Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Because error has a price

A systematic review conducted by a team of scientists from the International Maize and Wheat Improvement Center (CIMMYT) has revealed that many farmers around the world incorrectly identify their crop varieties, with significant impacts on their farming practices, yields, profits, and research.

The review, published this month in Outlook on Agriculture, brings together information from 23 published studies to sketch crop variety misclassification among farmers, its determinants, and the implications of classification errors on the farm and in research.

“We found that seven out of ten farmers incorrectly identified the grown variety when they were asked to identify the variety by its specific name. When farmers were asked if the grown variety was either improved or local, three out of ten farmers made incorrect classifications,” said Michael Euler, first author of the study and agricultural resource economist at CIMMYT.

Whether farmers correctly identify crop varieties has a knock-on effect on their farming practices, which in turn affects their crop yields and income. This can bleed into research, impacting experiments and evaluation studies of agricultural technologies and methods. For example, scientists might assign treatment and control groups based on incorrect farmer variety classification, potentially leading to biased estimates and data discrepancies.

“Varietal misidentification can lead to improper agronomic management, forgone farm revenue, and seed system malfunctioning. From a monitoring and evaluation perspective, the potential presence of bias in estimates due to varietal misclassification is problematic as it may mask the true costs and benefits of seed technologies,” said Euler.

Immature wheat seeds. Ciudad Obregon, Mexico 2017. (Photo: Peter Lowe/CIMMYT)

The study is the first systematic review of the use of DNA fingerprinting – a method that uses molecular markers to identify crop varieties – to assess how accurate farmers are in identifying their varieties and the impacts this has on seed markets, crop performance, farm profits, and research.

“The use of DNA fingerprinting to identify crop varieties in farmers’ fields has emerged only recently. The review of existing literature, nonetheless, shows its potential to strengthen the functioning and effectiveness of seed markets, supply chains, and extension services,” said Vijesh Krishna, co-author of the study and senior scientist at CIMMYT.

The results of the review show that cases of farmers misidentifying varieties are widespread, causing problems for farm productivity and profits, as well as research. The authors also found that DNA fingerprinting can shed light on what drives farmers to misidentify varieties and how they can minimize misclassification.

“Varietal misidentification is not only related to farmer and farm characteristics but also depends on the properties of the seed system through which seeds are obtained. We need more comprehensive modeling approaches to improve our understanding of the system-level drivers of farmer varietal misclassification,” said co-author and CIMMYT senior agricultural economist Moti Jaleta.

However, like most technologies, DNA fingerprinting has its limitations. It may not always be feasible in all settings, and the costs may offset the benefits in areas where formal seed markets are already well-functioning.

“DNA fingerprinting is considered a reliable method to accurately identify varieties grown by farmers and is increasingly seen as the ‘gold standard’ for varietal identification. However, it requires a high-quality reference library, a well-designed sampling strategy, and accurate tracking of plant samples from collection sites to the point of analysis,” said CIMMYT senior scientist and co-author David Hodson.

Based on the results of the analysis, the authors recommend integrating DNA fingerprinting into existing national data collection toolboxes to accurately estimate adoption and turnover rates of improved crop varieties and to evaluate existing genetic crop diversity on farms. Understanding and promoting genetic crop diversity are crucial steps for enhancing food security and increasing the climate and pest and disease resilience of crops.

Having accurate estimates of adoption and turnover rates of varieties, combined with seed supply system assessment, can also help researchers and decision-makers pinpoint any bottlenecks or loopholes in the “lab to farm” process, according to the authors.

“The review aims at helping researchers and policymakers strategize to more effectively assess the functioning and effectiveness of seed diffusion systems to deliver modern seeds to smallholders,” concluded Krishna.

Read the full study: Because error has a price: A systematic review of the applications of DNA fingerprinting for crop varietal identification

Cover photo: Farmer examines wheat seed. Ciudad Obregon, Mexico 2017. (Photo: Peter Lowe/CIMMYT)

Weather data and crop disease simulations can power predictions of wheat blast outbreaks, new study shows

Cutting-edge models for crops and crop diseases, boosted by high-resolution climate datasets, could propel the development of early warning systems for wheat blast in Asia, helping to safeguard farmers’ grain supplies and livelihoods from this deadly and mysterious crop disease, according to a recent study by scientists at the International Maize and Wheat Improvement Center (CIMMYT).

Originally from the Americas, wheat blast shocked farmers and experts in 2016 by striking 15,000 hectares of Bangladesh wheat fields, laying waste to a third of the crops. The complex interactions of wheat and the fungus, Magnaporthe oryzae pathotype Triticum (MoT), which causes blast, are not fully understood. Few current wheat varieties carry genetic resistance to it and fungicides only partly control it. Warm temperatures and high humidity favor MoT spore production and spores can fly far on winds and high-altitude currents.

Mean potential wheat blast disease infections (NPI) across Asia, based on disease and crop infection model simulations using air temperature and humidity data from 1980-2019. Black dots represent wheat growing areas with presumably unsuitable climates for wheat blast. The x and y axes indicate longitude and latitude.

“Using a wheat blast infection model with data for Asia air temperatures and humidity during 1980-2019, we found high potential for blast on wheat crops in Bangladesh, Myanmar, and areas of India, whereas the cooler and drier weather in countries such as Afghanistan and Pakistan appear to render their wheat crops as unlikely for MoT establishment,” said Carlo Montes, a CIMMYT agricultural climatologist and first author of the paper, published in the International Journal of Biometeorology. “Our findings and approach are directly relevant for work to strengthen monitoring and forecasting tools for wheat blast and other crop diseases, as well as building farmers’ and agronomists’ disease control capacity.”

Montes emphasized the urgency of those efforts, noting that some 13 million hectares in South Asia are sown to wheat in rotation with rice and nearly all the region’s wheat varieties are susceptible to wheat blast.

Read the full study: Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: Results from a continental‑scale modeling approach

Cover photo: Researchers take part in a wheat blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)

MasAgro is “a gift for Africa”

Francisco Mayorga joins the CIMMYT Board of Trustees to reflect on MasAgro. (Credit: Francisco AlarcĂłn/CIMMYT)

Between June 20-23, the International Maize and Wheat Improvement Center (CIMMYT) hosted its Board of Trustees meeting, with presentations spanning the breadth of its global projects.

One particular project captured the imagination of attendees: MasAgro, which promotes the sustainable intensification of maize- and wheat-based production systems in Mexico. Through implementing collaborative research initiatives, developing improved varieties, and introducing sustainable technologies and farming practices, the program aims to improve livelihoods and production systems for farmers by enhancing their connections with local value chain actors.

Francisco Mayorga, businessman and former Secretary of Agriculture for Mexico, and Lindiwe Sibanda, CIMMYT board member and member of the CGIAR System Board, presented on the creation of CIMMYT’s MasAgro program and its results. Sibanda interviewed Mayorga to learn where the project’s achievements can be scaled and replicated, describing the project as a “gift for Africa” from Mexico.

Farmers load hybrid maize cobs in sacks for horse transportation over the mountains in Chiapas, Mexico. (Credit: P. Lowe/CIMMYT)

What’s in it for farmers?

Built on the premise of ‘take it to the farmers’, MasAgro helps farmers understand the broader context of agrifood systems in order to facilitate their successful transition to sustainable farming practices. This is accomplished through innovation hubs: core spaces defined by similar agroecological conditions that promote participatory innovation processes and co-implement functional structures for the validation, adaptation, and scaling of sustainable solutions.

Innovation hubs facilitate mentorship by providing closeness between farmers and value chain actors. A physical and virtual network of research platforms, demonstration modules and extension areas support actors to gain skills and knowledge to achieve common objectives. For example, farmers can learn how about agricultural tools and practices and where best to use them on their land, and they now consider the impact of fertilizers on the soil and ecosystem and seek alternatives.

Useful information is provided via multiple communication tools, including mobile messaging, to enable effective knowledge sharing and innovation between actors. The network has led to farmers independently adapting and adopting new practices after learning from others.

The selling point for farmers is understanding why sustainable agriculture creates opportunities for their livelihoods and lives – with improved practices, they can establish a successful long-term setup to increase their yield and income. These opportunities will appeal to smallholders worldwide.

Silvia Suarez Moreno harvests maize in Chiapas, Mexico. (Credit: P. Lowe/CIMMYT)

Benefits for the public and private sector

What also differentiates MasAgro is the emphasis on public and private sector partnerships. CIMMYT collaborated with partners to develop the MasAgro mindset and build their capacity to deliver seed to small- and medium-sized farms. Sibanda praised the use of CIMMYT’s presence in Mexico for developing these connections.

Mayorga highlighted the importance of securing funding and support from the Ministry of Agriculture in the project’s success. He said he initially persuaded colleagues to invest by emphasizing MasAgro’s holistic approach, which considers all elements of farming, rather than dealing with them as individual elements.

Using the different government instruments to support the theory of change towards the impact of MasAgro is part of the success. For example, for businesses, the Mexican government provided funding for laboratory equipment and training needs after identifying seed company partners to support through their research programs and regional markets. Mayorga also celebrated partnerships with small and medium enterprises (SMEs), who were supported by CIMMYT engineers to design more effective machinery and think around scale-appropriate business models. This created additional businesses in the agricultural sector.

Through these partnerships, private sector organizations have invested in agricultural research and development that will benefit smallholders, prevent food insecurity, and support a shift to sustainable farming. Countries in Africa can benefit from similar investment, which could be achieved through exporting and recreating the MasAgro model.

Tzeltal farmer harvests beans in her maize field. (Credit: P. Lowe/CIMMYT)

Flexible government support

Practical support and policy change from the Mexican government further encouraged farmers to adopt sustainable practices. Mayorga explained how a subsidy for farmers’ fuel was replaced with alternative financial support for equipment. Sibanda described this initiative as “visionary” and “a triple win” – farmers could purchase a machine at a subsidized rate, use less labor, and cause less damage to the environment.

To incentivize large companies in Mexico that buy a lot of wheat, Mayorga tapped into their desire “to encourage an economic behavior in the farmer” and introduce a more entrepreneurial approach to agriculture. They encouraged businesses to buy grains from farmers at a better price and learn more about the MasAgro approach.

“You don’t stay with an idea as a policy advisor and politician – you popularize it, look for new champions, walk the talk and put money into it,” summarized Sibanda. “I think that’s a legacy.”

Regenerative agriculture in Mexico: the case of Bimbo

Grupo Bimbo has two pilots with the International Maize and Wheat Improvement Center (CIMMYT) in the Mexican states of Sonora, Sinaloa and Jalisco to embed sustainable practices.

Through regenerative agriculture, an approach which aims to improve soil health and protect water resources and biodiversity, Grupo Bimbo has set the goal of ensuring that 200,000 hectares of wheat are cultivated with regenerative agriculture practices by 2030, ensuring that by 2050 100% of its key ingredients will be produced with this type of practices.

Read more: Regenerative agriculture in Mexico: the case of Bimbo

Tracking improved crop varieties

Participants of the IMAGE National Advisory Committee launch event in Ethiopia. (Credit: EIAR)

Coordinating the development and deployment of improved seed varieties is a complex task involving many stakeholders, including government agencies, public and private seed sector organizations, and ultimately, farmers and farmer groups. Cooperation among these groups is vital to assess and measure the impact of improved varieties and to guide decision making for future crop breeding efforts.

The Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE) project, funded by the Bill & Melinda Gates Foundation and managed by Context Global Development, is a five-year program operating in Nigeria, Tanzania, and Ethiopia designed to increase the efficacy of variety deployment by establishing, institutionalizing, and scaling up routine monitoring of improved variety adoption and turnover using genotyping technologies, focusing on wheat, maize, teff, and the common bean.

The International Center for Maize and Wheat Improvement (CIMMYT), in collaboration with the Ethiopian Institute of Agricultural Research (EIAR), launched Ethiopia’s IMAGE National Advisory Committee (NAC) February 25, 2022, in Addis Ababa.

Feto Esemo, the Director General of the Ethiopian Institute of Agricultural Research (EIAR) officially opened the workshop.

Esemo underscored in his opening remarks the NAC’s mission to promote the application of DNA fingerprinting for an accurate assessment and understanding of the adoption of improved maize and wheat varieties by small-holder farmers in Ethiopia and resolve data discrepancy among researchers.

The NAC is the highest advisory body for IMAGE’s implementation in Ethiopia and comprises seven institutions: Ministry of Agriculture (MoA), Ministry of Planning and Development (MPD), Agricultural Transformation Institute (ATI), EIAR, Central Statistical Agency (CSA), Ethiopian Biodiversity Institute (BI), and the Ethiopian Biotechnology Institute (EBI).

Kindie Tesfaye, CIMMYT senior scientist, emphasized the application of DNA fingerprint data on maize and wheat in Ethiopia and summarized the IMAGE Project.

“IMAGE supports inclusive agricultural transformation by providing insights and evidence for seed sector actors to enhance government agency capacity, improve stakeholder coordination, and lead to better resource allocation for varietal development and commercialization,” said Tesfaye.

He added the IMAGE Project provides the opportunity to leverage past monitoring pilots and cross-country lessons while advancing genetic reference libraries, establishing protocol adoption, and building towards institutionalization over five years.

National maize and wheat genotyping studies in Ethiopia proved the feasibility of using DNA fingerprinting for variety monitoring at scale and CIMMYT and EIAR presented the findings to seed system and policy stakeholders with an emphasis on demonstrating how varietal identity based on genotyping compares with farmers’ elicitation, the area-weighted average age of varieties, germplasm attribution, and varietal performance.

Chilot Yirga, Deputy Director-General, Capacity Building and Administration of EIAR, emphasized the functional and structural roles of the National Advisory Committee (NAC), Country Team (CT), and Technical Working Group (TWG) of the project in the country.

EIAR, the Holetta National Agricultural Biotechnology Research Center, CSA, and CIMMYT comprise the Country Team.

Yirga also briefed the participants on the details of the Committee’s mandate and indicated the roles of all stakeholders and policymakers, specifically in DNA fingerprinting.

The workshop concluded by electing a chairperson and vice-chairperson of the committee among its members and co-project leaders from CIMMYT and EIAR.

Winner of BGRI Gene Stewardship Award announced

This year’s Borlaug Global Rust Initiative (BGRI) Gene Stewardship Award recipients have been recognized for their innovative research tackling the global problem of wheat leaf rust.Led by Julio Huerta from the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), members of the award-winning team include:

  • HĂ©ctor Eduardo Villaseñor Mir (cereal breeder)
  • RenĂ© Hortelano Santa Rosa (cereal breeder)
  • Eliel MartĂ­nez Cruz, (cereal chemist)
  • MarĂ­a Florencia RodrĂ­guez GarcĂ­a (cereal pathologist)
  • Ernesto SolĂ­s Moya (wheat breeder)
  • Jorge IvĂĄn Alvarado Padilla (wheat breeder)

The award recognizes the team’s long-term contribution to Mexican wheat cultivation and their efforts to expand impacts worldwide. They have released many varieties with resistance to leaf rust, which has led to the stabilization of the disease in bread wheat.

Presented annually, the award is bestowed upon a team of researchers serving a national breeding program or other nationally based institution. Winners receive an inscribed bronze statue of Norman Borlaug.

Huerta has been hosted by the International Maize and Wheat Improvement Center (CIMMYT) in Mexico since the late 1990s.

Julio Huerta, wheat pathologist and recipient of the BGRI Gene Stewardship Award 2022, giving a talk to students introducing CIMMYT’s wheat breeding program. (Credit: CIMMYT)

BGRI Technical Workshop

Receiving the prize at the 2022 BGRI Technical Workshop on September 9, Huerta said, “The award means a recognition from the global rust scientific community for the hard work (flesh, mind, soul and spirit) over the years, carried with many colleagues around the world to keep rust disease under control.”

Alison Bentley, director of the Global Wheat Program, also participated in the event with a presentation on the connection between conflict and vulnerability in global food systems. She explored reasons why wheat has been dramatically impacted by the conflict in Ukraine and summarized the proposed response agenda by CIMMYT.

Singh recognized for wheat crop improvement

Ravi Singh delivers a lecture during the 61st All India Wheat and Barley Research Workers’ Meet celebrating the fruitful partnership of CIMMYT and ICAR. (Credit: SAWBAR)

Ravi Singh, head of wheat improvement and rust research at the International Maize and Wheat Improvement Center (CIMMYT), received the Sh. VS Mathur Memorial Award 2022 for outstanding contribution in the field of wheat crop improvement from the Society for Advancement of Wheat and Barley Research (SAWBAR).

Singh received the award from T. R. Sharma, Deputy Director General of the Indian Council of Agricultural Research (ICAR) and G. P. Singh, Director of the Indian Institute for Wheat and Barley Research (IIWBR) at ICAR.

As recipient of the award, Singh delivered a lecture during the 61st All India Wheat and Barley Research Workers’ Meet in Gwalior, India, on August 29. He highlighted and praised the partnership between India and CIMMYT as essential for accelerating gains in wheat yield despite the stresses of climate change thanks to improved resilience in new varieties and earlier sowing.

“The ICAR-CIMMYT wheat improvement partnership remains crucial for delivering new varieties with higher rates of genetic gain in farmers’ fields to enhance productivity, climate resilience, disease resistance and nutrition while meeting market needs,” he said.

Successes of the partnership include integrated breeding with a common agenda, commercialized varieties that are adapted to flexible sowing dates including early sowing, diverse and durable resistance to rust diseases, adoption of wheat blast resistant varieties in large areas, biofortified and high-quality varieties, and the move towards mainstreaming of zinc (Zn) biofortification.

Singh also paid homage to the award’s namesake, as VS Mathur’s “wheat varieties once occupied fields of many millions of farmers and provided food and nutrition to many more millions throughout India and beyond”.

Singh, a CIMMYT scientist, receives the Sh. VS Mathur Memorial Award for his outstanding contribution in the field of wheat crop improvement. (Credit: SAWBAR)

About SAWBAR:

SAWBAR was founded in 2007 and is housed at ICAR-Indian Institute of Wheat and Barley Research Karnal (Haryana) India. The Society presently has 300 life members and more than 320 annual and student members. SAWBAR is playing a significant role in bringing wheat and barley researchers on one platform for the exchange of innovative research and dissemination of knowledge related to the latest research happenings in the area of wheat and barley improvement. Annually, SAWBAR gives awards to pioneer cereal workers in various award categories. 

About the Sh. VS Mathur Mathur Memorial Award:

The Sh. VS Mathur Memorial Award was constituted in year 2018 in the memory of eminent wheat worker Sh. VS Mathur. Mathur was one of the pioneer wheat workers who worked tirelessly with MS Swaminathan and HK Jain and developed a large number of high-yielding wheat varieties viz. Heera, Moti, Janak (HD 1982), Arjun (HD 2009), HD 2177, HD 2182, HD 2204, HD 2236, HD 2278, HD 2281, HD 2285, HD 2329, HD 2307 and HD 2327 for various regions of India.

Greenhouse upgrades at BWMRI for wheat blast research

Md. Sayedul Islam inaugurated the greenhouse complex along with Golam Faruq and Md. Benojir Alam. (Credit: Timothy J. Krupnik/CIMMYT)

A new greenhouse complex, built with financial support from the International Maize and Wheat Improvement Center (CIMMYT), at the Bangladesh Wheat and Maize Research Institute (BWMRI) was inaugurated on 13 August 2022. The greenhouse was built at BWMRI’s headquarters in Dinajpur, Bangladesh.

This complex has a room for generator, a sample preparation room and space for a small laboratory. These upgrades will add new momentum for greenhouse activities and BWMRI and CIMMYT scientists designed the facility to accommodate wheat scientists from Bangladesh and other countries.

The BWMRI has been working to combat wheat blast disease since 2016, with financial and technical support from CIMMYT and other investors. CIMMYT has also assisted the Government of Bangladesh in developing an early warning system for wheat blast.

Because of the challenging phenology of synthetic wheat and introductions from winter and facultative wheat zones, field condition evaluation of these germplasm is difficult and the greenhouse will help ease this hurdle. Additionally, several pathological experiments investigating the biology of wheat blast will now be able to be performed in the new greenhouse facility.

Supplementary activities at the greenhouse include disease screening and research into unlocking the genetics of host resistance. The installation of a diesel generator will keep the greenhouse running in case of power outages.

Visitors to the newly constructed greenhouse at the Bangladesh Wheat and Maize Research Institute. (Credit: Rezaul Kabir/BWMRI)

Md. Sayedul Islam, Secretary of the Ministry of Agriculture, inaugurated the greenhouse complex. Additional attendees at the opening included Shaikh Mohammad Bokhtiar, Executive Chairman of the Bangladesh Agricultural Research Council (BARC), Golam Faruq, Director General of BWMRI, Mirza Mofazzal Islam, Director General of the Bangladesh Institute of Nuclear Agriculture (BINA), Debasish Sarker, Director General of the Bangladesh Agricultural Research Institute (BARI), Md. Benojir Alam, Director General of the Department of Agricultural Extension (DAE), and Md. Abdul Wadud, Executive Director and Additional Secretary at the Bangladesh Institute of Research and Training on Applied Nutrition (BIRTAN). Timothy J. Krupnik, country representative of CIMMYT in Bangladesh, was also present.

Gene Editing for Reducing Aflatoxin in Groundnuts

The Gene Editing for Reducing Aflatoxin in Groundnuts project seeks to advance safer and nutritious groundnut varieties with durable genetic resistance to Aspergilli infection and aflatoxin contamination via gene editing. These new technologies will help address associated health and disease burdens, malnutrition, and trade and economic losses for smallholder farming communities in sub-Saharan Africa and globally. The main output of this project will be gene-edited varieties with reduced levels of aflatoxins.

CGIAR Initiative: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience

Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience aims to create resilient, inclusive and productive deltas — which maintain socio-ecological integrity, adapt to climatic and other stressors, and support human prosperity and wellbeing — by removing systemic barriers to the scaling of transformative technologies and practices at community, national and regional levels.

This objective will be achieved through:

  • Adapting deltaic production systems by identifying, synthesizing, evaluating, adapting and scaling interventions to ensure systems can adapt to and mitigate the effects of salinity, flooding, drought, terminal heat and sinking land.
  • Nutrition-sensitive deltaic agrifood systems, developed through the promotion of sustainable production and consumption of nutritious foods in Asian mega-deltas, by involving institutional stakeholders in the co-production of nutrition-sensitive interventions.
  • De-risking delta-oriented value chains by assessing the potential of digital climate advisory and complementing services to address climate risks among vulnerable groups, supporting development of improved and inclusive digital and bundled services, and identifying and developing financing models and partnerships to achieve scale.
  • Joined-up, gender equitable, inclusive deltaic systems governance, informed by transdisciplinary research evidence, local knowledge and political economy insights used to coordinate multi-stakeholder dialogues for more coherent water-agriculture-environment policies and strategies; collaborative, networked implementation practices; and gender-equitable and socially inclusive governance innovations.
  • Evidence-based delta development planning at the macro-level to ensure plans/policies incorporate inclusive and climate-proof approaches to food systems transformation.

CGIAR Initiative: Transforming Agrifood Systems in South Asia (TAFSSA)

Working across South Asia, the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative will deliver a coordinated program of research and engagement across the food production to consumption continuum to improve equitable access to sustainable healthy diets, improve farmer livelihoods and resilience, and conserve land, air, and groundwater resources.

TAFSSA aims to propel evidence into impact through engagement with public and private partners across the production-to-consumption continuum, to achieve productive, environmentally-sound South Asian agrifood systems that support equitable access to sustainable healthy diets.

This objective will be achieved through:

  • Facilitating agrifood systems transformation through inclusive learning platforms, public data systems and partnerships: building new and enhancing existing learning platforms; improving the evidence base; increasing quality data availability and accessibility; and demonstrating the value of integrated agrifood systems datasets.
  • Transforming agroecosystems and rural economies to boost income, generate jobs and support diversified food production within environmental boundaries: generating linkages between farmers, landscapes and markets to diversify agricultural production, increase farmers’ incomes and foster rural entrepreneurship within environmental boundaries.
  • Improving access to and affordability of sustainably produced healthy foods through evidence and actions across the food system: creating favorable environments for diversification; improving access to inputs for and marketability of sustainable nutritious food; and improving access to healthy food for the poor through changes in food retail environments.
  • Understanding behavioral and structural determinants of sustainable healthy diets: studying dietary practices of food consumers; identifying determinants of food choices; and testing innovations to support consumption of sustainable healthy diets.
  • Building resilience and mitigating environmental impact: examining how South Asia can produce healthy diets within an environmentally safe and socially equitable operating space, and in consideration of ongoing climate change and farmers’ resilience to shocks.

Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Among the inputs needed for a healthy soil, nitrogen is unique because it originates from the atmosphere. How it moves from the air to the ground is governed in part by a process called biological nitrogen fixation (BNF), which is catalyzed by specific types of bacteria.

Nitrogen supply is frequently the second most limiting factor after water availability constraining crop growth and so there is great farmer demand for accessible sources of nitrogen, such as synthetic nitrogen in fertilizer. This increasing demand has continued as new cereal varieties with higher genetic yield potential are being released in efforts to feed the world’s growing population.

Currently, the primary source for nitrogen is synthetic, delivered through fertilizers. Synthetic nitrogen revolutionized cereal crop (e.g., wheat, maize, and rice) production by enhancing growth and grain yield as it eliminated the need to specifically allocate land for soil fertility rejuvenation during crop rotation. However, synthetic nitrogen is not very efficient, often causing excess application, which leads to deleterious forms, including ammonia, nitrate, and nitrogen oxides escaping into the surrounding ecosystem, resulting in a myriad of negative impacts on the environment and human health. Nitrogen loss from fertilizer is responsible for a nearly 20% increase in atmospheric nitrous oxide since the industrial revolution. Notably, more nitrogen from human activities, including agriculture, has been released to the environment than carbon dioxide during recent decades, leading climate scientists to consider the possibility that nitrogen might replace carbon as a prime driver of climate change.

New research co-authored by International Maize and Wheat Improvement Center (CIMMYT) scientists, published in Field Crops Research, posits that facilitating natural methods of gathering useable nitrogen in BNF can reduce the amount of synthetic nitrogen being used in global agriculture.

As agricultural systems become more intensive regarding inputs and outputs, synthetic nitrogen has become increasingly crucial, but there are still extensive areas in the world that cannot achieve food and nutrition security because of a lack of nitrogen.

“This, together with increasing and changing dietary demands, shows that the future demand for nitrogen will substantially grow to meet the anticipated population of 9.7 billion people by the middle of the century,” said J.K. Ladha, adjunct professor in the Department of Plant Sciences at University of California, Davis, and lead author of the study.

Before the synthetic nitrogen, the primary source of agricultural nitrogen was gathered through BNF as bacteria living underground that convert atmospheric nitrogen into nitrogen that can be utilized by crops. Therefore, legumes are often employed as a cover crop in rotating fields to replenish nitrogen stocks; their root systems are hospitable for these nitrogen producing bacteria to thrive.

“There are ways in which BNF could be a core component of efforts to build more sustainable and regenerative agroecosystems to meet nitrogen demand with lower environmental footprints,” said Timothy Krupnik, Senior System Agronomist at CIMMYT in Dhaka, Bangladesh.

Plant scientists have often hypothesized that the ultimate solution for solving the ever-growing nitrogen supply challenge is to confer cereals like wheat, maize, rice, with their own capacity for BNF. Recent breakthroughs in the genomics of BNF, as well as improvements in the understanding how legumes and nitrogen bacteria interact, have opened new avenues to tackle this problem much more systematically.

“Enabling cereal crops to capture their own nitrogen is a long-standing goal of plant biologists and is referred to as the holy grail of BNF research,” said P.M. Reddy, Senior Fellow at The Energy Research Institute, New Delhi. “The theory is that if cereal crops can assemble their own BNF system, the crop’s internal nitrogen supply and demand can be tightly regulated and synchronized.”

The study examined four methods currently being employed to establish systems within cereal crops to capture and use their own nitrogen, each with their advantages and limitations. One promising method involves identifying critical plant genes that perceive and transmit nitrogen-inducing signals in legumes. Integrating these signal genes into cereal crops might allow them to construct their own systems for BNF.

“Our research highlights how BNF will need to be a core component of efforts to build more sustainable agroecosystems,” said Mark Peoples, Honorary Fellow at The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia. “To be both productive and sustainable, future cereal cropping systems will need to better incorporate and leverage natural processes like BNF to mitigate the corrosive environmental effects of excess nitrogen leaking into our ecosystems.”

Besides the efforts to bring BNF to cereals, there are basic agronomic management tools that can shift focus from synthetic to BNF nitrogen.

“Encouraging more frequent use of legumes in crop rotation will increase diversification and the flow of key ecosystem services, and would also assist the long-term sustainability of cereal-based farming systems­,” said Krupnik.

Read the study: Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Cover photo: A farmer in the Ara district, in India’s Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Conservation agriculture practices revive saline and sodic soils

In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.

Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.

Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.

Read the full publication: Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems

Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)

Afghan wheat landrace shows promise for rust resistance

Rust pathogens are the most ubiquitous fungal pathogens that continue to pose a serious threat to wheat production. The preferred strategy to combat these diseases is through breeding wheat varieties with genetic resistance.

Landraces are a treasure trove of trait diversity, offer an excellent choice for the incorporation of new traits into breeding germplasm, and serve as a reservoir of genetic variations that can be used to mitigate current and future food challenges. Improving selection efficiency can be achieved through broadening the genetic base through using germplasm pool with trait diversity derived from landraces.

In a recent study, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used Afghan landrace KU3067 to unravel the genetic basis of resistance against Mexican races of leaf rust and stripe rust. The findings of this study not only showcase new genomic regions for rust resistance, but also are the first report of Lr67/Yr46 in landraces. This adult plant resistance (APR) gene confirms multi-pathogenic resistance to three rust diseases and to powdery mildew.

Using genotype sequencing and phenotyping, the authors also report an all-stage resistance gene for stripe rust on chromosome 7BL, temporarily designated as YrKU. The genetic dissection identified a total of six quantitative trait locus (QTL) conferring APR to leaf rust, and a further four QTL for stripe rust resistance.

Although use of landraces in wheat breeding has been practiced for a long time, it has been on a limited scale. This study represents a significant impact in breeding for biotic stresses, particularly in pest and disease resistance.

Read the full study here: Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace “KU3067”

Cover photo: Yellow rust screening takes place at a CIMMYT experimental station in Mexico. (Credit: Sridhar Bhavani/CIMMYT)

Fighting back against Ug99 wheat stem rust

Sridhar Bhavani, head of rust pathology and molecular genetics and the International Maize and Wheat Improvement Center (CIMMYT), shared potential solutions for fighting back against wheat stem rusts like Ug99.

More than 200 new wheat varieties released by CIMMYT over the last ten years have contributed to reducing the spread of wheat stem rust in East Africa, where the disease originated. Scientists identify genes resistant to Ug99 and breed new varieties that are not susceptible to stem rust pathogens.

For long-term success, combining multiple resistant genes within a single variety is the way to go.

Read more: Fighting back against Ug99 wheat stem rust