The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.
CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.
Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.
Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.
Md. Sayedul Islam inaugurated the greenhouse complex along with Golam Faruq and Md. Benojir Alam. (Credit: Timothy J. Krupnik/CIMMYT)
A new greenhouse complex, built with financial support from the International Maize and Wheat Improvement Center (CIMMYT), at the Bangladesh Wheat and Maize Research Institute (BWMRI) was inaugurated on 13 August 2022. The greenhouse was built at BWMRI’s headquarters in Dinajpur, Bangladesh.
This complex has a room for generator, a sample preparation room and space for a small laboratory. These upgrades will add new momentum for greenhouse activities and BWMRI and CIMMYT scientists designed the facility to accommodate wheat scientists from Bangladesh and other countries.
The BWMRI has been working to combat wheat blast disease since 2016, with financial and technical support from CIMMYT and other investors. CIMMYT has also assisted the Government of Bangladesh in developing an early warning system for wheat blast.
Because of the challenging phenology of synthetic wheat and introductions from winter and facultative wheat zones, field condition evaluation of these germplasm is difficult and the greenhouse will help ease this hurdle. Additionally, several pathological experiments investigating the biology of wheat blast will now be able to be performed in the new greenhouse facility.
Supplementary activities at the greenhouse include disease screening and research into unlocking the genetics of host resistance. The installation of a diesel generator will keep the greenhouse running in case of power outages.
Visitors to the newly constructed greenhouse at the Bangladesh Wheat and Maize Research Institute. (Credit: Rezaul Kabir/BWMRI)
Md. Sayedul Islam, Secretary of the Ministry of Agriculture, inaugurated the greenhouse complex. Additional attendees at the opening included Shaikh Mohammad Bokhtiar, Executive Chairman of the Bangladesh Agricultural Research Council (BARC), Golam Faruq, Director General of BWMRI, Mirza Mofazzal Islam, Director General of the Bangladesh Institute of Nuclear Agriculture (BINA), Debasish Sarker, Director General of the Bangladesh Agricultural Research Institute (BARI), Md. Benojir Alam, Director General of the Department of Agricultural Extension (DAE), and Md. Abdul Wadud, Executive Director and Additional Secretary at the Bangladesh Institute of Research and Training on Applied Nutrition (BIRTAN). Timothy J. Krupnik, country representative of CIMMYT in Bangladesh, was also present.
The Gene Editing for Reducing Aflatoxin in Groundnuts project seeks to advance safer and nutritious groundnut varieties with durable genetic resistance to Aspergilli infection and aflatoxin contamination via gene editing. These new technologies will help address associated health and disease burdens, malnutrition, and trade and economic losses for smallholder farming communities in sub-Saharan Africa and globally. The main output of this project will be gene-edited varieties with reduced levels of aflatoxins.
Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience aims to create resilient, inclusive and productive deltas — which maintain socio-ecological integrity, adapt to climatic and other stressors, and support human prosperity and wellbeing — by removing systemic barriers to the scaling of transformative technologies and practices at community, national and regional levels.
This objective will be achieved through:
Adapting deltaic production systems by identifying, synthesizing, evaluating, adapting and scaling interventions to ensure systems can adapt to and mitigate the effects of salinity, flooding, drought, terminal heat and sinking land.
Nutrition-sensitive deltaic agrifood systems, developed through the promotion of sustainable production and consumption of nutritious foods in Asian mega-deltas, by involving institutional stakeholders in the co-production of nutrition-sensitive interventions.
De-risking delta-oriented value chains by assessing the potential of digital climate advisory and complementing services to address climate risks among vulnerable groups, supporting development of improved and inclusive digital and bundled services, and identifying and developing financing models and partnerships to achieve scale.
Joined-up, gender equitable, inclusive deltaic systems governance, informed by transdisciplinary research evidence, local knowledge and political economy insights used to coordinate multi-stakeholder dialogues for more coherent water-agriculture-environment policies and strategies; collaborative, networked implementation practices; and gender-equitable and socially inclusive governance innovations.
Evidence-based delta development planning at the macro-level to ensure plans/policies incorporate inclusive and climate-proof approaches to food systems transformation.
Working across South Asia, the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative will deliver a coordinated program of research and engagement across the food production to consumption continuum to improve equitable access to sustainable healthy diets, improve farmer livelihoods and resilience, and conserve land, air, and groundwater resources.
TAFSSA aims to propel evidence into impact through engagement with public and private partners across the production-to-consumption continuum, to achieve productive, environmentally-sound South Asian agrifood systems that support equitable access to sustainable healthy diets.
This objective will be achieved through:
Facilitating agrifood systems transformation through inclusive learning platforms, public data systems and partnerships: building new and enhancing existing learning platforms; improving the evidence base; increasing quality data availability and accessibility; and demonstrating the value of integrated agrifood systems datasets.
Transforming agroecosystems and rural economies to boost income, generate jobs and support diversified food production within environmental boundaries: generating linkages between farmers, landscapes and markets to diversify agricultural production, increase farmers’ incomes and foster rural entrepreneurship within environmental boundaries.
Improving access to and affordability of sustainably produced healthy foods through evidence and actions across the food system: creating favorable environments for diversification; improving access to inputs for and marketability of sustainable nutritious food; and improving access to healthy food for the poor through changes in food retail environments.
Understanding behavioral and structural determinants of sustainable healthy diets: studying dietary practices of food consumers; identifying determinants of food choices; and testing innovations to support consumption of sustainable healthy diets.
Building resilience and mitigating environmental impact: examining how South Asia can produce healthy diets within an environmentally safe and socially equitable operating space, and in consideration of ongoing climate change and farmers’ resilience to shocks.
Among the inputs needed for a healthy soil, nitrogen is unique because it originates from the atmosphere. How it moves from the air to the ground is governed in part by a process called biological nitrogen fixation (BNF), which is catalyzed by specific types of bacteria.
Nitrogen supply is frequently the second most limiting factor after water availability constraining crop growth and so there is great farmer demand for accessible sources of nitrogen, such as synthetic nitrogen in fertilizer. This increasing demand has continued as new cereal varieties with higher genetic yield potential are being released in efforts to feed the world’s growing population.
Currently, the primary source for nitrogen is synthetic, delivered through fertilizers. Synthetic nitrogen revolutionized cereal crop (e.g., wheat, maize, and rice) production by enhancing growth and grain yield as it eliminated the need to specifically allocate land for soil fertility rejuvenation during crop rotation. However, synthetic nitrogen is not very efficient, often causing excess application, which leads to deleterious forms, including ammonia, nitrate, and nitrogen oxides escaping into the surrounding ecosystem, resulting in a myriad of negative impacts on the environment and human health. Nitrogen loss from fertilizer is responsible for a nearly 20% increase in atmospheric nitrous oxide since the industrial revolution. Notably, more nitrogen from human activities, including agriculture, has been released to the environment than carbon dioxide during recent decades, leading climate scientists to consider the possibility that nitrogen might replace carbon as a prime driver of climate change.
New research co-authored by International Maize and Wheat Improvement Center (CIMMYT) scientists, published in Field Crops Research, posits that facilitating natural methods of gathering useable nitrogen in BNF can reduce the amount of synthetic nitrogen being used in global agriculture.
As agricultural systems become more intensive regarding inputs and outputs, synthetic nitrogen has become increasingly crucial, but there are still extensive areas in the world that cannot achieve food and nutrition security because of a lack of nitrogen.
“This, together with increasing and changing dietary demands, shows that the future demand for nitrogen will substantially grow to meet the anticipated population of 9.7 billion people by the middle of the century,” said J.K. Ladha, adjunct professor in the Department of Plant Sciences at University of California, Davis, and lead author of the study.
Before the synthetic nitrogen, the primary source of agricultural nitrogen was gathered through BNF as bacteria living underground that convert atmospheric nitrogen into nitrogen that can be utilized by crops. Therefore, legumes are often employed as a cover crop in rotating fields to replenish nitrogen stocks; their root systems are hospitable for these nitrogen producing bacteria to thrive.
“There are ways in which BNF could be a core component of efforts to build more sustainable and regenerative agroecosystems to meet nitrogen demand with lower environmental footprints,” said Timothy Krupnik, Senior System Agronomist at CIMMYT in Dhaka, Bangladesh.
Plant scientists have often hypothesized that the ultimate solution for solving the ever-growing nitrogen supply challenge is to confer cereals like wheat, maize, rice, with their own capacity for BNF. Recent breakthroughs in the genomics of BNF, as well as improvements in the understanding how legumes and nitrogen bacteria interact, have opened new avenues to tackle this problem much more systematically.
“Enabling cereal crops to capture their own nitrogen is a long-standing goal of plant biologists and is referred to as the holy grail of BNF research,” said P.M. Reddy, Senior Fellow at The Energy Research Institute, New Delhi. “The theory is that if cereal crops can assemble their own BNF system, the crop’s internal nitrogen supply and demand can be tightly regulated and synchronized.”
The study examined four methods currently being employed to establish systems within cereal crops to capture and use their own nitrogen, each with their advantages and limitations. One promising method involves identifying critical plant genes that perceive and transmit nitrogen-inducing signals in legumes. Integrating these signal genes into cereal crops might allow them to construct their own systems for BNF.
“Our research highlights how BNF will need to be a core component of efforts to build more sustainable agroecosystems,” said Mark Peoples, Honorary Fellow at The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia. “To be both productive and sustainable, future cereal cropping systems will need to better incorporate and leverage natural processes like BNF to mitigate the corrosive environmental effects of excess nitrogen leaking into our ecosystems.”
Besides the efforts to bring BNF to cereals, there are basic agronomic management tools that can shift focus from synthetic to BNF nitrogen.
“Encouraging more frequent use of legumes in crop rotation will increase diversification and the flow of key ecosystem services, and would also assist the long-term sustainability of cereal-based farming systems,” said Krupnik.
Cover photo: A farmer in the Ara district, in India’s Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.
Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.
Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.
Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.
Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)
Rust pathogens are the most ubiquitous fungal pathogens that continue to pose a serious threat to wheat production. The preferred strategy to combat these diseases is through breeding wheat varieties with genetic resistance.
Landraces are a treasure trove of trait diversity, offer an excellent choice for the incorporation of new traits into breeding germplasm, and serve as a reservoir of genetic variations that can be used to mitigate current and future food challenges. Improving selection efficiency can be achieved through broadening the genetic base through using germplasm pool with trait diversity derived from landraces.
In a recent study, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used Afghan landrace KU3067 to unravel the genetic basis of resistance against Mexican races of leaf rust and stripe rust. The findings of this study not only showcase new genomic regions for rust resistance, but also are the first report of Lr67/Yr46 in landraces. This adult plant resistance (APR) gene confirms multi-pathogenic resistance to three rust diseases and to powdery mildew.
Using genotype sequencing and phenotyping, the authors also report an all-stage resistance gene for stripe rust on chromosome 7BL, temporarily designated as YrKU. The genetic dissection identified a total of six quantitative trait locus (QTL) conferring APR to leaf rust, and a further four QTL for stripe rust resistance.
Although use of landraces in wheat breeding has been practiced for a long time, it has been on a limited scale. This study represents a significant impact in breeding for biotic stresses, particularly in pest and disease resistance.
Sridhar Bhavani, head of rust pathology and molecular genetics and the International Maize and Wheat Improvement Center (CIMMYT), shared potential solutions for fighting back against wheat stem rusts like Ug99.
More than 200 new wheat varieties released by CIMMYT over the last ten years have contributed to reducing the spread of wheat stem rust in East Africa, where the disease originated. Scientists identify genes resistant to Ug99 and breed new varieties that are not susceptible to stem rust pathogens.
For long-term success, combining multiple resistant genes within a single variety is the way to go.
While previous studies have demonstrated the importance of organic material in soil for sustainable agricultural practices, there has been limited research into how organic material application affects the soil microbial community structures.
Dried young maize plants were added to the soil in the laboratory. After three days of incubation, soil samples were analyzed using shotgun metagenomic sequencing to discover how the application of young maize plants affects the structure of microbial communities in arable soil, how the potential functioning of microbial communities is altered, and how the application affects the soil taxonomic and functional diversity.
Bacterial and viral groups were strongly affected by organic material application, whereas archaeal, protist and fungal groups were less affected. Soil viral structure and richness were impacted, as well as metabolic functionality. Further differences were recorded in cellulose degraders with copiotrophic lifestyle, which were enriched by the application of young maize plants, while groups with slow growing oligotrophic and chemolithoautotrophic metabolism performed better in unamended soil.
Given the importance of embedding and adopting sustainable agricultural practices as part of climate change adaptation and mitigation, the study improves our insight in a key aspect of sustainable agriculture, the management of crop residues.
Farmers gather in a landrace field. Photo: Raqib Lodin/CIMMYT
For thousands of years, farmers in Afghanistan, Turkey and other countries in the region, have been breeding wheat, working closely with the environment to develop traditional wheat varieties known as landraces. Untouched by scientific breeding, landraces were uniquely adapted to their environment and highly nutritious.
As agriculture became more modernised and intensified, it threatened to push these traditional landraces into extinction, resulting in the loss of valuable genetic diversity. Institutions around the world decided to act, forming germplasm collections known as genebanks to safely house these landraces.
In 2009, a team of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry Areas (ICARDA), the UN Food and Agriculture Organization (FAO), and national partners set off on a five-year expedition across Central Asia to collect as many landraces as they could find. The project, led by FAO Cereal Breeder and former CIMMYT Principal Scientist Alexey Morgunov, was made possible by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund.
The project had two main missions. The first is to preserve landrace cultivation in three countries, Afghanistan, Turkey and other countries in the region by selecting, purifying, and multiplying the landraces and giving them back to farmers. The second is to scientifically evaluate, characterize and use these landrace varieties in ongoing breeding programmes, exchange the information between the countries, and to deposit the seeds in genebanks to safely preserve them for future generations.
The latest results from the project were published in July in the journal Crops. The study, authored by a team of experts from CIMMYT, ICARDA, FAO, and research institutes in Afghanistan, Turkey and other countries in the region, compared the diversity, performance, and adaptation of the collected wheat landraces with modern varieties grown in the regions using a series of field experiments and cutting-edge genomic tools.
“Landraces are very useful from a breeding perspective because they have been cultivated by farmers over thousands of years and are well adapted to climate change, have strong resistance to abiotic stresses and have very good nutritional quality,” said Rajiv Sharma, a CIMMYT senior scientist and co-author of the paper.
“We were interested in seeing how well landraces adapt to certain environments, how they perform agronomically, and whether they are more diverse than modern varieties grown in these regions – as well as give their improved versions back to farmers before they are lost.”
The experiments, which were carried out in 2018 and 2019 in Turkey, and 2019 in Afghanistan, and other countries in the region revealed several physical characteristics in landraces which are no longer present in modern varieties. For example, the team found striking differences in spike and grain colors with landraces more likely to have red spikes and white grains, and modern varieties tending to have white spikes and red grains. This may have adaptive values for high altitudes and dry conditions.
A surprising finding from the study, however, was that landraces were not more genetically diverse than modern landraces.
“Many people thought that when we went from cultivating landraces to modern varieties, we lost a lot of diversity but genetically speaking, that’s not true. When you look at the genomic profile, modern varieties are just as diverse as landraces, maybe even a little bit more so,” said Sharma.
When the team compared landraces and modern varieties on crop performance, the results were mixed with modern wheat varieties outyielding landraces in half of the environments tested. However, they found that the highest yielding landraces were just as good as the best modern varieties – a reassuring finding for farmers concerned about the productivity of their crops.
A new breeding paradigm
The results of the study have important implications for landrace conservation efforts in farmers’ fields and in future breeding strategies. While crossing wheat landraces with modern varieties to develop improved modern varieties is not new, the authors proposed a novel alternative breeding strategy to encourage the continued cultivation of landraces: improving landraces by crossing them with other landraces.
“In order to maintain landraces, we have to make them competitive and satisfy farmers’ needs and requirements. One option is that we breed landraces,” said Sharma.
“For example, you might have a landrace that is very-high yielding but susceptible to disease. By crossing this variety with another landrace with disease-resistant traits you can develop a new landrace better suited to the farmer and the environment. This approach maintains all the features of landraces – we are simply accelerating the evolution process for farmers to replace the very fast disappearance of these traditional varieties.”
This approach has already been used by crop scientists at the University of California, Davis who has successfully developed and registered “heirloom-like varieties” of dry beans. The varieties trace about 98% of their ancestry to landraces but are resistant to the common mosaic virus.
Heirloom food products are becoming increasingly popular with health-conscious consumers who are willing to pay a higher price for the products, garnering even more interest in conserving traditional landraces.
One of the overarching aims of the project was to give wheat landraces back to farmers and let nature take its course. Throughout the mission, the team multiplied and returned landrace seed to over 1500 farmers in communities across Afghanistan, Turkey and other countries in the region. The team also supplied over 500 farmers with improved landrace seed between 2018 and 2019.
Despite the political turmoil facing these countries, particularly Afghanistan, farmers are still growing wheat and the project’s contribution to food security will continue.
These landraces will take their place once more in the farming landscape, ensuring on-farm wheat diversity and food security for future generations.
This research was conducted with the financial assistance of the European Union within the framework of the Benefit-Sharing Fund project “W2B-PR-41-TURKEY” of the FAO’s International Treaty on Plant Genetic Resources for Food and Agriculture.
Aniket Deo is a generalized specialist who has worked towards improving farmer’s incentives. He has expertise in analytics, food systems, algorithm design, operations research, techno-economic analysis, decision support systems, value chain analysis, agriculture economics, and resource budgeting. His vision is to digitize the agricultural sector for effective and data-driven decisions.
Elufe Chipande (left), a farmer at Songani in Zomba District, Malawi, is rotating maize (background) and pigeonpea (foreground) under conservation agriculture practices to improve soil fertility and capture and retain more water. Christian Thierfelder (center), a cropping systems agronomist working out of the Zimbabwe office of CIMMYT, advises and supports southern African farmers and researchers to refine and spread diverse yield-enhancing, resource-conserving crop management practices. Photo: Mphatso Gama/CIMMYTSRUC
An international team of scientists has found that eco-friendly practices such as growing a range of crops, including legumes such as beans or pigeonpea, and adding plant residues or manure to soils can raise food crop yields in places such as rural Africa, where small-scale farmers cannot apply much nitrogen fertilizer.
Published in the science journal Nature Sustainability and examining data from 30 long-running field experiments involving staple crops (wheat, maize, oats, barley, sugar beet, or potato) in Europe and Africa, this major study is the first to compare farm practices that work with nature to increase yields and explore how they interact with fertilizer use and tillage.
“Agriculture is a leading cause of global environmental change but is also very vulnerable to that change,” said Chloe MacLaren, a plant ecologist at Rothamsted Research, UK, and lead author of the paper. “Using cutting-edge statistical methods to distill robust conclusions from divergent field experiment data, we found combinations of farming methods that boost harvests while reducing synthetic fertilizer overuse and other environmentally damaging practices.”
Recognizing that humanity must intensify production on current arable land to feed its rising numbers, the paper advances the concept of “ecological intensification,” meaning farming methods that enhance ecosystem services and complement or substitute for human-made inputs, like chemical fertilizer, to maintain or increase yields.
Boosting crop yields and food security for far-flung smallholders
The dataset included results from six long-term field experiments in southern Africa led by the International Maize and Wheat Improvement Center (CIMMYT). Africa’s farming systems receive on average only 17 kilograms of fertilizer per hectare, compared to more than 180 kilograms per hectare in Europe or close to 600 in China, according to Christian Thierfelder, a CIMMYT cropping systems agronomist and study co-author.
“In places where farmers’ access to fertilizer is limited, such as sub-Saharan Africa or the Central American Highlands, ecological intensification can complement scarce fertilizer resources to increase crop yields, boosting households’ incomes and food security,” Thierfelder explained. “We believe these practices act to increase the supply of nitrogen to crops, which explains their value in low-input agriculture.”
The CIMMYT long-term experiments were carried out under “climate-smart” conservation agriculture practices, which include reduced or no tillage, keeping some crop residues on the soil, and (again) growing a range of crops.
“These maize-based cropping systems showed considerable resilience against climate effects that increasingly threaten smallholders in the Global South,” Thierfelder added.
Benefits beyond yield
Besides boosting crop yields, ecological intensification can cut the environmental and economic costs of productive farming, according to MacLaren.
“Diversifying cropping with legumes can increase profits and decrease nitrogen pollution by reducing the fertilizer requirements of an entire crop rotation, while providing additional high-value food, such as beans,” MacLaren explained. “Crop diversity can also confer resilience to weather variability, increase biodiversity, and suppress weeds, crop pests and pathogens; it’s essential, if farmers are to improve maize production in places like Africa.”
Thierfelder cautioned that widespread adoption of ecological intensification will require strong support from policymakers and society, including establishing functional markets for legume seed and for marketing farmers’ produce, among other policy improvements.
“Dire and worsening global challenges — climate change, soil degradation and fertility declines, and scarcening fresh water — threaten the very survival of humanity,” said Thierfelder. “It is of utmost importance to renovate farming systems and bring us back into a safe operating space.”
Click here to read the paper, Long-term evidence for ecological intensification as a pathway to sustainable agriculture.
Participants at the mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project. Photo CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) and the Rwanda Agriculture and Animal Resources Development Board (RAB) recently held a mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project.
The meeting aimed to track the progress made in the first year of the project’s implementation, identify challenges, document lessons learned, and develop an action plan for the following year, based on identified gaps and priorities.
In his welcoming remarks, RAB Director General Patrick Karangwa highlighted the close partnership between the two institutions.
“The workshop is not only about reviewing the progress but also about creating a strong partnership and interaction with each other to form a lasting togetherness that can later be useful for supporting each other in running the program’s activities of GAIA in the region,” he said.
Karangwa also noted the dynamism and enthusiasm of the GAIA team and partners, who made “remarkable successes” during a challenging period due to the COVID-19 pandemic.
Along with plant nutrition and improved land management, healthier soils contribute to more productive and profitable smallholder enterprises. The GAIA project uses scalable innovations to provide reliable, timely and actionable data and insights on soil health and crop performance, at farm and regional levels.
The workshop brought together about 49 participant including regional program implementing partners, key stakeholders, and scientists from Ethiopia, Kenya, Rwanda, Tanzania, and Zimbabwe to participate in more than 20 face-to-face and virtual presentations, breakout sessions, and team-building exercises.
“The key to project success is a strong partnership and collaboration with national and regional partners, particularly with private and public sectors ‘’ said Sieglinde Snapp, the director of the Sustainable Agrifood Systems (SAS) program at CIMMYT.
The participants addressed the work undertaken around eight work packages: spatial ex-ante analysis, adoption research on lime value chains, agronomy research for lime recommendations, support to the lime sector, policy support, coordination and advocacy, data use and management, and communication.
“We are encouraged by the progress made so far and expect to have a measurable impact in the next years. Let us feel comfortable to identify new area of research, based on the work conducted so far and national priorities” said Frédéric Baudron, GAIA project lead at CIMMYT.
GAIA is funded by the Bill and Melinda Gates Foundation and implemented by CIMMYT in partnership with the Centre for Agriculture and Bioscience International; Dalberg; national agricultural research systems in Ethiopia, Kenya, Rwanda, and Tanzania; the Southern Agricultural Growth Corridor of Tanzania; Wageningen University; and the University of California – Davis. The project aims to provide data-driven and spatially explicit recommendations to increase returns on investment for farmers, the private sector, and governments in Africa.
Our planet is facing a massive biodiversity crisis. Deeply entwined with our concurrent climate crisis, this crisis may well constitute the sixth mass extinction in Earth’s history. Increasing agricultural production, whether by intensification of extensification, is a major driver of biodiversity loss. Beyond humanity’s moral obligation to not drive other species to extinction, biodiversity loss is also associated with the erosion of critical processes that maintain the Earth system in the only state that can support life as we know it. It is also associated with the emergence of novel, zoonotic pathogens like the SARS-CoV-2 virus that is responsible for the current COVID-19 global pandemic.
Conservation ecologists have proposed two solutions to this challenge: sparing or sharing land. The former implies practicing a highly intensive form of agriculture on a smaller land area, thereby “sparing” a greater proportion of land for biodiversity. The latter implies a multifunctional approach that boosts the density of wild flora and fauna on agricultural land. Both have their weaknesses though: sparing often leads to agrochemical pollution of adjacent ecosystems, while sharing implies using more land for any production target.
In an article in Biological Conservation, agricultural scientists at the International Maize and Wheat Improvement Center (CIMMYT), argue that, while both land sharing and sparing are part of the solution, the current debate is too focused on trade-offs and tends to use crop yield as the sole metric of agricultural performance. By overlooking potential synergies between agriculture and biodiversity and ignoring metrics that may matter more to farmers than yield —for example, income, labor productivity, or resilience — the authors argue that the two approaches have had limited impact on the adoption by farmers of practices with proven benefits on both biodiversity and agricultural production.
Beyond the zero-sum game
At the heart of the debate around land sparing versus land sharing is a common assumption: there is a zero-sum relationship between wild species density and agricultural productivity per unit of land. Hence, the answer to the challenge of balancing biodiversity conservation with feeding a growing human population appears to entail some unpalatable trade-offs, no matter which side of the debate you side with. As the debate has largely been driven by conservation ecologists, proposed solutions often approach conserving biodiversity in ways that offer limited benefits, and often losses, to farmers.
On the land sparing side, the vision is to carve up rural landscapes almost as a planner would zone urban space: some areas would be zoned for highly intensive forms of agricultural production, largely devoid of wild species, while others would be zoned as biodiversity-rich areas. As the authors point out, however, such a strictly segregated view of land use is challenged by the natural migratory patterns of species, their need for diverse types of ecosystems over the course of the seasons or their lifecycles, and the high risk of pollution associated with intensive agriculture, such as run-off and leaching of agrochemicals, and pesticide drift.
Proponents of the land sharing view argue for a multifunctional approach to agricultural production that introduces a greater density of wild species onto agricultural land, thus integrating production and conservation into the same land units. This, however, inevitably diminishes agricultural productivity, as measured by yield.
This view, the article argues, overlooks the synergies between agriculture and biodiversity. Not only can biodiversity support agriculture through ecosystem services, but farmlands also support many species. For example, the patchiness created in the landscape by swidden agriculture or by grazing livestock supports more biodiversity than closed-canopy ecosystems, benefiting open-habitat species in particular. And except for rare forms of “controlled environment agriculture” such as hydroponics, all agricultural systems depend on the ecosystem services rendered by a multitude of organisms, from soil fertility maintenance to pollination and pest control.
Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)
“Agriculture is about flexibility and pragmatism,” said Frédéric Baudron, a system agronomist at CIMMYT and the lead author of the study. “Farmers need to be presented with a wider basket of solutions than the dichotomy of high-yielding and polluting agriculture versus low-input and low-yielding agriculture offered by land sharing/sparing. Virtually all production systems require both external inputs and ecosystem services. In addition, agricultural scientists have developed a variety of solutions, such as precision agriculture, to minimize the risk of pollution when using external inputs, and push-pull technology to harness ecosystem services for tangible productivity gains.
Similarly, an exclusive focus on yield as a measure of agricultural performance obscures ways in which greater biodiversity on agricultural land can support farmers’ livelihoods and economic wellbeing. The authors show, for example, that simplified landscapes in southern Ethiopia tend to have higher crop productivity. But more diverse landscape in the same area, while hosting more biodiversity, produce more fuelwood, support a higher livestock productivity, provide a greater dietary diversity, and are more resilient to environmental stresses and external economic shocks, all of which being highly valued by local people.
Imagining landscapes where biodiversity and people win
The land sharing versus sparing debate deserves enormous credit for bringing attention to the role of agriculture in biodiversity loss and for pushing the scientific community and policymakers to address the problem and think about how to balance agriculture and conservation. As the authors of this paper show, as researchers from a more diverse range of scientific disciplines join the debate, there is tremendous potential to move the conversation from a vision that pits agriculture against biodiversity and towards solutions that highlight the potential synergies between these activities.
“It is our hope that this paper will stimulate other agricultural scientists to contribute to the debate on how to feed a growing population while safeguarding biodiversity. This is possibly one of the biggest challenges of our rapidly changing agri-food systems. But we have the technologies and the analytics to face this challenge,” Baudron said.
Cover photo: Pilot farm in Yangambi, Democratic Republic of Congo. (Photo: Axel Fassio/CIFOR)
Firpo was born in Montevideo, Uruguay, where he received a BSc degree as an agronomy engineer in 1997 from the University of the Republic, College of Agronomy. His PhD degree in 2008 was from the Department of Plant Pathology at the University of Minnesota (UMN). He began his career as a postdoctoral research associate with the Department of Plant Pathology and the USDA-ARS Cereal Disease Lab, and then became a research assistant professor in the Department of Plant Pathology at UMN in 2017.
Firpo has been a vital member in the global cereal rust pathology community and contributed substantially to the fight against Ug99 and other virulent wheat stem rust races that have re-emerged around the world and pose serious threats to food security. Firpo’s contributions are not only within the realm of research of great impact, but also include training 79 scientists and facilitating the establishment of a world-class research group in Ethiopia. He has worked to improve international germplasm screening in Ethiopia. As a postdoctoral research associate, Firpo’s first assignment was to search for new sources of resistance to Ug99 in durum wheat, used for pasta, and related tetraploid wheat lines. That project took him to Ethiopia, where an international Ug99-screening nursery for durum wheat was established at Debre Zeit Research Center. He worked closely with researchers from the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Research Center (CIMMYT) to improve the methodologies for screening and to provide hands-on training to researchers managing the international screening nursery. During a period of 10 years (from 2009 to 2019), he traveled to Ethiopia 21 times to evaluate stem rust reactions of US and international durum wheat germplasm and completed the screening of the entire durum collection (more than 8,000 accessions) from the USDA National Small Grains Collection.
Firpo’s research on sources and genetics of stem rust resistance led to discoveries of valuable genetic resistance in durum and other relatives of wheat. These sources of resistance have provided the needed diversity to ensure the development and sustainability of durable stem rust resistance.
With frequent epidemics and severe yield losses caused by stem rust in eastern Africa, establishing a functional rust pathology laboratory to support international screening, as well as to monitor and detect new virulences in the pathogen population, became a high priority for the international wheat research community. Utilizing the onground opportunities in Ethiopia, Firpo and his colleagues at the CDL and UMN enthusiastically participated in building up the rust pathology lab at the Ambo Plant Protection Center of EIAR. Firpo traveled to Ambo 11 times to provide hands-on training to staff and to develop cereal rust protocols to suit local conditions. He worked closely with colleagues at CDL, EIAR, and CIMMYT to secure and upgrade facilities, equipment and supplies to a standard that ensures reliable rust work will be carried out. As a result, the rust pathology lab at the Ambo Center became the only laboratory in eastern Africa, and one of a handful in the world, that can conduct high-quality race analysis of wheat stem rust samples and provide vital and necessary support for breeding global wheat varieties for rust resistance. Currently, the laboratory is playing a critical role in the global surveillance of the stem rust pathogen and supports wheat breeding efforts led by EIAR, CIMMYT, and the USDA.
Firpo has been passionate in supporting capacity building of human resources in Ethiopia and elsewhere. He has been eager to share his knowledge whenever he encounters an opportunity to do so. In addition to the direct training of the staff at the Ambo Center, Firpo accepted invitations to provide training lectures and hands-on field- and greenhouse-based workshops on rust pathology at three research centers in Ethiopia. He prepared training materials, delivered a total of 12 lectures and 10 practical sessions in three Ethiopia national workshops in 2014, 2015, and 2017. These workshops enhanced human resource development and technical capacity in Ethiopia in cereal rust pathology; participants included a total of 64 junior scientists and technical staff from nationwide research centers. Beyond Ethiopia, he was responsible for developing and implementing a six-week training program in cereal rust prevention and control for international scientists. This training program, under the aegis of the Stakman-Borlaug Center for Sustainable Plant Health in the Department of Plant Pathology, University of Minnesota, provided an experiential learning opportunity for international scientists interested in acquiring knowledge and practical skills in all facets of working with cereal rusts. The program trained 15 rust pathologists and wheat scientists from Ethiopia, Kenya, Pakistan, Nepal, Bhutan, Georgia, and Kyrgyzstan, ranging from promising young scientists selected by the USDA as Borlaug Fellows to principal and senior scientists in their respective countries. Many of these trainees have become vital partners in the global surveillance network for cereal rusts.
Working in collaboration with CDL and international scientists, Firpo has been closely involved in global surveillance of the stem rust pathogen, spurred by monitoring the movements of, and detecting, new variants in the Ug99 race group. Since 2009, he and the team at the CDL have analyzed 2,500 stem rust samples from 22 countries, described over 35 new races, and identified significant virulence combinations that overcome stem rust resistance genes widely deployed in global wheat varieties. Among the most significant discoveries were the identification of active sexual populations of the stem rust pathogen in Kazakhstan, Georgia, Germany, and Spain that have unprecedented virulence and genetic diversities. More than 320 new virulent types (or races) were identified from these sexual populations. Evolution in these populations will present continued challenges to wheat breeding. Research in race analysis has provided valuable pathogen isolates that are used to evaluate breeding germplasm to select for resistant wheat varieties and to identify novel sources of stem rust resistance.