Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Scaling impact of dryland crops research through regional crop improvement networks

A section of key speakers at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

The formation of regional crop improvement networks took center stage at a meeting held in January 2023 in Accra, Ghana. The meeting convened more than 200 scientists and stakeholders in dryland crops value chains from 28 countries from Africa and across the globe to co-design a network approach.

The meeting followed a series of consultative visits and discussions between three CGIAR research centers — the International Maize and Wheat Improvement Center (CIMMYT), Alliance of Bioversity International and CIAT, and the International Institute of Tropical Agriculture (IITA) — African National Agricultural Research Institutes (NARIs), and other common-visioned partners during 2021 and 2022. These earlier discussions gathered insights, brainstormed, and co-designed approaches to empower national programs to deliver impact through their crop improvement programs.

“The idea is to add value to the existing capacities in National Agricultural Research and Extension Services, through networks where the partners agree on the goals and resources needed to achieve desired outcomes. So, it’s really a collaborative model,” said Harish Gandhi, breeding lead for dryland legumes and cereals at CIMMYT. He added that the teams have been learning from and aiming to add value to existing models such as the Pan-Africa Bean Research Alliance (PABRA), USAID Innovation Labs, and Innovation and plant breeding in West Africa (IAVAO).

Paradigm shift for African National Agricultural Research Institutes

Making the opening remarks, Ghana Council for Scientific and Industrial Research (CSIR) Director General, Paul Bosu said that at the very least, African countries should aim to feed themselves and transition from net importers to net exporters of food. “Dryland legumes and cereals, especially millet and sorghum, are very well adapted to the continent and offer great opportunity towards achieving food security”, said Bosu. He applauded the Bill & Melinda Gates Foundation and other partners for investing in research on these crops.

Representing West and Central African Council for Agricultural Research and Development (CORAF), Ousmane Ndoye noted that research in dryland legumes and cereals is a valid and needed action amidst the COVID-19 pandemic and civil unrest in different parts of the world. He added that the first and crucial step to increasing food production especially in sub-Saharan Africa is the availability of sufficient quantities of seed.

Director General of Uganda’s National Agriculture Research Organization (NARO), Ambrose Agona observed that a paradigm shift should occur for desired transformation in agriculture. He noted that African governments ought to commit adequate budgets to agriculture and that seed funding should serve to complement and amplify existing national budgets for sustainability.

He commended efforts to consult NARIs in Africa and noted that the quality of ideas exchanged at the meeting strengthen the work. “The NARIs feel happier when they are consulted from the very beginning and contribute to joint planning unlike in some cases where the NARIs in Africa are only called upon to make budgets and are excluded from co-designing projects”, said Agona.

Participants following the proceedings at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

Challenge to deliver effectively

During his remarks at the meeting, CIMMYT Director General Bram Govaerts noted that the focus legume and cereal crops are key to transforming and driving diversification of food systems in Africa. “It is therefore an honor and a privilege to work together with partners to improve cereal and legume systems. We will put forward our experience in breeding and commit to innovative systems approaches towards achieving impact and leverage what we are already good at, to become even better,” said Govaerts.

Referencing his visit with the United States Special Envoy for Global Food Security Cary Fowler to Southern Africa in January 2023, Govaerts narrated witnessing firsthand a food, energy and fertilizer crisis impacting Zambian and Malawian farmers. He challenged the meeting participants to envision the future impact they would like to see their breeding programs have as they design and strategize at the meeting. He pointed out that farmers are more interested in the qualities and characteristics of varieties released than the institutions responsible for the release.

CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, Kevin Pixley also underscored the need to generate more impact through adoption of improved varieties in Africa. Pixley noted that on average, fewer than 30 percent of farmers are using improved varieties of sorghum, millet, and groundnut across the countries with ongoing work.

The meeting heard One CGIAR’s commitment to deliver resilient, nutritious and market preferred varieties as part of its Genetic Innovation Action Area, alongside improving systems and processes for sustainability from CGIAR Senior Director Plant Breeding and Pre-Breeding, John Derera. Speaking in the capacity of IITA’s Breeding Lead, Derera noted the progress made in IITA cowpea breeding program, including its modernization, owing to strong partnerships, cross learning and germplasm exchange between institutions.

PABRA Director & Leader of the Bean Programme at the Alliance of Bioversity International and CIAT, Jean-Claude Rubyogo, pointed out that despite remarkable achievements, such as those witnessed in the bean research, more effort is needed to tackle the challenges of climate change and also increase understanding of consumers traits.

Commenting on innovative pathways to improve adoption of improved varieties, the Director General of the Institute of Agricultural Research (IAR) in Zaria, Nigeria, Mohammad Ishiyaku observed the tendency for some seed companies to continue selling specific seed varieties for years, even when the productivity of the variety is low. He noted the seed companies always claimed consumer preferences concluding then that amidst investor demands, breeders ought to keenly investigate the expectations of consumers and famers to arrive at the best parameters for breeding choices.

A group photo of over 200 scientists and stakeholders in dryland crops value chains that participated at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

International Year of Millets, 2023

The gathering commemorated the International Year of Millets by listening to a keynote address on “Millets for food and nutritional security and mitigating climate change – #IYM2023” by Lake Chad Research Institute, Nigeria, Research Director, Zakari Turaki. The keynote was followed by statements on the importance of millets for various countries and wider Africa from: Sanogo Moussa Daouda, representing Director General of Mali’s Institut d’Économie Rurale (IER); Ibrahima Sarr, Director of Senegal’s Institut Sénégalais de Recherches Agricoles’s Centre National de Recherches Agronomiques; Hamidou Traore, Director of Burkina Faso’s Institut de L’Environnement et de Recherches Agricoles; and Ambrose Agona, Director General of NARO, Uganda.

High-level statements on approaches to gender integration in agricultural research and development were delivered by Scovia Adikini, NARO millet breeder, Geoffrey Mkamillo, Director General of Tanzania’s Agricultural Research Institute (TARI), Francis Kusi of Ghana’s Savanna Agricultural Research Institute (SARI), and Aliou Faye, Director of Senegal’s Regional Center of Excellence on Dry Cereals and Associated Crops (CERAAS).

AVISA Achievements

Finally, this meeting marked the transition from the recently ended Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project to align with One CGIAR initiatives under the Genetic Innovation Action Area, with specific focus on dryland crops.

Solomon Gyan Ansah, the Director of Crop Services at the Ministry of Food and Agriculture, Ghana, acknowledged the success of AVISA Project and commended the forum’s efforts to build on the gains made by the project in developing the new approach.

“By the end of 2022, AVISA project partners had reached 4.8 million farmers with 30,600 metric tons of seed of improved legume and cereal varieties, covering almost one million hectares of land”, revealed Chris Ojiewo, Strategic Partnerships and Seeds Systems Lead. Other achievements supported by the AVISA Project include upgrading of NARES facilities and building capacities of researchers through short- and long-term trainings.

The meeting was hosted by Ghana Council for Scientific and Industrial Research (CSIR) and Ghana’s Savannah Agricultural Research Institute (SARI), and was organized by CIMMYT, in partnership with IITA and the Alliance of Bioversity and CIAT (ABC).

CGIAR Initiative: Breeding Resources

Crop breeding has the potential to significantly contribute to addressing the global challenges of poverty, malnutrition, hunger, gender inequality, environmental degradation and climate change. Rapid population growth, climate change and market crises in low-income and middle-income countries mean that crop breeding must be far more agile and professional than ever before. Data-driven, modernized breeding with tools and technologies such as genomic selection, quantitative genetics, high-throughput phenotyping and bioinformatics, are needed to accelerate and advance improvement in varieties.  

Across the CGIAR-NARES (National Agricultural Research and Extension Systems) crop breeding networks, there is huge opportunity to reach the full potential to improve the lives of farmers and consumers: to share innovations to their full potential; reduce costs associated with services such as bioinformatics; de-fragment disparate data and incompatible technologies; apply consistent standards; and improve access to tools, technologies and shared services.

This Initiative aims to improve the genetic, economic, social and environmental performance of breeding programs across the CGIAR-NARES breeding network.

This objective will be achieved through:

Plant Health Innovation Platform at Kiboko, Kenya: integrating and testing eco-friendly solutions against fall armyworm

Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)

CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.

The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.

“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)

Participatory assessment

Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.

“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.

Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.

The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.

Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.

”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”

A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)

Plant Health Innovation Platform catalyzes collaboration

The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.

“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.

Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.

CGIAR Initiative: Seed Equal

Inadequate seed supply and delivery systems, sometimes also misaligned with user and market demand, mean that smallholders often recycle seed or use older varieties, leaving them more vulnerable to pests and diseases.  Small-scale farmers, especially women and other disadvantaged groups, are particularly vulnerable to climate-related challenges, such as more frequent and severe droughts and erratic rainfall. Additionally, farmers may not be well informed about varietal options available to them or may be reluctant to experiment with new varieties. These challenges threaten agricultural production and can compromise their ability to meet their own food, nutrition and income needs.  

Improved varieties, innovations and approaches developed and promoted by CGIAR and partners could transform agrifood systems and reduce yield gaps, “hunger months” and other disparities. However, limited access to and use of affordable, quality seed of well-adapted varieties with desired traits, means these bottlenecks remain. 

This Initiative aims to support the delivery of seed of improved, climate-resilient, market-preferred and nutritious varieties of priority crops, embodying a high rate of genetic gain to farmers, ensuring equitable access for women and other disadvantaged groups.

This objective will be achieved through:

  • Supporting demand-driven cereal seed systems for more effective delivery of genetic gains from One CGIAR cereal breeding, as well as improving government, private sector and farmer-based capacity to deliver productive, resilient and preferred varieties to smallholders. 
  • Boosting legume seed through a demand-led approach that builds on growing demand for grain legumes. This multistakeholder approach will strengthen partnerships to provide efficient, more predictable and demand-led access to quality seed of new varieties. 
  • Scaling and delivering vegetatively propagated crop seed through sustainable enhanced delivery pathways that efficiently target different market segments and farmer preferences. 
  • Supporting partnerships (including with smallholders), capacity building and coordination to ensure uptake of public-bred varieties and other innovations by providing technical assistance for national agricultural research and extension systems (NARES) and foundation seed organizations in early-generation seed production and on-farm demonstrations. 
  • Developing and implementing policies for varietal turnover, seed quality assurance and trade in seeds by leveraging global expertise and experience to generate both the evidence and engagement necessary to advance efficient, sustainable, and inclusive seed markets that promote varietal turnover and wider adoption. 
  • Scaling equitable access to quality seed and traits in order to reach the unreached and provide inclusive access while addressing gender and social constraints and the digital divide. 

Engagement

This Initiative will work in Bangladesh, Ethiopia, India, Kenya, Mozambique, Nepal, Nigeria, Rwanda, Uganda and Tanzania as a priority, followed by other countries in Latin America, South and Southeast Asia and Sub-Saharan Africa. 

Outcomes

Proposed 3-year outcomes include:

  1. Robust tools developed and used by funders, developers, researchers and extension staff to sustainably measure and monitor key seed system metrics. 
  2. Increase of 10% in the quantity of quality seed of improved “best-fit” and farmer-preferred varieties available to farmers in representative crops and geographies due to increased capacity of seed companies and other seed multipliers (including farm-based seed actors).  
  3. Public and private seed enterprises adopting innovative and transformative models for accessing, disseminating and multiplying quality early-generation seed, reducing cost and increasing output. 
  4. Reduction of 5% in weighted average varietal age for priority crops in selected countries.     
  5. Government partners in policy design and implementation actively promote policy solutions to accelerate varietal turnover, adoption and quality seed use. 

CGIAR Initiative: Accelerated Breeding

Resource-poor farmers in low-income and middle-income countries will hugely benefit from improved crop varieties that perform better in terms of nutritional quality, income generation, water and nutrient use, stability of yields under climate change, and the needs of both women and men as farmers and as consumers.  

However, many smallholder farmers still grow old varieties, in part because they derive inadequate benefits from recent breeding efforts. To trigger timely adoption, new varieties must be widely available and affordable to farmers, and offer a step-change in performance through higher rates of genetic gain. A faster pace of varietal turnover is critical – to enable farmers to adapt and advance rapidly as climatic and market conditions change. 

Breeding programs also need a greater focus on developing farmer- and consumer- preferred varieties adapted to distinct production environments, markets and end uses. This can be facilitated by smarter design of breeding programs; stronger partnerships between CGIAR, National Agricultural Research and Extension Systems (NARES) and small and medium enterprises (SMEs); and strengthened organizational capacity.

This Initiative aims to develop better-performing, farmer-preferred crop varieties and to decrease the average age of varieties in farmers’ fields, providing real-time adaptation to climate change, evolving markets and production systems. 

The objective will be achieved through:

  • Re-focusing breeding teams and objectives on farmers’ needsin particular the needs of women, through achievable product profiles and breeding pipelines targeting prioritized regions and market segments. 
  • Reorganizingbreeding teams to drive efficiency gains through the coordinated engagement of specialists and processes using a common organizational framework, stage gates, key performance indicators and handover criteria. 
  • Transforming towards inclusive, impactful CGIAR-NARES-SME breeding networks with empowered partners, along with customized capacity building, standardized key performance indicators, and by dividing labor and resources across partners according to comparative advantage and aligned with national priorities. 
  • Discovering optimum traits and deployments through agile, demand-driven and effective trait discovery and deployment pipelines, and development of elite donor lines with novel and highly valuable traits. 
  • Acceleratingpopulation improvement and variety identification through optimizing breeding pipelines (trailing, parent selection, cycle time, use of Breeding Resources tools and services, etc.), with the goal of assuring all programs deliver market-demanded varieties that deliver greater rates of genetic gain per dollar invested. 

Engagement

This Initiative will work with breeding programs serving countries in Sub-Saharan Africa, and South Asia, along with Asia and Latin America. Priority countries for the Initiative include Ghana, Kenya, Nigeria, Senegal, Tanzania, Uganda, Zambia and Zimbabwe in Africa, and Bangladesh and India in South Asia. 

Outcomes

Proposed 3-year outcomes include:

  1. At least 75% of breeding pipelines are oriented towards specific market segments, enabling greater focus on farmers’ needs, drivers of adoption, distinct impact areas and the strategic allocation of resources. 
  2. At least 70% of breeding pipelines use a revised organizational framework that provides operational clarity and effectiveness for specialized teams pursuing breeding outputs. 
  3. At least 80% of the breeding networks have implemented documented steps toward stronger partnership models where NARES and SMEs have increased breeding capacity, and make greater scientific, operational and decision-making contributions to the breeding process. 
  4. At least 50% of breeding pipelines are supported by a dedicated trait discovery and deployment program that delivers high-impact traits in the form of elite parental lines. 
  5. At least 70% of breeding pipelines have increased the rate of genetic gain in the form of farmer-preferred varieties, with at least 50% providing significantly improved varieties delivered to seed system recipients.    

KALRO research station at Kiboko revamped to accelerate crop breeding

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna cutting a ribbon at the entrance of a new shed housing, marking the commissioning of five new seed drying machines courtesy of the of the Accelerating Genetic Gains (AGG) Project. (Photo: Susan Otieno/CIMMYT)

Kenya Agricultural and Livestock Research Organization (KALRO)’s research station at Kiboko, Kenya, where several partner institutions including the International Maize and Wheat Improvement Center (CIMMYT), conduct significant research activities on crop breeding and seed systems, is now equipped with five new seed drying machines along with a dedicated shed to house these units, a cold room for storing breeding materials, and an additional irrigation dam/reservoir. These infrastructural upgrades are worth approximately US $0.5 million.

During the commissioning of the new facilities on February 7, 2023, CIMMYT Global Maize Program Director, BM Prasanna thanked the donors, Crops to End Hunger (CtEH) Initiative and Accelerated Genetic Gains (AGG) project, that supported the upgrade of the research station, and recognized the strong partnership with KALRO.

“Today is a major milestone for CIMMYT, together with KALRO, hosting this center of excellence for crop breeding. This facility is one of the largest public sector crop breeding facilities in the world, with hundreds of hectares dedicated to crop breeding. These new facilities will enable CIMMYT and KALRO crop breeders to optimize their breeding and seed systems’ work and provide better varieties to the farming communities,” said Prasanna.

Kenya suffered one of its worst droughts ever in 2022, and the newly commissioned facilities will support expedited development of climate-resilient and nutritious crop varieties, including resistance to major diseases and pests.

Visitors at the KALRO research station in Kiboko, Kenya, looking at the newly commissioned cold room storage. (Photo: Susan Otieno/CIMMYT)

Improvements and enhancements

The efficiency of the seed driers capabilities to quickly reduce moisture content in seed from above 30% to 12% in two to three days, reducing the time taken for seed drying and allowing for more than two crop seasons per year in a crop like maize.

The additional water reservoir with a capacity of 16,500 cubic meters will eliminate irrigation emergencies and will also enhance the field research capacity at Kiboko. Reliable irrigation is essential for accelerating breeding cycles.

At the same time, the new cold room can preserve the seeds up to two years, preventing the loss of valuable genetic materials and saving costs associated with frequent regeneration of seeds.

KALRO Director General Eliud Kireger officiating the opening of the cold room storage facility at KALRO research station at Kiboko, Kenya. Looking on is CIMMYT Global Maize Program Director, BM Prasanna. (Photo: Susan Otieno/CIMMYT)

World-class research center

“The Kiboko Research Center is indeed growing into an elite research facility that can serve communities in entire sub-Saharan Africa through a pipeline of improved varieties, not only for maize but in other important crops. This will not only improve climate resilience and nutrition, but will contribute to enhanced food and income security for several million smallholder farmers,” said Prasanna.

KALRO Director General Eliud Kireger appreciated the establishment of the new facilities and thanked CIMMYT and its partners for their support.

“Today is a very important day for us because we are launching new and improved facilities for research to support breeding work and quality seed production. This research station is in Makueni County, a very dry area yet important place for research because there is adequate space, especially for breeding,” said Kireger. “We are significantly improving the infrastructure at Kiboko to produce and deliver better seed to our farmers.”

For more than three decades, CIMMYT has conducted research trials at the Kiboko Research Station, focusing on drought tolerance, nitrogen use efficiency, and resistance to pests and diseases, such as fall armyworm and stem borer. The maize Double Haploid (DH) facility established in 2013 at Kiboko, with the support of the Bill & Melinda Gates Foundation, offers DH line production service for organizations throughout Africa, and is key to increasing genetic gains in maize breeding.

CGIAR Initiative: Market Intelligence

Decisions on how to invest scarce resources in CGIAR-NARES genetic innovation systems have been predominantly supply-driven and therefore potentially out-of-sync with the demands of smallholders, consumers and agro-industry. The turnover of improved crop varieties developed by CGIAR and its NARES partners (National Agricultural Research and Extension Services) has been slow. Small-scale seed businesses lack incentives to actively promote new varieties given weak demand. Little is known about the drivers of varietal replacement and product substitution, and the role of downstream market actors such as traders, processors and consumers in this process.  

There is a clear need for demand- and data-driven processes to guide genetic innovation systems, but efforts to advance this remain incomplete and fragmented within CGIAR. Current product profile design is strongly biased towards agronomic and stress-tolerance traits, with little systematic identification and integration of traits that contribute to wider social impact. 

This Initiative aims to maximize CGIAR and partners’ returns on investment in breeding, seed systems and other Initiatives based on reliable and timely market intelligence that enables stronger demand orientation and strengthens co-ownership and co-implementation by CGIAR and partners.

Government of Zimbabwe recognizes CIMMYT for beneficial collaborations

Dr Dumisani Kutwayo (second left) receives state of art Maize Lethal Necrosis test kits from Dr Wegary Dagne (second from right). (Photo: Tawanda Hove/CIMMYT)

The best results in combating pests and diseases exacerbated by climate change and protecting agricultural food systems originate from strategic partnerships between national governments and international research organizations. Such a synergy between Zimbabwe’s Department of Research and Specialist Services (DRSS) and the International Maize and Wheat Improvement Center (CIMMYT) was recognized for its effectiveness at an event hosted by Zimbabwe Plant Quarantine Services on January 9, 2023.

“The mandate of ensuring that Zimbabwe is protected from plant diseases and invasive pests is one which cannot be attained by government alone, but together with partners such as CIMMYT,” said Dumisani Kutywayo, Chief Director of DRSS.

Dagne Wegary Gissa, CIMMYT senior scientist in maize breeding, presented Kutywayo with the latest advanced PCR testing kits for detecting maize lethal necrosis. “We are committed to ensuring that we support Zimbabwe with improved maize and wheat varieties but also with rapid disease detection,” said Gissa.

Kutywayo and senior directors were given a tour of the plant quarantine services station, where they observed where all introduced maize seed is quarantined and tested before being incorporated into the local seed systems. Tanyaradzwa Sengwe, a seed health and quality expert, summarized the quarantine procedures and explained how the day-to-day operations between the two institutes are being implemented. This involves the management of imported seed, protocols of seed management and biosafety measures for the quarantine facility.

Government officials take part in a field visit of the quarantine facility set up by CIMMYT in Mazowe, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Expanding partnerships

Zimbabwe can now accelerate its crop improvement programs, Gissa indicated, because CIMMYT has provided the government access to doubled haploid (DH) technology. This technology significantly shortens the breeding cycle from seven years to approximately 3-4 years. DH technology has become an integral part of many commercial maize breeding programs, as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide.

CIMMYT-Zimbabwe has facilitated access for Zimbabwe’s maize breeding program to a CIMMYT DH facility in Kenya. Busiso Mavankeni, the head of the Crop Breeding Institute, related how it was very expensive for governments of developing countries to keep up with the latest breeding technology trends and so collaborating with CIMMYT is helping Zimbabwe. “Having access to the DH facility has been a great boon to our breeding program,” said Mavankeni.

CIMMYT and Zimbabwe are also engaged in capacity building exercises; involving training sessions across a variety of food system frameworks. Nhamo Mudada, Head of Plant Quarantine Services, acknowledged the multiple trainings ranging from disease identification and prevention systems to entomology related concepts. “Our technical capabilities have increased significantly, and we strongly attribute this to CIMMYT’s knowledge sharing mandate,” Mudada said.

“This sustainability is enabled by ensuring that our systems can screen genetic materials coming into the country and detect diseases which may be foreign to the agroecological region. CIMMYT has, over the years, supported the government not only from a financial perspective but also from a technical capacity perspective.

“Having reliable partners such as CIMMYT who generously invest in government priorities helps our country to be well positioned against threats to our food security,” said Kutywayo, “The key for creating and maintaining sustainable innovation is for development partners like CIMMYT to work within existing national frameworks,” said Kutywayo. “As the adverse effects of climate change intensify, such strategic partnerships are the only way to establish appropriate responses.”

“Our goal is to serve as critical partners for Zimbabwe’s agrifood programs. We have dedicated ourselves to be a long-term partners and will provide as much support as we can to ensure Zimbabwe’s food security,” Gissa said.

Pravasi Bharatiya Samman winner, scientist Dr Ravi Singh is working towards food security for all

As he retires from his illustrious career, a new interview with Ravi Singh, Head of Global Wheat Improvement at CIMMYT, by the Global Indian reveals his motivations for becoming a scientist and his desire to ensure people all over the world had access to food.

“I retired quite recently, however, I have a lot to do. I wish to mentor young scientists about on how to increase food production. I also look forward to working on several high-profile projects with farmers to tackle future issues they might face due to the climate changes on a crop like wheat,” shares the scientist.

Singh was honored with the Pravasi Bharatiya Samman by the Government of India in January 2021, recognizing his outstanding achievements by non-resident Indians, persons of Indian origin, or organizations or institutions run by them either in India or abroad. He received this for his role in the development, release, and cultivation of more than 550 wheat varieties over the past three decades.

Singh has also been included among the top one percent of highly-cited researchers, according to Clarivate Analytics-Web of Science every year since 2017.

Read the original article: Pravasi Bharatiya Samman winner, scientist Dr Ravi Singh is working towards food security for all

Farmers in Zimbabwe embrace agroecology

Smallholder farmers display a range of small and large grains at the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Smallholder farmers in resource-poor communities of Zimbabwe and much of the Global South have been experiencing low crop productivity due to many factors, including inappropriate seeds and seed varieties, labor shortages, loss of agro-biodiversity, insufficient inputs, degrading soils, and recurrent droughts. These threats are now amplified by climate change.

This has resulted in broken food systems rendering food and nutrition insecurity commonplace. The One CGIAR initiative, Transformational Agroecology Across Food, Land, and Water Systems, led by the International Maize and Wheat Improvement Center (CIMMYT) in Zimbabwe, is designed to bring agroecological advances to smallholder famers in an effort to strengthen local food systems.

Smallholder farmers in the Mbire and Murehwa Districts of Zimbabwe were introduced to innovative agroecology interventions, premised on harnessing nature’s goods and services while minimizing adverse environmental impacts and improving farmer-consumer connectivity, knowledge co-creation, and inclusive relationships among food system actors.

Smallholder farmers register for the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove)

Farmer to farmer collaboration at seed fairs

In response to challenges related to lack of appropriate seeds and eroding agrobiodiversity and, as a way to transition prevailing food systems to more sustainable ones, farmers were invited to take part in seed fairs. The seed fair’s objective was to enable smallholder farmers to access improved and locally adapted seeds of food crops originating from the private sector and fellow farmers. In addition, the seed fairs provided a platform for learning about agroecological practices. Farmers were also given a chance to see different machinery that could aid in land, food, and feed preparation, and address their labor shortage challenges.

At the opening of the seed fair in Mbire, Dorcas Matangi, CIMMYT research associate, acknowledged that smallholder farmers operate in challenging and complex ecological, social, and economic systems and there is a need for interventions that address the natural resource base without ignoring the social and economic dynamics within communities.

“The communal culture of sharing and trading between community members can be capitalized on for a collective benefit, said Matangi. “One such case is through events such as seed fairs where we encourage farmers to showcase and sell seeds they know perform very well.”

She further explained to the participating farmers how increasing their crop diversity and using practices such as conservation agriculture techniques benefit the environment and improves food security and nutrition.

“I am grateful for these efforts,” said Grace Musandaira, supervisor of the Agriculture Advisory and Rural Development Service. “Our region is arid, and as such, it is very difficult for our farmers to achieve significant yields to assure them there is enough food for the year. In addition, the knowledge provision relating to preserving and improving agrobiodiversity through agroecological practices is set to improve rural livelihoods.”

Senzeni Nyagonye, a farmer in Mbire, said “This initiative is teaching and exposing us to so many new concepts such as conservation agriculture with mechanization. If we can apply conservation agriculture with the seeds we bought at this seed fair, we are optimistic about a great harvest.”

A total of 1,058 farmers attended two seed fairs in Mbire and Murehwa. Farmers had the opportunity to access a variety of crop seeds ranging from maize, to sorghum, millets, groundnuts, bambara groundnuts, and sunflowers. More than 200 farmers exhibited local seeds that were available for sale or exchange. Private seed companies also showcased and sold certified drought-tolerant maize, sorghum, bean and cowpea varieties.

“The seed fairs in Mbire and Murehwa were very successful”, said Matangi. “And we feel these efforts will serve as a useful case study to guide a national scale-up.”

Taking Aim Against the Dire Threat of Fall Army Worm

Fall armyworm (FAW) is present in 109 countries in Africa, the Middle East, South and East Asia, and Oceania, and it has spread due to rapid increases in global trade. Maize is highly susceptible to the disease, but it affects more than 300 plant species.

Research by organizations such as the International Maize and Wheat Improvement Center (CIMMYT), CGIAR and CABI has developed effective strategies and tools for managing the disease, such as improved seed, proven agronomic practices, and biologic and chemical crop-protection tools.

An article in The Farming Forum explores FAW prevention developments and partnerships that are helping smallholder farmers protect their crops against this devastating disease.

Read the original article: Taking Aim Against the Dire Threat of Fall Army Worm

Improved nitrogen use can boost tomato yields

Nitrogen use efficiency (NUE) and tomato production in Nepal have both been negatively affected by universal fertilizer recommendations that do not consider the soil type, nutrient status, or climate and crop management practices. Improved use of appropriate levels of nitrogen (N) fertilizer, application time, and application methods could increase yields and reduce environmental impact.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Nepal Agricultural Research Council (NARC), the National Soil Science Research Center (NSSRC), and the International Fertilizer Development Center completed a study to identify the optimum N rate and application method to increase NUE and tomato crop yield as part of the Nepal Seed and Fertilizer (NSAF) project.

Randomized trials with nine treatments across five districts included the omission of N, phosphorus (P) and potassium (K) (N0, P0, K0), variable N rates of 100, 150, 200 and 250 kg ha−1 (N-100, N-150, N-200 and N-250), use of urea briquettes (UB) with deep placement (UBN-150) and a control (CK).

Considering its anticipated higher NUE, N input in UB was reduced from the recommend N rate of 200 kg ha−1 by a quarter. N was revealed as the most limiting plant nutrient based on yield responses from an NPK omission plot.

Tomato yield was increased by 27 percent, 35 percent, 43 percent, and 27 percent over N0 with respective applications of fertilizer at N-100, N-150, N-200 and N-250. Yields responded quadratically to the added N fertilizers, with optimum rates ranging from 150 to 200 kg ha−1.

UBN-150 produced a similar yield to the recommended rate of N-200 and significantly increased tomato yield by 12% over N-150.

At N-100, scientists observed the highest partial factor productivity of N (PFPN), while at N-200, the highest agronomic efficiency of N (AEN) was recorded.

Results suggest that there is opportunity to develop more efficient N fertilization strategies for Nepal, leading to benefits of higher yields and less environmental damage.

Read the study: Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal

Cover photo: Generic, non-specific recommendations for fertilizer use in Nepal have affected the production of tomato crops. (Photo: Dilli Prasad Chalise/CIMMYT)

The importance of germplasm in protecting nature

At COP15, Sarah Hearne gives an overview of the CGIAR Allele Mining Initiative projects and their potential role in conserving biodiversity and nature. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Prioritizing the protection of biodiversity is an essential part of mitigating and adapting to the effects of climate change and global warming. At the 15th meeting of the Conference of the Parties to the UN Convention on Biological Diversity (CBD) (COP15), held between December 7-19 in Montreal, Canada, emphasis was placed on the important role of nature in meeting the Sustainable Development Goals (SDGs), proposing the adoption of a bold global biodiversity framework that addresses the key drivers of nature loss to secure health and wellbeing for humanity and for the planet.

On December 7, scientists from the International Maize and Wheat Improvement Center (CIMMYT), together with colleagues from CGIAR research centers and the secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture, presented at a COP15 side event on how Digital sequence information (DSI) is changing the way genetic resources are used in agricultural research and development and implications for new benefit-sharing norms.

The session, organized by the CGIAR Initiative on Genebanks explored the role of DSI to conserve crop and livestock genetic diversity and explore and utilize that diversity in plant and animal breeding programs.

Attendees at the COP15 side event on DSI discover how genetic resources are used in research and development for agriculture. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Carolina Sansaloni, wheat germplasm bank curator and genotyping specialist, illustrated how DSI is being used in the CIMMYT wheat collection to analyze structure, redundancies, and gaps, further detailing how generation and use of DSI to conduct similar analyses within national genebanks in Latin America is being supported through collaborative efforts of CIMMYT and the Alliance of Bioversity and CIAT.

CIMMYT principal scientist Sarah Hearne focused on the application of DSI to interrogate broad swathes of crop genetic diversity for potential climate change adaptation, providing examples of work from the Allele Mining Initiative projects, Mining Useful Alleles and Fast Tracking Climate Solutions, alongside earlier work funded by the Mexican Government.

The take-home message was that genetic diversity and germplasm bank collections, when explored at “global scale” with modern tools and diverse partnerships, offer a powerful resource in the efforts to mitigate the impacts of climate change. This potential is only realized through appropriate generation and sharing of DSI generated from collections of many countries of origin.

Sansaloni and Hearne also contributed to a discussion paper, titled “Digital sequence information is changing the way genetic resources are used in agricultural research and development: implications for new benefit sharing norms”. This article, developed by scientists and germplasm law experts from across the CGIAR, provides a more detailed assessment of CGIAR use of DSI and the benefit sharing options being considered by the Contracting Parties to the Convention on Biological Diversity.

How does physical disturbance of soil impact carbon mineralization?

Higher levels of potential carbon mineralization (Cmin) in soil indicate that the soil is healthier. Many reports indicate that Cmin in agricultural soils increases with reductions in soil disturbance through tillage, but the mechanisms driving these increases are not well understood.

The International Maize and Wheat Improvement Center (CIMMYT) has established a network of research platforms in Mexico, where collaborating scientists evaluate conservation agriculture and other sustainable technologies to generate data on how to improve local production systems. This network of research trials, many of which have over five years in operation, allowed us to participate with Mexican sites in the North American Project to Evaluate Soil Health Measurements (NAPESHM). This project aimed to identify widely applicable soil health indicators and evaluate the effects of sustainable practices on soil health in 124 long-term experiments across Canada, the United States of America, and Mexico.

Experienced field teams from CIMMYT sampled the soils from 16 experiments in Mexico, which were then analyzed by the Soil Health Institute for this study. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected, with results demonstrating that microbial (archaeal and bacterial) sensitivity to physical disturbance is influenced by cropping system, the intensity of the disturbance, and soil pH.

A subset of 28 percent of amplicon sequence variants were enriched in soils managed with minimal disturbance. These enriched sequences, which were important in modeling Cmin, were connected to organisms that produce extracellular polymeric substances and contain metabolic strategies suited for tolerating environmental stressors.

The unique sampling design of this study – analyzing across a variety of agricultural soils and climate – allows to evaluate management impacts on standardized measures of soil microbial activity. Additionally, understanding the microbial drivers of soil health indicators like Cmin can help with the interpretation of those indicators and ultimately the understanding of how to better manage soils.

Read the study: Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

Cover photo: Soil sampling in the Tlaltizapan station, Mexico in March 2019. (Photo: Simon Fonteyne/CIMMYT)

Using ENM principles to preserve soil health

In a new Frontiers publication, scientists from the International Maize and Wheat Improvement Center (CIMMYT) outline how to achieve an ecologically based approach to sustainable management of soil fertility, particularly for smallholders.

What is ecological nutrient management (ENM)?

Across the globe, smallholder farming communities only have limited resources to improve their financial and food security, and soil degradation is common. Ecological nutrient management (ENM), an agroecological approach to managing the biogeochemical cycles that regulate soil ecosystem services and soil fertility, can prevent degradation and preserve soil health.

Five principles guide ENM strategies:

  • Building soil organic matter and other nutrient reserves.
  • Minimizing the size of nitrogen (N) and phosphorus (P) pools that are most vulnerable to loss.
  • Maximize agroecosystem capacity to use soluble, inorganic N and P.
  • Use functional biodiversity to maximize presence of growing plants, biologically fix nitrogen and access sparingly soluble phosphorus.
  • Construct agroecosystem and field scale mass balances to track net nutrient flows over multiple growing seasons.
At the ICRISAT headquarters in Patencheru, India, M.L. Jat and Sieg Snapp stand in front on pigeonpea (Cajanus cajan) varieties, a semi-perennial legume that fixes nitrogen and solubilizes phosphorus for greater nutrient efficiency while building soil health. (Photo: Alison Laing/CSIRO)

Using functionally designed polycultures, diversified rotations, reduced fallow periods, increased reliance on legumes, integrated crop-livestock production, and use of a variety of soil amendments exemplify how ENM works in practice. A key principle is to underpin agroecosystem resilience through the promotion of soil organic matter accrual and restoration of soil function.

Strategic increases of spatial and temporal plant species diversity are used, that meet farmer requirements. This often involves perennial or semi-perennial bushes and vines that provide food, fuel and fodder while restoring soil fertility. ENM long-term management systems can increase yields, yield stability, profitability, and food security, thus addressing a range of smallholder needs.

Read the study: Advancing the science and practice of ecological nutrient management for smallholder farmers

Cover photo: A maize-bean intercrop that exemplifies the ENM approach, taken at CIMMYT’s Chiapas Hub, a long-term field experiment. (Photo: Sieg Snapp/CIMMYT)