel@cgiar.org

CIP: Viviana Infantas: v.infantas@cgiar.org

IFPRI: Katarlah Taylor: k.taylor@cgiar.org

What is sustainable intensification?

By 2050, the world’s population could grow to 9.7 billion, food demand is expected to increase by 50% and global demand for grains such as maize, rice and wheat could increase by 70%. How can we meet the food and nutrition demands of a rising population, without negative environmental and social consequences?

Sustainable intensification is an approach using innovations to increase productivity on existing agricultural land with positive environmental and social impacts. Both words, “sustainable” and “intensification,” carry equal weight.

CIMMYT conducts research on sustainable intensification to identify ways farmers can increase production of crops per unit of land, conserve or enhance important ecosystem services and improve resilience to shocks and stresses, especially those due to climate change and climate variability.

For example, CIMMYT’s research on sustainable intensification in India has helped shape policies that increase farmer income while reducing pollution and land degradation.

What is the scope of sustainable intensification? 

Sustainable intensification takes into consideration impact on overall farm productivity, profitability, stability, production and market risks, resilience, as well as the interests and capacity of individual farmers to adopt innovations. It is not limited to environmental concerns, but also includes social and economic criteria such as improving livelihoods, equity and social capital.

Certain methods and principles are needed to achieve the goals of sustainable intensification. In collaboration with farmers and other change actors, CIMMYT carries out research-for-development projects to test and scale a range of technologies and approaches that contribute to these results. The research focuses on combined resource use efficiencies of crop production inputs: land, plant nutrients, labor and water.

One example is conservation agriculture, the combination of crop diversification, minimal soil movement and permanent soil cover. International scientific analysis has found that conservation agriculture can, in many places with different characteristics, play a crucial role towards achieving the United Nations Sustainable Development Goals.

Crop and system modeling, geographic information systems, remote sensing, scale-appropriate mechanization and socioeconomic modeling are some of the approaches that contribute to the design and evaluation of sustainable intensification alternatives in current farming systems.

Figure: Multi-criteria sustainability assessment of alternative (sustainable intensification) and reference systems in the Western Highlands of Guatemala.
Figure: Multi-criteria sustainability assessment of alternative (sustainable intensification) and reference systems in the Western Highlands of Guatemala.

What are some more examples?

Several interventions by CIMMYT aim at safeguarding biodiversity and protecting — in some cases increasing — ecosystem services crucial for small-scale farmers’ livelihoods and the health of all. Others have studied the impact of landscapes on dietary diversity and nutrition. Yet others have developed appropriate small-scale machines, allowing farmers to save time, costs and labor associated with agriculture to increase yields, halt the expansion of the agricultural frontier and invest in new opportunities.

How is sustainable intensification different from ecological intensification, agroecological intensification or climate-smart agriculture? 

Sustainable intensification, ecological intensification and agroecological intensification strive for the same general goal to feed an increasing population without negative environmental and social consequences, but they place emphasis on different aspects.

Ecological intensification focuses on ecological processes in the agroecosystem. Agroecological intensification emphasizes a systems approach and strongly considers social and cultural perspectives.

Climate-smart agriculture and sustainable intensification are complementary, but climate-smart agriculture focuses on climate stress, adaptation and mitigation.

Sustainable intensification can be achieved with a range of methods, including these concepts. It is one strategy among many for global food system transformation.

What is the history of CIMMYT’s research on sustainable intensification?

In the 1960s, the Green Revolution brought high-yielding crops to some regions of Latin America and South Asia, allegedly saving millions from starvation. Yet the Green Revolution had unintended environmental and social consequences. Critics of the Green Revolution argued these cropping techniques were highly dependent on external inputs, fossil fuels and agrochemicals, causing environmental damage through overuse of fertilizers and water, and contributing to soil degradation.

In the 1980s, CIMMYT scientists began placing stronger emphasis on environmental and social aspects — such as conserving soil and water, and ensuring social inclusion of marginalized groups — recognizing their importance to sustain the intensification of crops in South Asia. It was understood that sustainability includes improving the livelihoods of rural people who depend on these natural resources, in addition to better resource management. CIMMYT began to take these considerations to the core of its work.

Farmers harvest maize cobs.
Farmers Maliamu Joni and Ruth Andrea harvest cobs of drought-tolerant maize in Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)

Are these practices successful?

Sustainable intensification can boost yields, increase farmers’ profits and reduce greenhouse gas emissions. The reduction of greenhouse gas emissions can be achieved by increasing nitrogen use efficiency, which also reduces groundwater pollution.

Research from CIMMYT’s SIMLESA project has shown that conservation agriculture-based sustainable intensification practices led to a 60-90% increase in water infiltration and a 10-50% increase in maize yields in Malawi. In Ethiopia, crop incomes nearly doubled with crop diversification, reduced tillage and improved varieties, compared to using only one of these practices.

According to research from Stanford University, agricultural intensification has avoided emissions of up to 161 gigatons of carbon from 1961 to 2005. CIMMYT research shows that India could cut nearly 18% of agricultural greenhouse gas emissions through sustainable intensification practices that reduce fertilizer consumption, improve water management and eliminate residue burning. Zero-tillage wheat can cut farm-related greenhouse gas emissions by more than 75% in India and is 10-20% more profitable on average than burning rice straw and sowing wheat using conventional tillage.

A CIMMYT study in Science shows that thousands of wheat farmers in northern India could increase their profits if they stop burning their rice straw residue and adopt no-till practices, which could also cut farm-related greenhouse gas emissions by as much as 78% and lower air pollution. This research and related work to promote no-till Happy Seeders led to a 2018 policy from the government of India to stop farmers from burning residue, including a $166 million subsidy to promote mechanization to manage crop residues within fields.

In light of this evidence, CIMMYT continues to work with stakeholders all along the value chain — from farmers to national agricultural research organizations and companies — to promote and scale the adoption of practices leading to sustainable intensification.

Cover photo: Irrigated fields under conservation agriculture at CIMMYT’s CENEB experiment station near Ciudad Obregón, Sonora, northern Mexico. (Photo: CIMMYT)

See our coverage of World Food Day 2020.
See our coverage of World Food Day 2020.

2020 World Food Prize recognizes career devoted to fight hunger and climate change through soil conservation

The World Food Prize Foundation is honoring the work of Rattan Lal, who dedicated his life to study the effect of soil health in food production and climate change mitigation. On October 15 he will receive the 2020 World Food Prize, considered the “Nobel Prize” of agriculture.

Lal, who serves as distinguished professor of Soil Science and founding director of the Carbon Management and Sequestration Center at Ohio State University, is a visionary who understood the intricate relationship between soil conservation, yield potential, nutrition and carbon sequestration.

“Dr. Lal’s innovative research demonstrated how healthy soils are a crucial component of sustainable agricultural intensification — enabling higher crop yields, while requiring less land, agrochemicals, tillage, water and energy”, announced the World Food Prize Foundation in a press release.

Lal becomes the 50th person to receive the World Food Prize since the late Norman Borlaug — 1970 Nobel Peace Prize laureate — established the award in 1987. The award acknowledges outstanding contributions to human development by individuals who significantly improve the quality, quantity and availability of food on a global scale.

“CIMMYT actively researches and promotes the sustainable farming practices that Dr. Lal studied and advocated for since the late 1980s, such as no tillage, residue retention and crop rotation, which combined with new precision farming technologies help farmers increase yields, reduce food production costs and protect the environment”, said Bram Govaerts, Integrated Development director and representative for the Americas at the International Maize and Wheat Improvement Center (CIMMYT).

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. Bram Govaerts received the Norman Borlaug Field Award in 2014. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.

Wheat blast has made the intercontinental jump to Africa

For the first time, wheat blast, a fast-acting and devastating fungal disease, has been reported on the African continent, according to a new article published by scientists from the Zambian Agricultural Research Institute (ZARI), the International Maize and Wheat Improvement Center (CIMMYT) and the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS).

Read more: https://www.rural21.com/english/scientific-world/detail/article/wheat-blast-has-made-the-intercontinental-jump-to-africa.html

Scientists find genomic regions associated with wheat blast resistance in CIMMYT nurseries

Wheat spike damaged by wheat blast.
Wheat blast damages wheat spikes. (Photo: Xinyao He / CIMMYT)

In an article published in Nature Scientific Reports, a team of scientists led by wheat breeder Philomin Juliana from the International Wheat and Maize Improvement Center (CIMMYT) conducted a large genome-wide association study to look for genomic regions that could also be associated with resistance to wheat blast.

Juliana and fellow scientists found 36 significant markers on chromosome 2AS, 3BL, 4AL and 7BL that appeared to be consistently associated with blast resistance across different environments. Among these, 20 markers were found to be in the position of the 2NS translocation, a chromosomal segment transferred to wheat from a wild relative, Aegilops ventricosa, that has very strong and effective resistance to wheat blast.

The team also gained excellent insights into the blast resistance of the globally-distributed CIMMYT germplasm by genomic fingerprinting a panel over 4,000 wheat lines for the presence of the 2NS translocation, and found that it was present in 94.1% of lines from International Bread Wheat Screening Nurseries (IBWSNs) and 93.7% of lines from Semi-Arid Wheat Screening Nurseries (SAWSNs). Although it is reassuring that such a high percentage of CIMMYT wheat lines already have the 2NS translocation and implied blast resistance, finding other novel resistance genes will be instrumental in building widespread, global resilience to wheat blast outbreaks in the long-term.

The researchers used data collected over the last two years from CIMMYT’s IBWSNs and SAWSNs by collaborators at the Bangladesh Wheat and Maize Research Institute (BWMRI) and Bolivia’s Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF).

Devastating fungal disease

Wheat blast, caused by the fungus Magnaporthe oryzae pathotype Triticum, was first identified in 1985 in South America, but has been seen in Bangladesh in recent years. The expansion of the disease is a great concern for regions of similar environmental conditions in South Asia, and other regions globally.

Although management of the disease using fungicide is possible, it is not completely effective for multiple reasons, including inefficiency during high disease pressure, resistance of the fungal populations to some classes of fungicides, and the affordability of fungicide to resource-poor farmers. Scientists see the development and deployment of wheat with genetic resistance to blast as the most sustainable and farmer-friendly approach to preventing devastating outbreaks around the world.

This work was made possible by the generous support of the Delivering Genetic Gains in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation, the U.K. Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University, the U.S. Agency for International Development’s Feed the Future initiative, the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), The Swedish Research Council (Vetenskapsråd), and the Australian Centre for International Agricultural Research (ACIAR).

Read the full article:
Genome‑wide association mapping for wheat blast resistance in CIMMYT’s international screening nurseries evaluated in Bolivia and Bangladesh

This story was originally posted on the website of the CGIAR Research Program on Wheat (wheat.org).

Starting with Seeds

Seeds are the start and the first step in a solution for global hunger.

B.M. Prasanna, director of the Global Maize Program and of the CGIAR Research program on Maize at the International Maize and Wheat Improvement Center (CIMMYT), says smallholder farms in sub-Saharan Africa make up 80% of all farms there, and contribute significantly to food production in the region.

“Over the past 15 years, CIMMYT and partners in sub-Saharan Africa have been able to intensively work with seed companies to invest in deployment of climate-resilient and nutritionally enriched maize seed, and generate demand for such products,” Prasanna says.

Read more here: https://seedworld.com/starting-with-seeds/

‘Seeds for Needs’ approach to develop climate resilient crop varieties

“This is a very relevant approach in the Indian context also. Contingent plannings are prescription based and when the time comes the seeds are unavailable for the farmers. This approach will answer the questions like which seeds are made to be available where and in what quantity. As we have our own indigenous biodiversity, our farmers face monsoon delays and monsoon failures so Seed for Needs is the key to fight such problems and to maintain our biodiversity” said Dr M L Jat, Principal Scientist, International Maize and Wheat Improvement Center.

Read more: https://vigyanprasar.gov.in/isw/Seeds-for-Needs-approach-to-develop-climate-resilient-crop-varieties.html

Massive-scale genomic study reveals wheat diversity for crop improvement

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)
A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Keith Ewing)

Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study published today in Nature Communications are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally — bread and pasta wheat — and of 27 known wild species.

Wheat is the most widely grown crop globally, with an annual production exceeding 600 million tons. Approximately 95% of the grain produced corresponds to bread wheat and the remaining 5% to durum or pasta wheat.

The main objective of the study was to characterize the genetic diversity of CIMMYT and ICARDA’s internationally available collections, which are considered the largest in the world. The researchers aimed to understand this diversity by mapping genetic variants to identify useful genes for wheat breeding.

From germplasm bank to breadbasket

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.

“The analysis of the bread wheat accessions reveals that relatively little of the diversity available in the landraces has been used in modern breeding, and this offers an opportunity to find untapped valuable variation for the development of new varieties from these landraces”, said Carolina Sansaloni, high-throughput genotyping and sequencing specialist at CIMMYT, who led the research team.

The study also found that the genetic diversity of pasta wheat is better represented in the modern varieties, with the exception of a subgroup of samples from Ethiopia.

The researchers mapped the genomic data obtained from the genotyping of the wheat samples to pinpoint the physical and genetic positions of molecular markers associated with characteristics that are present in both types of wheat and in the crop’s wild relatives.

According to Sansaloni, on average, 72% of the markers obtained are uniquely placed on three molecular reference maps and around half of these are in interesting regions with genes that control specific characteristics of value to breeders, farmers and consumers, such as heat and drought tolerance, yield potential and protein content.

Open access

The data, analysis and visualization tools of the study are freely available to the scientific community for advancing wheat research and breeding worldwide.

“These resources should be useful in gene discovery, cloning, marker development, genomic prediction or selection, marker-assisted selection, genome wide association studies and other applications,” Sansaloni said.


Read the study:

Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints.

Interview opportunities:

Carolina Sansaloni, High-throughput genotyping and sequencing specialist, CIMMYT.

Kevin Pixley, Genetic Resources Program Director, CIMMYT.

For more information, or to arrange interviews, contact the media team:

Ricardo Curiel, Communications Officer, CIMMYT. r.curiel@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

The study was part of the SeeD and MasAgro projects and the CGIAR Research Program on Wheat (WHEAT), with the support of Mexico’s Secretariat of Agriculture and Rural Development (SADER), the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors. Research and analysis was conducted in collaboration with the National Institute of Agricultural Botany (NIAB) and the James Hutton Institute (JHI).

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

Building resistance in wheat: International collaboration fights Septoria tritici blotch disease

Phenotypic selection of resistant lines (Ms. H. Kouki Field technician and consultant A. Yahyaoui) at the Septoria Precision Phenotyping Platform at Kodia/INGC. (Photo: Septoria Precision Phenotyping Platform)

Tunisia has been a major durum wheat producer and consumer since Roman times, a crop used now for couscous, bread and pasta dishes throughout North Africa and the Mediterranean Basin.

However, a persistent disease known as Septoria tritici blotch (STB) has been threatening durum wheat harvests across the country thanks to its increasing resistance to fungicides and adaptability to harsher climatic conditions. The disease, which is caused by the fungus Zymoseptoria tritici, thrives under humid conditions and can cause up to 60% yield loss in farmers’ fields.

To help fight this disease, the International Maize and Wheat Improvement Center (CIMMYT) established the Septoria Precision Phenotyping Platform in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) in Tunisia in 2015.

The platform aims to accelerate the transfer of STB resistance genes into elite durum wheat lines from national and international breeding programs, particularly CIMMYT and ICARDA breeding programs. Researchers at the platform have tested an impressive diversity of durum wheat lines for resistance to the disease from research institutes across Tunisia, Morocco, Algeria, Mexico, France, Italy, the UK, USA and Canada.

STB field reactions showing typical necrotic symptoms containing pycnidia on an infected adult plant leaf of wheat. (Photo: Septoria Precision Phenotyping Platform)

“New and more virulent strains of the pathogen are constantly emerging, which results in previously resistant wheat varieties becoming more susceptible,” said Sarrah Ben M’Barek, head of the laboratory at the Septoria Precision Phenotyping platform.

Field phenotyping – the use of field-testing to identify desired plant traits — is the heart of the platform. Scientists can test as many as 30,000 plots each year for STB resistance.

Evaluations are conducted at two main field research stations managed by the Regional Field Crop Center (CRRGC) and the National Institute of Field Crops (INGC), based at two major hotspots for the disease in Beja and Kodia. This work is complemented by laboratory research at the National Agronomic Institute of Tunisia (INAT) at Tunis.

“The platform plays a critical role in identifying STB resistant wheat germplasm and characterizing the resistance genes they possess. These resistant sources be can further utilized in hybridization schemes by durum wheat breeders worldwide to develop durable resistant varieties,” explained CIMMYT consultant and platform coordinator Amor Yahyaoui.

With the help of data from the platform, breeders hope to combine multiple resistance genes in an individual variety to create a genetically complex “lock” whose combination the fungus will not easily break.

According to Ben M’Barek, the huge genetic diversity in wheat and its ancestors has helped breeders to develop new varieties for almost a century. However, the adoption of new varieties has typically been slow.

Farmers in Tunisia traditionally rely on fungicides to manage the disease. However, with the pathogen recently becoming more resistant to fungicides and more adaptive to harsher climatic conditions, interest in STB resistant varieties is increasing.

Field disease reactions of a susceptible wheat cultivar. (Photo: Septoria Precision Phenotyping Platform)

A hub for training and collaboration

The platform is also a hub for training and capacity development for national and international scientists, field research and lab. assistants, students and farmers. It brings together research staff and technicians from different institutions within Tunisia including the CRRGC, INGC, the National Institute of Agricultural Research of Tunisia (INRAT), INAT and the University of Jendouba.

Farmer’s organizations and regional extension services, as well as private organizations such as Comptoir Multiservices Agricoles (CMA), seed and chemical companies also collaborate with the platform. The result is a team effort that has generated a tremendous wealth of data, made only possible through the dedication of Yahyaoui, said Ben M’Barek.

“Spending a few days at the platform each year is a like a crash course on STB resistance. All subjects are covered and great experts around the world come together to discuss all details of this host-pathogen interaction,” said Filippo Bassi, senior durum wheat breeder at ICARDA.

“Sending young scientists to spend some time at the platform ensures that they learn all about the mechanisms of resistance and take them back to their home country to deploy them in their own breeding programs. It is like a true university for STB.”

Yet, the platform still has a lot of work to do, according to Ben M’Barek. Scientists at the platform are now working on raising awareness on crop and pest management such as integrated management approaches amongst farming communities, setting up on-farm field trials and developing disease early warning surveillance.

Next year the platform will provide a unique podium for students, academics and researchers to exchange ideas and research findings on cereal leaf blight diseases. The International Symposium on Cereal Leaf Blights will take place on May 19-21, 2021 in Tunisia. Details can be found here.

The Septoria Precision Phenotyping Platform is led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) and is supported by the CGIAR Research Program in Wheat (WHEAT).

Septoria Precision Phenotyping Platform at Oued Béja (CRRGC). (Photo: Gert Kema/Wageningen University)

Wheat researchers to gather for October virtual event

A global wheat conference originally scheduled to be held in June in Norwich, United Kingdom, now will take place virtually on Oct. 7-9.

The Borlaug Global Rust Initiative’s (BGRI) virtual technical workshop was postponed earlier this year due to the coronavirus (COVID-19) pandemic.

Read more here: https://www.world-grain.com/articles/14150-wheat-researchers-to-gather-for-october-virtual-event

Agency unveils seed resistant to disease

For more than a decade, Maize Lethal Necrosis Disease (MLND) has ravaged crops causing farmers to incur huge losses and threatening food security.

Kenya Seed Company (KSC) researchers through partnerships have developed a superior maize variety that can withstand the disease.

Read more here:

https://www.standardmedia.co.ke/farmkenya/article/2001382769/agency-unveils-seed-resistant-to-disease