The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.
CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.
Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.
Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.
While previous studies have demonstrated the importance of organic material in soil for sustainable agricultural practices, there has been limited research into how organic material application affects the soil microbial community structures.
Dried young maize plants were added to the soil in the laboratory. After three days of incubation, soil samples were analyzed using shotgun metagenomic sequencing to discover how the application of young maize plants affects the structure of microbial communities in arable soil, how the potential functioning of microbial communities is altered, and how the application affects the soil taxonomic and functional diversity.
Bacterial and viral groups were strongly affected by organic material application, whereas archaeal, protist and fungal groups were less affected. Soil viral structure and richness were impacted, as well as metabolic functionality. Further differences were recorded in cellulose degraders with copiotrophic lifestyle, which were enriched by the application of young maize plants, while groups with slow growing oligotrophic and chemolithoautotrophic metabolism performed better in unamended soil.
Given the importance of embedding and adopting sustainable agricultural practices as part of climate change adaptation and mitigation, the study improves our insight in a key aspect of sustainable agriculture, the management of crop residues.
Farmers gather in a landrace field. Photo: Raqib Lodin/CIMMYT
For thousands of years, farmers in Afghanistan, Turkey and other countries in the region, have been breeding wheat, working closely with the environment to develop traditional wheat varieties known as landraces. Untouched by scientific breeding, landraces were uniquely adapted to their environment and highly nutritious.
As agriculture became more modernised and intensified, it threatened to push these traditional landraces into extinction, resulting in the loss of valuable genetic diversity. Institutions around the world decided to act, forming germplasm collections known as genebanks to safely house these landraces.
In 2009, a team of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry Areas (ICARDA), the UN Food and Agriculture Organization (FAO), and national partners set off on a five-year expedition across Central Asia to collect as many landraces as they could find. The project, led by FAO Cereal Breeder and former CIMMYT Principal Scientist Alexey Morgunov, was made possible by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund.
The project had two main missions. The first is to preserve landrace cultivation in three countries, Afghanistan, Turkey and other countries in the region by selecting, purifying, and multiplying the landraces and giving them back to farmers. The second is to scientifically evaluate, characterize and use these landrace varieties in ongoing breeding programmes, exchange the information between the countries, and to deposit the seeds in genebanks to safely preserve them for future generations.
The latest results from the project were published in July in the journal Crops. The study, authored by a team of experts from CIMMYT, ICARDA, FAO, and research institutes in Afghanistan, Turkey and other countries in the region, compared the diversity, performance, and adaptation of the collected wheat landraces with modern varieties grown in the regions using a series of field experiments and cutting-edge genomic tools.
âLandraces are very useful from a breeding perspective because they have been cultivated by farmers over thousands of years and are well adapted to climate change, have strong resistance to abiotic stresses and have very good nutritional quality,â said Rajiv Sharma, a CIMMYT senior scientist and co-author of the paper.
âWe were interested in seeing how well landraces adapt to certain environments, how they perform agronomically, and whether they are more diverse than modern varieties grown in these regions â as well as give their improved versions back to farmers before they are lost.â
The experiments, which were carried out in 2018 and 2019 in Turkey, and 2019 in Afghanistan, and other countries in the region revealed several physical characteristics in landraces which are no longer present in modern varieties. For example, the team found striking differences in spike and grain colors with landraces more likely to have red spikes and white grains, and modern varieties tending to have white spikes and red grains. This may have adaptive values for high altitudes and dry conditions.
A surprising finding from the study, however, was that landraces were not more genetically diverse than modern landraces.
âMany people thought that when we went from cultivating landraces to modern varieties, we lost a lot of diversity but genetically speaking, thatâs not true. When you look at the genomic profile, modern varieties are just as diverse as landraces, maybe even a little bit more so,â said Sharma.
When the team compared landraces and modern varieties on crop performance, the results were mixed with modern wheat varieties outyielding landraces in half of the environments tested. However, they found that the highest yielding landraces were just as good as the best modern varieties â a reassuring finding for farmers concerned about the productivity of their crops.
A new breeding paradigm Â
The results of the study have important implications for landrace conservation efforts in farmersâ fields and in future breeding strategies. While crossing wheat landraces with modern varieties to develop improved modern varieties is not new, the authors proposed a novel alternative breeding strategy to encourage the continued cultivation of landraces: improving landraces by crossing them with other landraces.
âIn order to maintain landraces, we have to make them competitive and satisfy farmersâ needs and requirements. One option is that we breed landraces,â said Sharma.
âFor example, you might have a landrace that is very-high yielding but susceptible to disease. By crossing this variety with another landrace with disease-resistant traits you can develop a new landrace better suited to the farmer and the environment. This approach maintains all the features of landraces â we are simply accelerating the evolution process for farmers to replace the very fast disappearance of these traditional varieties.â
This approach has already been used by crop scientists at the University of California, Davis who has successfully developed and registered âheirloom-like varietiesâ of dry beans. The varieties trace about 98% of their ancestry to landraces but are resistant to the common mosaic virus.
Heirloom food products are becoming increasingly popular with health-conscious consumers who are willing to pay a higher price for the products, garnering even more interest in conserving traditional landraces.
One of the overarching aims of the project was to give wheat landraces back to farmers and let nature take its course. Throughout the mission, the team multiplied and returned landrace seed to over 1500 farmers in communities across Afghanistan, Turkey and other countries in the region. The team also supplied over 500 farmers with improved landrace seed between 2018 and 2019.
Despite the political turmoil facing these countries, particularly Afghanistan, farmers are still growing wheat and the projectâs contribution to food security will continue.
These landraces will take their place once more in the farming landscape, ensuring on-farm wheat diversity and food security for future generations.
This research was conducted with the financial assistance of the European Union within the framework of the Benefit-Sharing Fund project âW2B-PR-41-TURKEYâ of the FAOâs International Treaty on Plant Genetic Resources for Food and Agriculture.
Aniket Deo is a generalized specialist who has worked towards improving farmerâs incentives. He has expertise in analytics, food systems, algorithm design, operations research, techno-economic analysis, decision support systems, value chain analysis, agriculture economics, and resource budgeting. His vision is to digitize the agricultural sector for effective and data-driven decisions.
Elufe Chipande (left), a farmer at Songani in Zomba District, Malawi, is rotating maize (background) and pigeonpea (foreground) under conservation agriculture practices to improve soil fertility and capture and retain more water. Christian Thierfelder (center), a cropping systems agronomist working out of the Zimbabwe office of CIMMYT, advises and supports southern African farmers and researchers to refine and spread diverse yield-enhancing, resource-conserving crop management practices. Photo: Mphatso Gama/CIMMYTSRUC
An international team of scientists has found that eco-friendly practices such as growing a range of crops, including legumes such as beans or pigeonpea, and adding plant residues or manure to soils can raise food crop yields in places such as rural Africa, where small-scale farmers cannot apply much nitrogen fertilizer.
Published in the science journal Nature Sustainability and examining data from 30 long-running field experiments involving staple crops (wheat, maize, oats, barley, sugar beet, or potato) in Europe and Africa, this major study is the first to compare farm practices that work with nature to increase yields and explore how they interact with fertilizer use and tillage.
âAgriculture is a leading cause of global environmental change but is also very vulnerable to that change,â said Chloe MacLaren, a plant ecologist at Rothamsted Research, UK, and lead author of the paper. âUsing cutting-edge statistical methods to distill robust conclusions from divergent field experiment data, we found combinations of farming methods that boost harvests while reducing synthetic fertilizer overuse and other environmentally damaging practices.â
Recognizing that humanity must intensify production on current arable land to feed its rising numbers, the paper advances the concept of âecological intensification,â meaning farming methods that enhance ecosystem services and complement or substitute for human-made inputs, like chemical fertilizer, to maintain or increase yields.
Boosting crop yields and food security for far-flung smallholders
The dataset included results from six long-term field experiments in southern Africa led by the International Maize and Wheat Improvement Center (CIMMYT). Africaâs farming systems receive on average only 17 kilograms of fertilizer per hectare, compared to more than 180 kilograms per hectare in Europe or close to 600 in China, according to Christian Thierfelder, a CIMMYT cropping systems agronomist and study co-author.
âIn places where farmersâ access to fertilizer is limited, such as sub-Saharan Africa or the Central American Highlands, ecological intensification can complement scarce fertilizer resources to increase crop yields, boosting householdsâ incomes and food security,â Thierfelder explained. âWe believe these practices act to increase the supply of nitrogen to crops, which explains their value in low-input agriculture.â
The CIMMYT long-term experiments were carried out under âclimate-smartâ conservation agriculture practices, which include reduced or no tillage, keeping some crop residues on the soil, and (again) growing a range of crops.
âThese maize-based cropping systems showed considerable resilience against climate effects that increasingly threaten smallholders in the Global South,â Thierfelder added.
Benefits beyond yield
Besides boosting crop yields, ecological intensification can cut the environmental and economic costs of productive farming, according to MacLaren.
âDiversifying cropping with legumes can increase profits and decrease nitrogen pollution by reducing the fertilizer requirements of an entire crop rotation, while providing additional high-value food, such as beans,â MacLaren explained. âCrop diversity can also confer resilience to weather variability, increase biodiversity, and suppress weeds, crop pests and pathogens; itâs essential, if farmers are to improve maize production in places like Africa.â
Thierfelder cautioned that widespread adoption of ecological intensification will require strong support from policymakers and society, including establishing functional markets for legume seed and for marketing farmersâ produce, among other policy improvements.
âDire and worsening global challenges â climate change, soil degradation and fertility declines, and scarcening fresh water â threaten the very survival of humanity,â said Thierfelder. âIt is of utmost importance to renovate farming systems and bring us back into a safe operating space.â
Click here to read the paper, Long-term evidence for ecological intensification as a pathway to sustainable agriculture.
Participants at the mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project. Photo CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) and the Rwanda Agriculture and Animal Resources Development Board (RAB) recently held a mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project.
The meeting aimed to track the progress made in the first year of the projectâs implementation, identify challenges, document lessons learned, and develop an action plan for the following year, based on identified gaps and priorities.
In his welcoming remarks, RAB Director General Patrick Karangwa highlighted the close partnership between the two institutions.
âThe workshop is not only about reviewing the progress but also about creating a strong partnership and interaction with each other to form a lasting togetherness that can later be useful for supporting each other in running the programâs activities of GAIA in the region,â he said.
Karangwa also noted the dynamism and enthusiasm of the GAIA team and partners, who made âremarkable successesâ during a challenging period due to the COVID-19 pandemic.
Along with plant nutrition and improved land management, healthier soils contribute to more productive and profitable smallholder enterprises. The GAIA project uses scalable innovations to provide reliable, timely and actionable data and insights on soil health and crop performance, at farm and regional levels.
The workshop brought together about 49 participant including regional program implementing partners, key stakeholders, and scientists from Ethiopia, Kenya, Rwanda, Tanzania, and Zimbabwe to  participate in more than 20 face-to-face and virtual presentations,  breakout sessions, and team-building exercises.
âThe key to project success is a strong partnership and collaboration with national and regional partners, particularly with private and public sectors ââ said  Sieglinde Snapp, the director of the Sustainable Agrifood Systems (SAS) program at CIMMYT.
The participants addressed the work undertaken around eight work packages: spatial ex-ante analysis, adoption research on lime value chains, agronomy research for lime recommendations, support to the lime sector, policy support, coordination and advocacy, data use and management, and communication.
GAIA is funded by the Bill and Melinda Gates Foundation and implemented by CIMMYT in partnership with the Centre for Agriculture and Bioscience International; Dalberg; national agricultural research systems in Ethiopia, Kenya, Rwanda, and Tanzania; the Southern Agricultural Growth Corridor of Tanzania; Wageningen University; and the University of California – Davis. The project aims to provide data-driven and spatially explicit recommendations to increase returns on investment for farmers, the private sector, and governments in Africa.
Our planet is facing a massive biodiversity crisis. Deeply entwined with our concurrent climate crisis, this crisis may well constitute the sixth mass extinction in Earthâs history. Increasing agricultural production, whether by intensification of extensification, is a major driver of biodiversity loss. Beyond humanityâs moral obligation to not drive other species to extinction, biodiversity loss is also associated with the erosion of critical processes that maintain the Earth system in the only state that can support life as we know it. It is also associated with the emergence of novel, zoonotic pathogens like the SARS-CoV-2 virus that is responsible for the current COVID-19 global pandemic.
Conservation ecologists have proposed two solutions to this challenge: sparing or sharing land. The former implies practicing a highly intensive form of agriculture on a smaller land area, thereby âsparingâ a greater proportion of land for biodiversity. The latter implies a multifunctional approach that boosts the density of wild flora and fauna on agricultural land. Both have their weaknesses though: sparing often leads to agrochemical pollution of adjacent ecosystems, while sharing implies using more land for any production target.
In an article in Biological Conservation, agricultural scientists at the International Maize and Wheat Improvement Center (CIMMYT), argue that, while both land sharing and sparing are part of the solution, the current debate is too focused on trade-offs and tends to use crop yield as the sole metric of agricultural performance. By overlooking potential synergies between agriculture and biodiversity and ignoring metrics that may matter more to farmers than yield âfor example, income, labor productivity, or resilience â the authors argue that the two approaches have had limited impact on the adoption by farmers of practices with proven benefits on both biodiversity and agricultural production.
Beyond the zero-sum game
At the heart of the debate around land sparing versus land sharing is a common assumption: there is a zero-sum relationship between wild species density and agricultural productivity per unit of land. Hence, the answer to the challenge of balancing biodiversity conservation with feeding a growing human population appears to entail some unpalatable trade-offs, no matter which side of the debate you side with. As the debate has largely been driven by conservation ecologists, proposed solutions often approach conserving biodiversity in ways that offer limited benefits, and often losses, to farmers.
On the land sparing side, the vision is to carve up rural landscapes almost as a planner would zone urban space: some areas would be zoned for highly intensive forms of agricultural production, largely devoid of wild species, while others would be zoned as biodiversity-rich areas. As the authors point out, however, such a strictly segregated view of land use is challenged by the natural migratory patterns of species, their need for diverse types of ecosystems over the course of the seasons or their lifecycles, and the high risk of pollution associated with intensive agriculture, such as run-off and leaching of agrochemicals, and pesticide drift.
Proponents of the land sharing view argue for a multifunctional approach to agricultural production that introduces a greater density of wild species onto agricultural land, thus integrating production and conservation into the same land units. This, however, inevitably diminishes agricultural productivity, as measured by yield.
This view, the article argues, overlooks the synergies between agriculture and biodiversity. Not only can biodiversity support agriculture through ecosystem services, but farmlands also support many species. For example, the patchiness created in the landscape by swidden agriculture or by grazing livestock supports more biodiversity than closed-canopy ecosystems, benefiting open-habitat species in particular. And except for rare forms of âcontrolled environment agricultureâ such as hydroponics, all agricultural systems depend on the ecosystem services rendered by a multitude of organisms, from soil fertility maintenance to pollination and pest control.
Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)
Similarly, an exclusive focus on yield as a measure of agricultural performance obscures ways in which greater biodiversity on agricultural land can support farmers’ livelihoods and economic wellbeing. The authors show, for example, that simplified landscapes in southern Ethiopia tend to have higher crop productivity. But more diverse landscape in the same area, while hosting more biodiversity, produce more fuelwood, support a higher livestock productivity, provide a greater dietary diversity, and are more resilient to environmental stresses and external economic shocks, all of which being highly valued by local people.
Imagining landscapes where biodiversity and people win
The land sharing versus sparing debate deserves enormous credit for bringing attention to the role of agriculture in biodiversity loss and for pushing the scientific community and policymakers to address the problem and think about how to balance agriculture and conservation. As the authors of this paper show, as researchers from a more diverse range of scientific disciplines join the debate, there is tremendous potential to move the conversation from a vision that pits agriculture against biodiversity and towards solutions that highlight the potential synergies between these activities.
âIt is our hope that this paper will stimulate other agricultural scientists to contribute to the debate on how to feed a growing population while safeguarding biodiversity. This is possibly one of the biggest challenges of our rapidly changing agri-food systems. But we have the technologies and the analytics to face this challenge,â Baudron said.
Cover photo: Pilot farm in Yangambi, Democratic Republic of Congo. (Photo: Axel Fassio/CIFOR)
Firpo was born in Montevideo, Uruguay, where he received a BSc degree as an agronomy engineer in 1997 from the University of the Republic, College of Agronomy. His PhD degree in 2008 was from the Department of Plant Pathology at the University of Minnesota (UMN). He began his career as a postdoctoral research associate with the Department of Plant Pathology and the USDA-ARS Cereal Disease Lab, and then became a research assistant professor in the Department of Plant Pathology at UMN in 2017.
Firpo has been a vital member in the global cereal rust pathology community and contributed substantially to the fight against Ug99 and other virulent wheat stem rust races that have re-emerged around the world and pose serious threats to food security. Firpo’s contributions are not only within the realm of research of great impact, but also include training 79 scientists and facilitating the establishment of a world-class research group in Ethiopia. He has worked to improve international germplasm screening in Ethiopia. As a postdoctoral research associate, Firpo’s first assignment was to search for new sources of resistance to Ug99 in durum wheat, used for pasta, and related tetraploid wheat lines. That project took him to Ethiopia, where an international Ug99-screening nursery for durum wheat was established at Debre Zeit Research Center. He worked closely with researchers from the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Research Center (CIMMYT) to improve the methodologies for screening and to provide hands-on training to researchers managing the international screening nursery. During a period of 10 years (from 2009 to 2019), he traveled to Ethiopia 21 times to evaluate stem rust reactions of US and international durum wheat germplasm and completed the screening of the entire durum collection (more than 8,000 accessions) from the USDA National Small Grains Collection.
Firpo’s research on sources and genetics of stem rust resistance led to discoveries of valuable genetic resistance in durum and other relatives of wheat. These sources of resistance have provided the needed diversity to ensure the development and sustainability of durable stem rust resistance.
With frequent epidemics and severe yield losses caused by stem rust in eastern Africa, establishing a functional rust pathology laboratory to support international screening, as well as to monitor and detect new virulences in the pathogen population, became a high priority for the international wheat research community. Utilizing the onground opportunities in Ethiopia, Firpo and his colleagues at the CDL and UMN enthusiastically participated in building up the rust pathology lab at the Ambo Plant Protection Center of EIAR. Firpo traveled to Ambo 11 times to provide hands-on training to staff and to develop cereal rust protocols to suit local conditions. He worked closely with colleagues at CDL, EIAR, and CIMMYT to secure and upgrade facilities, equipment and supplies to a standard that ensures reliable rust work will be carried out. As a result, the rust pathology lab at the Ambo Center became the only laboratory in eastern Africa, and one of a handful in the world, that can conduct high-quality race analysis of wheat stem rust samples and provide vital and necessary support for breeding global wheat varieties for rust resistance. Currently, the laboratory is playing a critical role in the global surveillance of the stem rust pathogen and supports wheat breeding efforts led by EIAR, CIMMYT, and the USDA.
Firpo has been passionate in supporting capacity building of human resources in Ethiopia and elsewhere. He has been eager to share his knowledge whenever he encounters an opportunity to do so. In addition to the direct training of the staff at the Ambo Center, Firpo accepted invitations to provide training lectures and hands-on field- and greenhouse-based workshops on rust pathology at three research centers in Ethiopia. He prepared training materials, delivered a total of 12 lectures and 10 practical sessions in three Ethiopia national workshops in 2014, 2015, and 2017. These workshops enhanced human resource development and technical capacity in âEthiopia in cereal rust pathology; participants included a total of 64 junior scientists and technical staff from nationwide research centers. Beyond Ethiopia, he was responsible for developing and implementing a six-week training program in cereal rust prevention and control for international scientists. This training program, under the aegis of the Stakman-Borlaug Center for Sustainable Plant Health in the Department of Plant Pathology, University of Minnesota, provided an experiential learning opportunity for international scientists interested in acquiring knowledge and practical skills in all facets of working with cereal rusts. The program trained 15 rust pathologists and wheat scientists from Ethiopia, Kenya, Pakistan, Nepal, Bhutan, Georgia, and Kyrgyzstan, ranging from promising young scientists selected by the USDA as Borlaug Fellows to principal and senior scientists in their respective countries. Many of these trainees have become vital partners in the global surveillance network for cereal rusts.
Working in collaboration with CDL and international scientists, Firpo has been closely involved in global surveillance of the stem rust pathogen, spurred by monitoring the movements of, and detecting, new variants in the Ug99 race group. Since 2009, he and the team at the CDL have analyzed 2,500 stem rust samples from 22 countries, described over 35 new races, and identified significant virulence combinations that overcome stem rust resistance genes widely deployed in global wheat varieties. Among the most significant discoveries were the identification of active sexual populations of the stem rust pathogen in Kazakhstan, Georgia, Germany, and Spain that have unprecedented virulence and genetic diversities. More than 320 new virulent types (or races) were identified from these sexual populations. Evolution in these populations will present continued challenges to wheat breeding. Research in race analysis has provided valuable pathogen isolates that are used to evaluate breeding germplasm to select for resistant wheat varieties and to identify novel sources of stem rust resistance.
A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.
Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches â a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.
Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.
Getting down in the dirt
A recent scientific review examines the potential of a suite of improved practices â reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control â to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.
Another study on soil quality in Indiaâs extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.
Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms â major contributors to soil health â in soils under farmersâ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
Rebooting marginal farms by design
Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.
More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the regionâs puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.
Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmersâ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.
Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.
Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.
Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)
Written by Bea Ciordia on . Posted in Uncategorized.
The Nitrogen-Efficient Wheat Production Systems in the Indo-Gangetic Plains through Biological Nitrification Inhibition (BNI) Technology project aims to raise awareness of the benefits of new nitrogen-efficient wheat production systems among stakeholders in India.
By introducing technologies that maintain crop yield and quality, even with a reduced amount of nitrogen fertilizer, this project will also lessen the footprint of food production systems and combat environmental degradation.
Written by Bea Ciordia on . Posted in Uncategorized.
MARPLE (Mobile And Real-time PLant disEase) diagnostics is a new innovative approach for fungal crop pathogen diagnostics developed by Diane Saundersâs team at the John Innes Centre.
MARPLE is the first operational system in the world using nanopore sequencing for rapid diagnostics and surveillance of complex fungal pathogens in situ. Generating results in 48 hours of field sampling, this new digital diagnostic strategy is leading revolutionary changes in plant disease diagnostics. Rapid strain level diagnostics are essential to quickly find new emergent strains and guide appropriate control measures.
Through this project, CIMMYT will:
Deploy and scale MARPLE to priority geographies and diseases as part of the Current and Emerging Threats to Crops Innovation Lab led by Penn State University / PlantVillage and funded by USAID’s Feed the Future.
Build national partner capacity for advanced disease diagnostics. We will focus geographically on Ethiopia, Kenya and Nepal for deployment of wheat stripe and stem rust diagnostics, with possible expansion to Bangladesh and Zambia (wheat blast).
Integrate this new in-country diagnostic capacity with recently developed disease forecasting models and early warning systems. Already functional for wheat stripe rust, the project plans to expand MARPLE to incorporate wheat stem rust and wheat blast.
Written by Bea Ciordia on . Posted in Uncategorized.
The Bangladesh Integrated Pest Management Activity (IPMA) project aims to strengthen the capacity of agricultural stakeholders in Bangladesh by controlling and preventing the spread of current and emerging threats to ensure more efficient, profitable, and environmentally safe agricultural production and productivity.
Objectives
Increase the availability and affordability of integrated pest management measures for the prevention and spread of current and emerging threats
Strengthen the capacity of Bangladesh agricultural stakeholders, such as academia, financial institutions, government, judiciary, media, civil society, the private sector, and value chain actors, to implement integrated pest management measures
Enhance the adoption of integrated pest management by smallholder farmers to increase agricultural production and productivity, while reducing environmental hazards caused by indiscriminate use of pesticides
Written by Bea Ciordia on . Posted in Uncategorized.
The Managing Wheat Blast in Bangladesh: Identification and Introgression of Wheat Blast Resistance for Rapid Varietal Development and Dissemination project aims to characterize novel sources of wheat blast resistance, identification, and molecular mapping of resistance loci/gene(s) and their introgression into varietal development pipelines for rapid dissemination of resistant varieties in Bangladesh.
Objectives
Validate the effects of genes Rmg1, Rmg8 and RmgGR119 in field experiments
Identify novel wheat blast resistant sources and generating the corresponding genetic materials for investigating the resistance Quantitative Trait Loci (QTL)/genes
Monitor the adoption of resistant varieties BARI Gom 33 and WMRI Gom 3 by women and men farmers to learn the drivers and obstacles that are involved in the process, to inform the design of a farmer-preferred product profile, and factors in impact pathway
Build the capacity of the Bangladesh Wheat and Maize Research Institute (BWMRI) to operate major infrastructure in Jashore and Dinajpur at the individual and institutional levels
Enhance collaboration between Bangladesh and other countries showing interest on wheat blast
Train young wheat researchers and breeders in Jashore Precision Phenotyping Platform (PPP)
Spot blotch, a major biotic stress challenging bread wheat production is caused by the fungus Bipolaris sorokiniana. In a new study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) evaluate genomic and index-based selection to select for spot blotch resistance quickly and accurately in wheat lines. The former approach facilitates selecting for spot blotch resistance, and the latter for spot blotch resistance, heading and plant height.
Genomic selection
The authors leveraged genotyping data and extensive spot blotch phenotyping data from Mexico and collaborating partners in Bangladesh and India to evaluate genomic selection, which is a promising genomic breeding strategy for spot blotch resistance. Using genomic selection for selecting lines that have not been phenotyped can reduce the breeding cycle time and cost, increase the selection intensity, and subsequently increase the rate of genetic gain.
Two scenarios were tested for predicting spot blotch: fixed effects model (less than 100 molecular markers associated with spot blotch) and genomic prediction (over 7,000 markers across the wheat genome). The clear winner was genomic prediction which was on average 177.6% more accurate than the fixed effects model, as spot blotch resistance in advanced CIMMYT wheat breeding lines is controlled by many genes of small effects.
âThis finding applies to other spot blotch resistant loci too, as very few of them have shown big effects, and the advantage of genomic prediction over the fixed effects model is tremendousâ, confirmed Xinyao He, Wheat Pathologist and Geneticist at CIMMYT.
The authors have also evaluated genomic prediction in different populations, including breeding lines and sister lines that share one or two parents.
Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Index selection
One of the key problems faced by wheat breeders in selecting for spot blotch resistance is identifying lines that are genetically resistant to spot blotch versus those that escape and exhibit less disease by being late and tall. âThe latter, unfortunately, is often the case in South Asiaâ, explained Pawan Singh, Head of Wheat Pathology at CIMMYT.
A potential solution to this problem is the use of selection indices that can make it easier for breeders to select individuals based on their ranking or predicted net genetic merit for multiple traits. Hence, this study reports the first successful evaluation of the linear phenotypic selection index and Eigen selection index method to simultaneously select for spot blotch resistance using the phenotype and genomic-estimated breeding values, heading and height.
This study demonstrates the prospects of integrating genomic selection and index-based selection with field based phenotypic selection for resistance in spot blotch in breeding programs.
Spot blotch, caused by the fungus Biopolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions globally, affecting more than 25 million hectares and resulting in huge yield losses.
Chemical control approaches, including seed treatment and fungicides, have provided acceptable spot blotch control. However, their use is unaffordable to resource-poor farmers and poses a hazard to health and the environment. In addition, âabiotic stresses like heat and drought that are widely prevalent in South Asia compound the problem, making varietal genetic resistance the last resort of farmers to combat this disease,â according to Pawan Singh, Head of Wheat Pathology at the International Maize and Wheat Improvement Center (CIMMYT). Therefore, one of CIMMYTâs wheat research focus areas is developing wheat varieties that carry genetic resistance to the disease.
Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)
The studyâs results are positive and confirmed that:
Many advanced CIMMYT breeding lines have moderate to high resistance to spot blotch.
Resistance to the disease is conferred quantitatively by several minor genomic regions that act together in an additive manner to confer resistance.
There is an association of the 2NS translocation from the wild species Aegilops ventricosa with spot blotch resistance.
There is also an association of the spot blotch favorable alleles at the 2NS translocation, and two markers on the telomeric end of chromosome 3BS with grain yield evaluated in multiple environments, implying that selection for favorable alleles at these markers could help obtain higher grain yield and spot blotch resistance.
âConsidering the persistent threat of spot blotch to resource-poor farmers in South Asia, further research and breeding efforts to improve genetic resistance to the disease, identify novel sources of resistance by screening different germplasm, and selecting for genomic regions with minor effects using selection tools like genomic selection is essential,â explained Philomin Juliana, Molecular Breeder and Quantitative Geneticist at CIMMYT.
Cover photo: Researchers evaluate wheat for spot blotch at CIMMYTâs experimental station in Agua FrĂa, Jiutepec, Morelos state, Mexico. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Stripe rust, also known as yellow rust, on wheat with droplets of rain. (Photo: A. Yaqup/CIMMYT)
Robust and resilient agrifood systems begin with healthy crops. Without healthy crops the food security and livelihoods of millions of resource-constrained smallholder famers in low- and middle-income countries would be in jeopardy. Yet, climate change and globalization are exacerbating the occurrence and spread of devastating insect-pests and pathogens.
Each year, plant diseases cost the global economy an estimated $220 billion â and invasive insect-pests at least $70 billion more. In addition, mycotoxins such as aflatoxins pose serious threats to the health and wellbeing of consumers. Consumption of mycotoxin-contaminated food can cause acute illness, and has been associated with increased risk of certain cancers and immune deficiency syndromes.
Effective plant health management requires holistic approaches that strengthen global and local surveillance and monitoring capacities, and mitigate negative impacts through rapid, robust responses to outbreaks with ecologically friendly, socially-inclusive and sustainable management approaches.
Over the decades, CGIAR has built a strong foundation for fostering holistic plant health protection efforts through its global network of Germplasm Health Units, as well as pathbreaking rapid-response efforts to novel transboundary threats to several important crops, including maize, wheat, rice, bananas, cassava, potatoes and grain legumes.
On May 12, 2022, CGIAR is launching the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative (Plant Health Initiative). It presents a unified and transdisciplinary strategy to protect key crops â including cereals, legumes, roots, tubers, bananas and vegetables â from devastating pests and diseases, as well as mycotoxin contamination. CGIAR Centers will pursue this critical work together with national, regional and international partner institutions engaged in plant health management.
A comprehensive strategy
Prevention. When and where possible, prevention is always preferable to racing to find a cure. Reactive approaches, followed by most institutions and countries, generally focus on containment and management actions after a pest outbreak, especially pesticide use. These approaches may have paid off in the short- and medium-term, but they are not sustainable long-term. It has become imperative to take proactive actions on transboundary pest management through globally coordinated surveillance, diagnostics and deployment of plant health solutions, as well as dynamic communications and data sharing.
To this end, under this Initiative CGIAR will produce a diagnostics and surveillance toolbox. It will include low-cost and robust assays, genomics- and bioinformatics-based tools for pathogen diagnosis and diversity assessment, as well as information and communications technologies for real-time data collection and crowdsourcing. This will be complemented by the development of interoperable databases, epidemiological and risk assessment models, and evidence-based guidance frameworks for prioritizing biosecurity measures and rapid response efforts to high-risk insect-pests and diseases.
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Adoption of integrated approaches. The goal of integrated pest and disease management is to economically suppress pest populations using techniques that support healthy crops. An effective management strategy will judiciously use an array of appropriate approaches, including clean seed systems, host-plant resistance, biological control, cultural control and the use of environmentally safer pesticides to protect crops from economic injury without adversely impacting the environment.
Through the Plant Health Initiative, CGIAR will promote system-based solutions using ecofriendly integrated pest and disease management innovation packages to effectively mitigate the impact of major insect-pests and diseases affecting crop plants. It will also implement innovative pre- and post-harvest mycotoxin management tools and processes.
Integrating peopleâs mindsets. The lack of gender and social perspectives in plant health surveillance, technology development, access to extension services and impact evaluation is a major challenge in plant health management. To address this, CGIAR will prioritize interdisciplinary data collection and impact evaluation methods to identify context-specific social and gender related constraints, opportunities and needs, as well as generate evidence-based recommendations for policy makers and stakeholders.
Interface with global and regional Initiatives. The Plant Health Initiative will build on the critical, often pioneering work of CGIAR. It will also work closely with other CGIAR global initiatives â including Accelerated Breeding, Seed Equal, Excellence in Agronomy and Harnessing Equality for Resilience in Agrifood Systems â and Regional Integrated Initiatives. Together, this network will help support CGIARâs work towards developing and deploying improved varieties with insect-pest and disease resistance, coupled with context-sensitive, sustainable agronomic practices, in a gender- and socially-inclusive manner.
Targeting localized priorities with strategic partnerships
Effective plant health monitoring and rapid response efforts rely on the quality of cooperation and communication among relevant partner institutions. In this Initiative, CGIAR places special emphasis on developing and strengthening regional and international networks, and building the capacity of local institutions. It will enable globally and regionally coordinated responses by low- and middle-income countries to existing and emerging biotic threats.
To this end, CGIAR will work closely with an array of stakeholders, including national plant protection organizations, national agricultural research and extension systems, advanced research institutions, academia, private sector, and phytosanitary coordination networks.
The geographic focus of interventions under this Initiative will be primarily low- and middle-income countries in Latin America, South and Southeast Asia, and sub-Saharan Africa.
Coupled with CGIARâs commitment to engaging, mobilizing and empowering stakeholders at various scales across the globe, the Plant Health Initiative represents an enormous step towards integrating peopleâs mindsets, capacities and needs towards holistic and sustainable plant health management. It will ultimately protect the food and nutritional security and livelihoods of millions of smallholders and their families.