Skip to main content

Theme: Environmental health and biodiversity

The world needs better management of water, soil, nutrients, and biodiversity in crop, livestock, and fisheries systems, coupled with higher-order landscape considerations as well as circular economy and agroecological approaches.

CIMMYT and CGIAR use modern digital tools to bring together state-of-the-art Earth system observation and big data analysis to inform co-design of global solutions and national policies.

Our maize and wheat genebanks preserve the legacy of biodiversity, while breeders and researchers look at ways to reduce the environmental footprint of agriculture.

Ultimately, our work helps stay within planetary boundaries and limit water use, nutrient use, pollution, undesirable land use change, and biodiversity loss.

Positive Solutions for Nature in Colombia: A Review

In a world where environmental and agrifood challenges demand urgent responses, the CGIAR-led Positive Solutions for Nature (Nature+) initiative is transforming agriculture into a catalyst for ecological regeneration and sustainable development.

In Colombia, CIMMYT has played a key role in implementing several activities under this initiative. These efforts have not only improved agricultural productivity but also promoted biodiversity conservation, sustainable resource management, and the strengthening of rural communities—with a special focus on youth, women, and native maize.

One of the first steps in Colombia was conducting a diagnosis and mapping key actors within agrifood systems across different regions. This assessment identified major challenges such as limited access to native seeds, soil degradation, and lack of access to fair market opportunities for smallholder farmers.

To ensure that promoted practices aligned with local realities and needs, CIMMYT worked closely with farmers to co-create solutions. A significant example was the support given to women producers to conserve native maize varieties. Workshops held in Cesar, Nariño, Putumayo, and Valle del Cauca included childcare spaces, enabling full participation by women.

Another important milestone was facilitating dialogue between producers and niche markets, helping connect farmers growing native maize with potential buyers. This has been key to revitalizing the value chain for these crops. In parallel, twelve community seed banks were strengthened in various regions, ensuring the availability of native varieties and encouraging intergenerational knowledge exchange.

CIMMYT also conducted extensive training activities, benefiting hundreds of farmers in the post-harvest management of native grains and seeds. In workshops held during 2023 and 2024, over 780 producers—many of them women—received training in practices such as harvesting, drying, shelling, and hermetic storage, which reduced post-harvest losses and improved seed quality.

Infrastructure improvements further supported these efforts. One standout example is the YEL-PUE Cumbe seed bank in Cumbal, Nariño—established with support from CIMMYT and the Bioversity-CIAT Alliance. This seed bank not only conserves agricultural biodiversity but also serves as an intergenerational learning hub, where farmers, students, and technicians share experiences and knowledge.

A key component of the initiative has been youth participation. Through collaboration with the José María Falla Educational Institution and youth networks like Herederos del Planeta, students have engaged in agroecological maize production. This involvement fosters stronger rural ties and ensures the continuity of traditional knowledge for future generations.

While challenges remain, the implementation of Positive Solutions for Nature in Colombia has demonstrated that agricultural production can go hand in hand with environmental conservation and community well-being. Thanks to collaborations with research centers such as CIMMYT, many Colombian farmers are now adopting regenerative practices, enhancing agrobiodiversity and boosting resilience to both climate and economic shocks.

Looking ahead, these efforts will continue within the CGIAR Multifunctional Landscapes Science Program. CIMMYT, in collaboration with other CGIAR centers, will focus on participatory varietal selection, business models to enhance the value of agrobiodiversity, connections to niche markets, and the empowerment of women as agents of biodiversity conservation.

Sistema tradicional maĂ­z-frijol en Valledupar, Cesar, Colombia

Munich Statement on Agriculture, Biodiversity and Security: there is no security without food security

In February 2025, leading voices in the global food and agricultural system came together on the occasion of the Munich Security Conference to discuss how to achieve food security in an increasingly insecure world.

Biological diversity is key to food and nutritional security, but all too often neglected. The loss of agricultural biodiversity (which includes crop diversity) threatens not just the resilience of global food systems but also their productivity. This in turn undermines rural livelihoods and economic activity, increasing the likelihood of migration. It also heightens the risk of price spikes and restricts the availability of staple food products, which may hamper trade in important commodities as governments seek to shore up sufficient stockpiles for domestic markets.

Compromised food systems and agricultural biodiversity loss destabilize and damage communities, potentially to an existential level, while preserving agricultural biodiversity and investing in resilient farms are the foundations for peace and prosperity.  Stakeholders across the international community, including the security community, civilian agencies, civil society and businesses, should act to preserve and use agricultural biodiversity and promote sustainable agriculture by putting farmers first.

As the ultimate providers of life-sustaining nutrition, farmers are indispensable global security partners. Farmers provide a steadying economic force, but only if they have adequate safety, and access to land, investment, innovation, and functioning markets. It is imperative to provide farmers with the support, investment, and opportunities for innovation to adapt to changing global environmental conditions and persevere through social unrest and conflict. Farmers must be able to employ agricultural practices that concurrently promote nutrition, water security, human health, and biodiversity preservation. Prioritizing the delivery of nutrient-rich foods and bio-based products in ways that respond to water and weather stress is essential.

Crucially, for farmers to be successful, they need continued access to agricultural biodiversity. To ensure that, genebanks must be seen as a shared strategic strength.

Reliable, sufficient, and nutritious food for the current and future population depends on the crop diversity that underpins critical research and breeding efforts. Despite its increasing importance in light of a changing climate, the conservation and availability of crop diversity is increasingly at risk: it is declining in farmers’ fields and in the wild, and genebanks are chronically underfunded. Growing food demands, land degradation, and geopolitical tensions threaten crop diversity, and more generally agricultural economies.

Given their essential role in food security, genebanks should be strategically protected and funded. Sufficient attention and resources should be available to ensure an effective and efficient global system of genebanks under the policy umbrella of the International Treaty on Plant Genetic Resources for Food and Agriculture. In addition, the security community should incorporate food security and agricultural biodiversity into national and international security risk assessments and strategies.


Call to Action

It is our duty to alert the world to the threats to security and state stability posed by compromised food production systems and the loss of agricultural biodiversity. We wish to highlight the need for greater attention and investment from all stakeholders across governance, including the security sector, as well as civil society and the private sector.

Leading international organizations in agricultural biodiversity conservation and agricultural research, philanthropies, multinational corporations, and representatives from governments share this concern and endorse this statement arising from discussions at the 2025 Munich Security Conference.

Munich Statement on Agriculture, Biodiversity and Security: there is no security without food security

Trade Partnerships and Industry Milestones

The State of Mexico is supporting native corn preservation by providing MX$3.5 million in financial aid and equipment to local farmers. In collaboration with CIMMYT and UNAM, the government is advancing research to improve open-pollinated varieties and promote sustainable farming. As part of this effort, 833 seed accessions have been donated to enhance biodiversity and strengthen traditional maize cultivation. This initiative aims to support farmers while preserving Mexico’s rich maize heritage.

Read the full story.

The land that gives life: Tomasa and FabiĂĄn’s plot

Somewhere in the enchanted valley of Santa Catarina Lachatao, Oaxaca, under the vast blue sky and in the heart of a land full of history and hope, Fabiån Marcos Cano and Tomasa García Pérez are working toward the future they have long envisioned, their hands deep in the soil. In this land, where the Zapotec language gives its name to the territory, each seed sown by their hands is an act of trust.

FabiĂĄn, his gaze marked by years of experience, speaks of his land with the pride of someone who has learned to listen to the voice of the earth. “We used to plant the way God guided us,” he says, recalling the days when farming was a practice of intuition and inherited wisdom.

Today, with the support of SEFADER technicians like Reinalda GĂłmez and her team, they have transformed their approach to farming. FabiĂĄn and Tomasa have learned to respect the rhythms of the soil, to give back what they take, and to see each plant through a new lens. “It’s like food for food,” FabiĂĄn explains.

Corn and beans grow unhurriedly in their fields. The land is enriched with crop residues that were once fed only to livestock, along with compost that was once discarded. “It’s a lot of work, but it’s our life,” says FabiĂĄn, with the firm determination of someone who understands that effort is part of the cycle.

For Tomasa, each harvest is a link to her ancestors. “The land gives us life,” she says with unwavering certainty. In her fields, milpa thrives alongside squash, beans, amaranth, and purslane, in a balance that requires patience and respect. She has learned to let nature do its work, to understand that burning fields robs the soil of its ability to renew itself. “We pile up the weeds, let them decompose, and that’s how the land nourishes itself,” she explains.

The journey has not been easy. Last year, a violent storm destroyed much of their crop. “It grew beautifully, but the wind tore everything down,” FabiĂĄn recalls with resignation. But they are not giving up. “We make do with what God gives us, because it is more than enough for us.” What remains is harvested as seed for the next cycle.

Every application of bio-inputs, every crop diversification, every lesson shared by agricultural engineers has changed their way of farming and their understanding of life. The land, once seen as an adversary that imposed its own rules, is now an ally that responds generously to care.

The story of FabiĂĄn and Tomasa is a testament to resilience and learning. It is proof that agriculture can be different, that tradition and innovation can go hand in hand. Because in every bean they harvest, in every ear of corn they save for the next cycle, there is a valuable lesson: the land gives back what it receives. And in Santa Catarina, under the sun that shines on FabiĂĄn and Tomasa’s fields, life flourishes with strength.

The 29th Conference of the Parties (COP29): Navigating Food Systems and Climate Challenges

From 11 -22 November 2024, global leaders convened in Baku, Azerbaijan for COP29. Dubbed the finance COP, critical intersections of climate change, food systems, and sustainable development took center stage. This year’s conference reflected both the progress and the persistent challenges in addressing the climate crisis, marking a critical moment in the climate negotiations. 

Food Systems at the Forefront 

COP29 highlighted the undeniable importance of transforming global food systems as a cornerstone of effective climate action. Initiatives like the Harmoniya platform and the Declaration on Methane from Organic Waste shows the global community’s recognition of agriculture as both a contributor to and a solution for greenhouse gas emissions. However, the broader discussions were a reminder of the gap between ambition and implementation, with financial commitments and concrete action plans often falling short. 

While food systems gained visibility, the debates often revealed tensions, particularly on issues like global stocktake outcomes, financing, and the integration of mitigation and adaptation strategies. Despite these challenges, the coordination and cohesion within the food systems community were commendable, reflecting a collective resolve to carry the momentum forward. 

COP 29 – Baku, Azerbaijan

Key Outcomes and Agreements 

  1. Climate Finance and the NCQG

A central focus of COP29 was the New Collective Quantified Goal on climate finance (NCQG). While the actual need for climate finance is estimated at $1.3 trillion annually, the outcomes of COP29 fell short, with only $300 billion explicitly committed to developing countries. The inclusion of voluntary contributions from non-traditional donors like China and the UAE added nuance but failed to resolve the broader financial gaps. 

  1. Mitigation Work Programme

Discussions on the Mitigation Work Programme highlighted fundamental disagreements over whether the program should prioritize specific actions linked to the global stocktake. While some nations sought prescriptive approaches, others emphasized the voluntary nature of nationally determined contributions (NDCs). These debates highlight the complexities of aligning global and national climate priorities. 

  1. Adaptation and Resilience

The global goal on adaptation progressed with the launch of the Baku Adaptation Roadmap, though challenges remain in refining and agreeing upon adaptation-related indicators. Meanwhile, the Sharm El Sheikh Joint Work on Agriculture and Food Security moved forward with plans for an online portal to share best practices and tools for climate action. 

  1. Collaborative Frameworks

The conference saw advancements in collaborative mechanisms such as the Paris Agreement Crediting Mechanism under Article 6, which aims to enhance transparency and accountability in carbon markets. Platforms like Harmoniya and the Global Nitrous Oxide Hub were also launched to streamline efforts in addressing specific climate challenges. 

CIMMYT at COP29

Amid these broader discussions, CIMMYT came out to strongly champion for the alignment of scientific innovation with the practical challenges of transforming food systems. Sieglinde Snapp and Tek Sapkota represented CIMMYT at high-level side events, highlighting the critical need to leverage research to tackle climate challenges. Their contributions focused on developing actionable pathways to bridge the persistent gap between ambitious goals and effective implementation. 

Participation in high-level panel discussions

Date: November 12, 2024 
Event: High-Level Panel on Sustainable Agriculture 

Tek Sapkota shared CIMMYT’s efforts in advancing food systems, climate resilience, and environmental sustainability, aligning with the UAE COP28 Declaration on sustainable agriculture. The event featured remarks from distinguished leaders, including H.E. President Taye Atske Selassie of Ethiopia, H.E. Prime Minister Mette Frederiksen of Denmark, and H.E. Amna Al Dahak of the United Arab Emirates among other world leaders.  

Date: November 18, 2024 

Event: Making Agriculture Smart by Going Wild

Sieglinde Snapp was part of panel discussions chaired by the United Kingdom Nature minister to discuss leveraging wild crop relatives and underutilized species to enhance agricultural resilience against climate risks. She highlighted CIMMYT’s efforts towards biodiversity in achieving food security. 

(Photo: Maria Monayo/CIMMYT)
(Photo: Maria Monayo/CIMMYT)
(Photo: Maria Monayo/CIMMYT)
(Photo: Maria Monayo/CIMMYT)

Other events include: 

  • Scaling Innovations for Greenhouse Gas Mitigation
    Date: November 12, 2024
    Presented CIMMYT’s research on precision agriculture, showcasing strategies for leveraging site-specific nutrient management to reduce greenhouse gas emissions while increasing food production and supporting food security. (Link recording) 
  • Pre-COP30 Discussions on Fertilizer Innovations
    Date: November 14, 2024
    Highlighted innovative technologies in fertilizer production and management as part of technological breakthrough to reduce GHG emissions from agricultural sectors.  (Link recording) 
  • Partnerships for Soil Health and Agricultural Resilience
    Date: November 15, 2024
    Explored the role of public-private partnerships in advancing soil health and resilience. The discussion highlighted innovative soil management technologies that conserve nitrogen, preserve soil organic carbon, and promote climate-smart agriculture.  
  • Enhancing Soil Health for Climate Action
    Date: November 16, 2024
    Addressed practical strategies for improving soil health to mitigate climate change and enhance agricultural sustainability. (Link recording) 
  • CGIAR Panel Discussion on Innovation in Soil Fertility Management
    Date: November 18, 2024
    Shared insights on advancing soil fertility management through cutting-edge innovations that balance productivity and sustainability. (Link recording) 
  • Global Nitrous Oxide Hub Launch
    Date: November 19, 2024
    Discussed the importance of reducing nitrous oxide emissions in agriculture, aligning with global efforts to mitigate climate change.  
  • VACS Networking Events
    Date: November 19, 2024
    Discussions highlighting public-private-civil society partnerships for sustaining agricultural resilience and advancing the VACS agenda.  
  • Launch of the 2024 Breakthrough Agenda Report
    Date: November 20, 2024
    (Link recording) 

 

Non-Negotiated Outcomes

Beyond formal agreements, COP29 featured significant declarations and initiatives that highlight emerging priorities: 

The Road Ahead: From Baku to Belém

As the world prepares for COP30 in Belém, Brazil, the outcomes of COP29 provide both lessons and opportunities. CIMMYT, aligned with the CGIAR 2030 Research and Innovation Strategy, is uniquely positioned to drive transformative action in food systems. 

Key priorities for COP 30 include: 

  • Strengthening Finance Mechanisms: Addressing the financial gaps in adaptation and mitigation efforts, particularly for low-income nations. 
  • Scaling Collaborative Initiatives: Building on platforms like Harmoniya to foster cross-sectoral and international collaboration. 
  • Embedding Food Systems in Climate Policy: Ensuring that agriculture and food systems are integral to NDCs and national adaptation plans. 
  • Advancing Science for Action: Driving actionable research to close gaps in implementation, particularly in nutrient management and biodiversity conservation. 

Sustaining Health and Soil: Sundhani Tharu’s 4Rs Approach to Farming

Sundhani Tharu, a 44-year-old farmer from Pattharbojhi, Madhuwan-1 in the Bardiya district, in the mid-west of Kathmandu, is a leading example of how sustainable agricultural practices not only enhance crop production but also contribute to human and environmental health. Her dedication to a balanced approach to farming, which includes crop-livestock integration and the principles of the 4Rs of nutrient stewardship, has had a significant impact on her farm and the wider community.

Sundhani lives in a joint family of 58 members, with farming as the primary source of income. On their 8.13 hectares of land, they grow staple crops like rice, maize, mustard, and lentils, while also raising 26 cows, 17 buffaloes, and 45 sheep. Through this integration of crop production and livestock, Sundhani has built a closed-loop farming system where farmyard manure (FYM) from the livestock nourishes the crops, and crop residues feed the animals, ensuring minimal waste and promoting a natural balance between animals, crops, and soil health.

Sundhani with her family (Photo: Sirish Shrestha)

Central to her success is her application of the 4Rs of nutrient stewardship, which involves applying the right source of nutrients at the right rate, at the right time, and in the right place. This approach ensures that her crops receive the essential nutrients they need while minimizing environmental impact. With support from the USAID-supported Nepal Seed and Fertilizer (NSAF) Project, implemented by CIMMYT, Sundhani has been trained in nutrient management techniques, including the 4R principles. These practices have helped her optimize fertilizer use and significantly improve her crop yields, doubling her maize production from 30 to 60 quintals per hectare.

Sundhani also prioritizes the use of farmyard manure, which plays a vital role in her farming system. The manure from her livestock is carefully composted and used as a natural fertilizer, enriching the soil with organic matter and nutrients. This reduces her reliance on synthetic fertilizers, which can harm the environment and deplete soil health over time. By using farmyard manure, Sundhani is not only improving soil fertility but also promoting a healthier ecosystem for future generations.

Similarly, the importance of a healthy diet is another key focus of Sundhani’s farming journey. Her farm provides her family with a diverse range of crops, including rice, maize, mustard, and vegetables like cauliflower, tomatoes, and potatoes. These crops contribute to a balanced, nutrient-rich diet for her large family, ensuring that they receive essential nutrients from fresh, organic produce. Sundhani’s vegetable farming is further enhanced through climate-smart practices like intercropping and mulching, which protect the soil, conserve water, and increase the variety of crops she can grow.

In addition to her focus on nutrient management and healthy diets, Sundhani has embraced Integrated Soil Fertility Management (ISFM), a holistic approach to soil health. ISFM combines organic and inorganic fertilizers, along with improved crop varieties and efficient nutrient management techniques, to enhance soil fertility and ensure long-term agricultural productivity. Through ISFM, Sundhani has achieved sustainable growth in her farming operations while safeguarding the environment for future generations.

Sundhani Tharu (Photo: Sirish Shrestha)

Though Sundhani can hardly read or write, she is contributing to the “One Health” movement—a global initiative that connects the health of people, animals, and the environment through best management practices in agriculture. By integrating crops and livestock, using farmyard manure, and applying the 4Rs of nutrient stewardship, she promotes a sustainable, eco-friendly system that enhances food security, improves soil health, and protects natural resources.

Looking ahead, Sundhani is determined to expand her farming ventures. She plans to venture into seed production for rice and mustard and hopes to increase her earnings from NPR 5 lakh (USD 3,740) to NPR 8 lakh (USD 5,987). By continuing to inspire her community and advocate for local vegetable markets, Sundhani envisions a future where farming is not only a source of livelihood but a cornerstone for a healthy, thriving ecosystem.

Sundhani Tharu’s story highlights the power of nutrient stewardship and sustainable farming to create healthier soils, crops, and communities. Through her dedication to the 4Rs, ISFM, and promoting farmyard manure use, she is paving the way for a future where agriculture is in harmony with nature—benefiting both people and the planet.

Sundhani’s father-in-law (Photo: Sirish Shrestha)

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

Rockefeller Foundation Invests in Nature to Support Indigenous Peoples and Rainforest Communities at COP29

At COP29, the Rockefeller Foundation highlighted its support for CIMMYT through a grant focused on advancing regenerative agricultural practices on farms in Mexico. This collaboration underscores CIMMYT’s pivotal role in driving sustainable farming solutions that enhance food security, environmental resilience, and biodiversity conservation. By integrating regenerative techniques into agrifood systems, CIMMYT contributes to global efforts to mitigate climate change while safeguarding the productivity and health of vital ecosystems.

Read the full story.

Climate Hits Barley, World Bank Boosts Gender Equality

Climate change-induced drought is jeopardizing barley production in Mexico’s Altiplano, which supplies 93% of the country’s barley, putting both local and global beer supplies at risk. To combat this, CIMMYT and Heineken Mexico have launched the “Cultivando un MĂ©xico Mejor” program, which promotes conservation agriculture practices to optimize water use, retain soil moisture, and increase yields. This initiative aims for 100% sustainably produced barley by 2030, helping farmers adapt to climate challenges while supporting the brewing industry’s sustainability goals.

Read the full story.

The increasing frequency of drought challenges agriculture sustainability and livelihood of smallholder farmers

Crops struggling to grow in drought conditions, Bihar (Photo: Moben Ignatius/CIMMYT)

Agriculture is one of the sectors most affected by droughts, which can last for months or even years. In Bihar, where rain-fed agriculture is the primary source of livelihood for many, droughts can be devastating for rural farmers. The growing threat of climate change to crop production and farming practices calls for adopting alternative farming methods. In 2022-23, many districts in Bihar experienced drought conditions.

To better understand the impact of drought on crop production practices and farmers’ livelihoods, researchers from CSISA, a CIMMYT-led project, conducted a survey in Bihar during both the Kharif and Rabi seasons of 2022-23, the year of the drought. In the Kharif season, 518 farmers from 11 districts, 39 blocks, and 79 villages were surveyed, while 339 farmers participated in the Rabi season survey. The primary goal of this data collection was to assess the impact of drought on agricultural practices and provide evidence to guide policy and decision-making processes.

The survey collected data on 123 variables related to rice production, including land preparation, cropping patterns for 2022 and 2021, crop establishment methods, irrigation management, fertilizer application, and weed management. Farmers also shared their perceptions of how the drought had altered their rice production practices and affected their livelihoods compared to the previous year.

For many farmers, the experience of the drought was harsh. Magni Singh from East Champaran reflected on the challenges: “This year (2022), the drought hit us hard. I could only plant paddy on a small piece of land, but with no rain, there was not much harvest. Our fragmented land makes efficient irrigation almost impossible, and relying on rain feels like gambling with each season. Farming in these conditions is becoming increasingly unsustainable.”

Similarly, Shanti Devi of Banka shared her struggles: “The season started with drought, and we struggled to get water to the crops. By the time the rain came, it was too late – it came during the harvest and damaged the crop. I couldn’t afford fertilizers in time, which made things worse. Every year, it feels like we’re battling both nature and rising costs.”

This drought impact assessment by CSISA is also valuable for further research, particularly for comparing rice production practices between drought and non-drought years. Such comparisons can help researchers and policymakers develop effective drought mitigation strategies tailored to farmers’ needs.

An electric pump used to irrigate a paddy field in Buxar, Bihar (Photo: Nima Chodon/CIMMYT)

Read more about these livelihoods framework at Drought Impact Assessment in Bihar – August 2024https://acrobat.adobe.com/id/urn:aaid:sc:AP:66f00f6f-df17-4b13-9fee-2e0050de12ea 

For further research and analysis, primary data from the survey can be accessed at CIMMYT data verse

This year’s World Food Prize underscores the value of seed banks and their stewards

The World Food Prize this year celebrates the essential role of genebanks in global food security—a mission at the heart of CIMMYT’s work. Through its maize and wheat collections, CIMMYT’s genebank preserves crop diversity that is critical for developing resilient, climate-adapted varieties. Highlighted by former CIMMYT maize curator Denise Costich, this recognition underscores the value of conserving genetic resources, which allow CIMMYT and its partners to create solutions for a rapidly changing agricultural landscape. As a vital part of the global genebank network, CIMMYT’s efforts ensure that biodiversity remains a foundation for food security and resilience worldwide.

Read the full story.

A blueprint for soil health initiatives

Ethiopia’s agricultural and food production systems face significant challenges due to soil acidity. Approximately 41% of the country’s cultivated land is affected, with 28% of this area being highly acidic. Heavy rainfall and inherent soil properties are significant drivers of this, and practices like continuous residue removal greatly accelerate these conditions.  

Stakeholders attending the national workshop on acid soil management in Addis Ababa, Ethiopia (Photo: CIMMYT)

The resulting acidic soil conditions can severely limit the uptake of critical nutrients, leading to lower yields and poorer crop responses to inputs. As a result, Ethiopia’s soil acidity conditions constrain the production and productivity of the country’s main staple crops and compromise efforts to achieve national food security. To help address these problems, policymakers, technical experts, and development partners in Ethiopia have come together to advocate for innovative data-driven solutions to remediate acid soils to raise crop yields and promote sustainable economic growth.  

“At a national workshop convened by CIMMYT and the One CGIAR initiative on Excellence in Agronomy on 29 July 2024 in Addis Ababa, experts from CGIAR, the Ministry of Agriculture (MoA), the Ethiopian Institute of Agricultural Research (EIAR), universities, regional research institutes, the national soil health task force, NGOs, and other key stakeholders gathered to discuss acid soil management in Ethiopia. Participants emphasized that proper management of soil acidity could increase fertilizer use efficiency from 20% to as much as 90%, depending on the initial acidity levels and specific nutrients involved.

Tackling soil acidity 

“Acidic soils are complex and widespread, affecting millions of hectares of arable land in Ethiopia,” said Tesfaye Shiferaw, an agronomist with CIMMYT’s Sustainable Agrifood Systems program and regional lead for the One CGIAR initiative on Excellence in Agronomy. “We understand the situation well and have developed innovative solutions under the GAIA project to address the issue. The spatial targeting framework created within the project represents a significant breakthrough, which the MoA has incorporated into Ethiopia’s nationwide acid soil reclamation initiative.”

Feto Esimo, Director General of EIAR, highlighted, “Addressing soil acidity is critical for enhancing food security and economic development in Ethiopia. A few years ago, we appealed to partners to intensify their efforts in creating sustainable strategies with lasting impacts for future generations. We are now seeing the GAIA project’s ongoing efforts effectively addressing these issues and offering potential solutions.”

The GAIA project approach 
Project research team monitoring and evaluating the field activities in Jimma Zone-Ethiopia (Photo: CIMMYT)

Researchers on the GAIA project have been evaluating alternative approaches to managing soil acidity, with a particular focus on lime application. This method aims to reduce aluminum toxicity and improve the availability of essential nutrients such as phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) in the soil. Additionally, liming decreases the solubility and leaching of heavy metals and offers benefits for legumes, such as increased microbial activity and enhanced biological nitrogen fixation. The GAIA team’s detailed evaluation includes core activities like spatial targeting to identify priority areas for liming, determining optimal lime application rates, and assessing profitability for specific crop types.

The primary goal in Ethiopia is to guide targeted investments for effective soil health reclamation and increased agricultural productivity through liming and enhanced nutrient management. The project aims to establish a strategic spatial targeting framework, serving as both a policy tool and a blueprint for soil health management. This framework is designed to optimize lime application, ensuring it is prioritized in areas where it can deliver the highest return on investment for farmers and the government. Project outcomes also include expanding this framework for broader application.

Major project outcomes in Ethiopia 

The GAIA research team conducted an in-depth investigation into the interactions between lime and fertilizer, developed a workflow and an essential policy tool integrated into the Ethiopian National Soil Information System (NSIS), and presented evidence-based recommendations on acid soil remediation to national and regional policy forums. The following significant system-level accomplishments have resulted from CIMMYT and partners’ research-driven recommendations.

Firstly, the Ethiopian Ministry of Agriculture (MoA) recognizes the GAIA project’s model as a successful blueprint for implementing and scaling up acid soil remediation nationwide. The government has launched a plan to reclaim 300,000 hectares of acidic cropland in 2024–2025, targeting around 10% of affected areas identified through the spatial targeting framework. To support this initiative, 1.4 billion ETB (approximately 12 million USD) has been allocated to manage acidic agricultural land. Additionally, at the National Stakeholder Consultation Forum on Acid Soils held in Bonga town, South-Western Region, in April 2023, the Ethiopian government prioritized soil acidity as a key focus. Since then, the government has reinforced its commitment to soil health programs, incorporating lime as an essential input alongside improved seeds and fertilizer.

These storylines were highlighted in July 2024 during a national working group meeting aimed at streamlining acid soil management strategies across Ethiopia. The meeting, led by GAIA and EiA in collaboration with the MoA and supported by the One CGIAR initiative EiA, underscored the strategic progress made by the GAIA project in addressing soil acidity. According to Feto Esimo, Director General of the EIAR, these advancements signify a substantial improvement, promising a lasting impact beyond the current agricultural season. He expressed appreciation for the project’s achievements and advocated for its expansion to serve as a model for similar soil health programs across the country.

Lime is the most widely used remedy, and its effectiveness in increasing yields when combined with fertilizer is well-documented,” noted Temesgen Desalegn, Director of Natural Resources Management Research at EIAR. “In this context,” he continued, “the GAIA project is timely, offering a multifaceted approach to soil health management, not limited to acid soils. The project’s model has been widely welcomed and could provide a comprehensive strategy for other soil health initiatives in Ethiopia.”

National working group on acid soil management workshop participants in Addis Ababa (Photo: CIMMYT)

The national working group meeting reached a consensus on recognizing project outcomes that drive system-level impacts. This effort to build a strong consensus extends beyond Ethiopia; it reflects a broader continental trend, highlighted by the Africa Fertilizer and Soil Health Action Plan: 2024–2034. This plan emerged from the Africa Fertilizer and Soil Health Summit held in May 2024 in Nairobi, Kenya, under the theme ‘Listen to the Land,’ organized by the African Union.

The GAIA project, funded by the Bill & Melinda Gates Foundation (BMGF), supports large-scale rehabilitation of acid soils in East Africa through data-driven insights and evidence-based recommendations for decision-makers. Led by CIMMYT in collaboration with various partners across Ethiopia, Kenya, Rwanda, and Tanzania, the project works in partnership with the Excellence in Agronomy (EiA) initiative of the One CGIAR. In Ethiopia, GAIA is implemented in cooperation with the Ethiopian Institute of Agricultural Research (EIAR).

Helping herders access grazing lands and water sources amid prevailing food insecurity in Sudan

In parts of the conflict-ridden Sudan, including the eastern regions such as Kassala and Gadarif, rainfall is sparse and recurring droughts caused by climate change compound the issue. Consequently, perennial grasses that are supposed to grow back year after year are dramatically disappearing.

In addition, uncontrolled and heavy grazing in large areas in Sudan is also negatively affecting soil by increasing erosion, and cattle hooves can compact the soil, preventing plant roots from receiving enough oxygen, water, and nutrients.

Due to these factors, many pastoralist groups in east Sudan are seeking grazing resources outside their recognized tribal territory. A major problem for these groups has been the recurrent droughts and the deterioration of pasture areas, which has forced them to stay longer in areas with rich grazing, thus competing with other groups and leading to frictions and conflicts.

Livestock-Food Systems Development (LFSD) is a component of the Sustainable Agrifood Systems Approach for Sudan (SASAS), funded by USAID, focused on the dairy and meat subsector of the livestock sector. The LFSD aims to enhance the utilization of appropriate forage and feeding options through the demarcation of migratory routes to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

Along with partners, Practical Action and International Livestock Research Institute (ILRI), LFSD, is establishing a 50 km migratory route demarcation from Al Hindiiyya to Banqir in the Atbara River locality, Kassala State, East Sudan. These routes connect villages to public grazing land for livestock to pass through without impacting farmland.

The intervention also includes reseeding 1,000 feddans (around 420 hectares) of grazing lands and creating water ponds for animals during the rainy season. SASAS is also enhancing water harvesting by using a tractor to increase soil moisture. The two interventions were recommended by local communities and agriculture and animal resources authorities in Kassala state.

“As the rainy season is commencing, we started working with the local communities and reseeding the targeted areas in rural Kassala and River Atbara localities as recommended by the Ministry of Agriculture,” said Dr. Abdallah Osman, Project Manager, Practical Action.

Reseeding around 1,000 feddans of grazing lands in River Atbara Locality, Kassala (Photo:Suliman Fadlalla/CIMMYT )

“To ensure the best results, we used a mix of five high-quality seed types, all of which were recommended by the Kassala State Ministry of Agriculture,” Osman said.

The reseeding will serve 15 villages and enhance grazing lands for over 100,000 animals in the area. In addition, water storing capacity will be increased by constructing 15 large water ponds.

“For the past decades, our grazing lands had diminished gradually, and we face huge challenges in feeding our livestock, especially during dry seasons. In most cases, we had to buy costly fodder and water trucking,” said Ahmed Hassan, a community leader and a herder from River Atbara Locality, Kassala State. “We feel very proud to participate in reseeding the grazing lands in our areas, as this will increase grass yield and quality, enabling us to feed our animals better.”

The intervention also aims to rehabilitate animal migratory route demarcations to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

“As farmers, we suffer a lot from animals that cross into our agricultural fields and destroy our crops. We are relieved that reseeding will create more grazing lands for herders, and the demarcation of animal routes will help reduce the chronic seasonal conflicts between farmers and herders,” said Haw Osman, a farmer from Am Safri, Kassala Rural locality.

“At SASAS, we strive to ensure that herders have access to rich grazing lands. We work with our partners to address all problems linked to overgrazing, reseeding pasture lands, and treating the causes of conflict between herders and farmers. We involve local communities in creating clear animal migration routes away from farms and increasing water sources for animals through water harvesting projects,” said Abdelrahman Kheir, SASAS Chief of Party in Sudan.

Water harvesting to create water ponds for animals in River Atbara Locality, Kassala State (Photo: Suliman Fadlalla/CIMMYT )
SASAS partners work with local communities in rural Kassala and River Atbara to mark animal migration routes for animals (Photo: Suliman Fadlalla/CIMMYT)

Wild wheat: The key to food security in a warming world

About a billion liters of fungicide.

That’s how much farmers have saved this century, through use of disease-resistant wheat varieties. Modern wheat can thank its “wild relatives” — grassy cousins millions of years old and tested through extremes of earth’s climate — for most of its resistance genes.

Despite such remarkable achievements in wheat breeding, we’ve only scratched the surface of the genetic potential in wheat’s wild relatives. With climate change intensifying and the rapid evolution and spread of pathogens — a new strain of fungus can circulate in the jet stream—it’s imperative that we increase investment in researching this largely untapped genetic diversity. Doing so could revolutionize wheat production, ensuring food security while dramatically reducing agriculture’s environmental footprint.

Without such efforts, epidemics or pandemics could devastate yields, potentially leading to massive applications of toxic agrochemicals and increased selection pressure for pests and diseases to develop resistance. The consequences would be far-reaching, impacting not only food security and the environment, but also geopolitical stability, potentially triggering human migration and conflict.

Today, wheat is the most widely grown crop on Earth, providing 20% of all human protein and calories and serving as the primary staple food for 1.5 billion people in the Global South.

However, with its future under threat, standard breeding approaches can no longer keep up with the pace of climate change. Research shows that climate shifts from 1980-2008 reduced wheat harvests by 5.5%, and global wheat production falls 6% for every degree-centigrade increase in temperature.

Wheat science urgently requires enhanced investments to scale up genetic studies of wild relatives, utilizing next-generation breeding tools. These tools include gene sequencing technologies, big-data analytics, and remote sensing technologies. Satellite imagery makes the planet a laboratory, allowing researchers to monitor traits like plant growth or disease resistance globally. Artificial intelligence can super-charge breeding simulations and quickly identify promising genes that enhance climate-resilience.

The basic genetic resources are already available: more than 770,000 unique seed samples are stored in 155 seed banks across 78 countries. These samples represent the full scope of known wheat genetic diversity, from modern varieties to ancient wild relatives and landraces developed at the dawn of agriculture.

What’s missing is funding to accelerate the search for specific genes and combinations that will fortify wheat against harsher conditions. This requires political will from key decision-makers and public interest. Nothing is more important than food security and the environmental legacy we leave to our children.

Harnessing the power of microorganisms

The genetic variation in seed banks is largely absent in modern wheat, which became genetically separate from other grass species 10,000 years ago and has undergone recent science-based breeding, constricting its diversity. Wheat needs its cousins’ diversity to thrive in a changing climate.

Beyond climate resilience and disease resistance, wild wheat relatives offer another exciting avenue for environmental benefits: enhanced interactions with beneficial microorganisms. These ancient grasses have evolved intricate relationships with soil microbes largely absent in modern wheat.

Some wild wheat relatives can inhibit soil microbes that convert ammonium to nitrate. While both are usable nitrogen forms for plants, nitrate is more prone to loss through leaching or gaseous conversion. Slowing this process of conversion, called nitrification, has profound implications for sustainable agriculture, potentially mitigating greenhouse gas emissions, improving nitrogen-use efficiency, and decreasing synthetic fertilizer use.

As proof of concept, the first and only crop (so far) bred to promote microbiome interaction is wheat, using a gene from a wild relative (Leymus racemosus) to slow nitrification.

In addition, wild relatives often form more effective symbiotic relationships with beneficial soil fungi and bacteria, enhancing nutrient uptake, drought tolerance, and natural pest defenses. Reintroducing these traits could reduce chemical inputs while improving soil health and biodiversity.

The benefits extend beyond the field. Wheat varieties that use water and nutrients more efficiently could reduce agricultural runoff, protecting water bodies. Enhanced root systems could increase soil carbon sequestration, contributing to climate change mitigation.

By systematically exploring wild wheat’s microbial interaction traits, wheat varieties can be developed that not only withstand climate challenges but also actively contribute to environmental restoration.

This represents a paradigm shift from crop protection through chemicals to resilience through biological synergies. Indeed, even a fraction of the US $1.4 trillion spent annually on agrochemical crop protection could work wonders to fortify wheat against present and future challenges.

The path forward is clear: increased investment in researching wild wheat relatives can yield a new generation of wheat varieties that are not just climate-resilient, but also environmentally regenerative. This will be a crucial step towards sustainable food security in a changing world.

Original Publication in El PaĂ­s.

How effective soil aggregate management can boost productivity and climate resilience

Soils are the bedrock for plant health and sustenance, but how do we protect and enhance them to maximize their nutritional potential? Years of conventional farming practices have left many soils depleted, raising urgent concerns about how to rejuvenate them. The recent El Niño event during the 2023/24 farming season in southern Africa, bringing extreme weather conditions—ranging from prolonged droughts to intense floods—has exposed the vulnerability of these soils. Poorly managed soils, already strained by years of excessive tillage and lack of cover, struggle to retain moisture under such stress, leading to crop failures even after rainfall.

However, conservation agriculture (CA) offers a vital solution. By improving soil structure and moisture retention, CA practices provide a lifeline for crops in challenging conditions. Recognizing this, CIMMYT scientists are actively promoting CA among smallholder farmers across sub-Saharan Africa, highlighting its critical role in sustaining soil health and resilience in the face of climate challenges.

Isaiah Nyagumbo demonstrating soil aggregate stability (CIMMYT)

Described as lumps of soil particles that bind together strongly, soil aggregates play a vital role in maintaining soil health, supporting plant growth, and sustaining agricultural productivity. Formed by the combined effects of biological, chemical, and physical processes, the structure and stability of soil aggregates are crucial for several soil functions—primarily water infiltration, root growth, and resistance to erosion. Soil aggregates consist of various soil particles, including sand, silt, clay, and organic matter. There are different types of soil aggregates, including macroaggregates (>0.25 mm) and microaggregates (<0.25 mm), with macroaggregates typically more stable and beneficial for soil structure and functions.

Demonstrating the value of soil aggregate stability
A CIMMYT researcher holding a soil aggregate from a CA field (CIMMYT)

Imagine three soil aggregate samples taken from the same field but under different management regimes—from virgin soil that has not been previously cropped, to land under conservation agriculture practices for the last 5 to 8 years, and soil conventionally ploughed annually before crop planting for many years. When these soil aggregates are gently immersed in clear water, stark differences can be noted. The aggregates from conventionally tilled soil, weakened by years of intensive cultivation, quickly disintegrate, turning the water murky and brown.

In contrast, the aggregates from virgin soil remain intact, preserving the water’s clarity even after several hours. The CA soil aggregates exhibit much better stability than those from the conventionally tilled soil but fail to remain as intact as those from the natural virgin soil. A simple lesson is drawn from this demonstration! Restoring degraded soils is a serious challenge. Even after 5 years of CA practices, soil organic carbon levels may only show modest improvement, and the aggregates, while more stable, still don’t match the condition of aggregates from virgin soil.

Soil recovery from a degraded state is a slow process that is not “a walk in the park.” Transitioning from conventional tillage to CA is challenging and slow, requiring years to rebuild organic matter and improve aggregate stability. Patience and careful soil management are vital, as degradation can occur rapidly, but recovery is a lengthy process. However, incorporating organic soil amendments like manure and compost, along with diversifying crops by introducing legumes such as cowpea, groundnut, soybean, mucuna, and pigeon pea, can accelerate this recovery. While degradation occurs rapidly, soil restoration demands a long-term commitment, but the rewards are worth the effort.

Exploring conservation agriculture as a source to improve soil health

Conservation agriculture is built on three key principles: reduced soil disturbance, permanent soil cover, and diverse crop rotation. Minimizing soil disturbance helps preserve soil structure, while permanent soil cover shields the soil against splash erosion and boosts microbial activity. Crop rotation enhances soil fertility, maintains aggregate structure, and disrupts pest and disease cycles. These principles are essential for soil recovery and the retention of organic matter.

Among these, permanent soil cover is often the most challenging for farmers to implement, yet it is critical for effective soil management. Demonstrating its importance, a simple test with water applied to soil samples with varying levels of cover illustrates splash erosion effects.

“Such a simple test mimics real-life conditions farmers face during rains. Soils without cover suffer significant erosion, while those with minimal or substantial cover show reduced erosion and improved water retention. This emphasizes the importance of maintaining permanent soil cover to foster microbial activity and enhance soil health,” highlighted Isaiah Nyagumbo, cropping systems agronomist.

In a nutshell, soil aggregate management is fundamental to climate resilience and agricultural sustainability. Through the adoption of conservation agriculture practices, smallholder farmers can significantly improve soil health, enhance water and nutrient retention, and increase crop resilience to climate stress. The journey from degraded to healthy soil is long and challenging, but with careful management and patience, the benefits are profound and lasting. By understanding and implementing these principles, farmers can build a more sustainable and resilient food system.