Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

Remote sensing prepares for liftoff

By Sam Storr/CIMMYT

Remote sensing experts, breeders, agronomists and policymakers discussed turning their research and experiences into tools to benefit farmers and increase food production while safeguarding the environment during CIMMYT’s workshop “Remote Sensing: Beyond Images” from 14-15 December 2013.

The "Sky Walker” advances phenotyping in Zimbabwe. Photo: J.L. Araus, University of Barcelona/CIMMYT
The “Sky Walker” advances phenotyping in Zimbabwe. Photo: J.L. Araus, University of Barcelona/CIMMYT

The event was sponsored by the Bill & Melinda Gates Foundation (BMGF), the Mexican Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and the Sustainable Modernization of Traditional Agriculture (MasAgro) as well as the CGIAR Research Program on Maize and the Cereal Systems Initiative for South Asia (CSISA).

Remote sensing devices make it possible to observe the dynamics of anything from single plants up to entire landscapes and continents as they change over time by capturing radiation from across the entire electromagnetic spectrum. For example, images taken by cameras in the thermal-to-visible end of the spectrum can reveal a broad range of plant characteristics, such as biomass, water use and photosynthesis efficiency, disease spread and nutrient content. Radar or light radar (LiDAR) imaging can be used to create detailed imaging of plant physical structure from the canopy down to the roots. When mounted on an unmanned aerial vehicle (UAV), these sensors can rapidly survey much greater areas of land than is possible from the ground, particularly in inaccessible areas. It is hoped that such research will complement highthroughput phenotyping, opening the way for plant breeders to design larger and more efficient crop improvement experiments.

For agronomy research, remote sensing can provide new information about weather, crop performance, resource use and the improved genetic traits sought by crop breeders. It may also help global agriculture meet the challenge of achieving more with fewer resources and include more farmers in innovation. If methods can be found to share and connect this data, farmers will also benefit from greater transparency and more informed policymaking.

Opening the workshop, Thomas Lumpkin, CIMMYT director general, reminded participants of the urgency of meeting the growing demand for staple crops while overcoming crop diseases, resource scarcity and climate change-induced stresses. The advance of technologies and data processing tools allows researchers to see the potential contribution of remote sensing. “For thirty years, the remote sensing community has been on the cusp of doing something wonderful, and now we believe it can,” said Stanley Wood, senior program officer for BMGF. “What excites us is the amount of energy and enthusiasm and the knowledge that their work is important.” Several presentations showcased how remote sensing can be used to benefit smallholder farmers. For example, the Drought Tolerant Maize for Africa (DTMA) project is looking at using rainfall data to target its interventions for the greatest impact.

Bruno GĂ©rard, director of CIMMYT’s Conservation Agriculture Program, spoke about the challenges of CIMMYT’s work in helping smallholder farmers to practice “more precise agriculture.” The spread of mobile phones and information and communications technologies (ICTs) in the developing world shows the potential for CIMMYT to bring recommendations derived from remote sensing to farmers and allows them to provide their own input. The workshop ended with a panel discussion on how to develop remote sensing services that will be adopted by intended users. Participants expect the workshop and similar activities will provide the strategic direction to drive a new generation of remote sensing applications that can bring real benefits to farmers.

For more information on the program, abstracts, participants and presentations, visit the MAIZE website.

Nepali scientists trained on heat stress-resilient maize

By P.H. Zaidi/CIMMYT

Nepali scientists learned about developing heat stress-resistant maize during a training event organized by Nepal’s National Maize Research Program (NMRP) and CIMMYT on 16 January at the NMRP in Rampur, Chitwan, Nepal. The event was part of the Heat Tolerant Maize for Asia (HTMA) project supported by USAID under the Feed the Future initiative.

Participants record heat-stress phenotyping data in the field. Photo: Courtesy of NMRP
Participants record heat-stress phenotyping data in the field. Photo: Courtesy of NMRP

Nearly 30 participants attended the training, including maize breeders, agronomists and field technicians from the NMRP, the Regional Agricultural Research Station (RARS) in Nepalgunj and the Agricultural Research Station (ARS) in Surkhet. Keshab Babu Koirala, NMRP coordinator, gave an overview of maize research in the country and emphasized the effects of climate change on national production. Koirala noted the importance of developing stress-resilient maize varieties and hybrids for sustainable maize growth.

P.H. Zaidi, maize physiologist and project leader of HTMA, gave lectures on developing heat stress-resilient maize hybrids, including maize phenology and physiology, how maize responds to heat stress, technical details of precision phenotyping, selection criteria for heat stress breeding and development of heat-tolerant hybrids. Zaidi used a bilingual interaction model to encourage participation in both English and Hindi in the presentations and discussions.

In the afternoon, participants visited HTMA maize trials at the NMRP experimental farm, where participants were divided into groups to score the performance of more than 900 hybrids planted there. Participants were excited to see new, promising hybrids. Attendees also had the opportunity to interact with Zaidi, Koirala and each other. “It is exciting to see quite a few very promising hybrids from the HTMA project, which are well-adapted in Tarai, Nepal,” said Tara Bahadur Ghimire, chief of ARS in Surkhet, Nepal. “If we select only 10 percent of the hybrids planted here, we will have a choice of about 100 to take forward. These hybrids will help us in switching from open-pollinated varieties to hybrids to boost maize production in our country and enhance its food security.”

Nepali-Scientists

After the field visit, participants gave feedback on the training and handson exercises. In the training, the scientists and field technicians learned key aspects of abiotic stress breeding and developing heat stress-tolerant maize. In his closing remarks, Koirala thanked USAID and CIMMYT for supporting NMRP in capacity building. “This is an excellent approach, which benefitted many scientists in one go rather than inviting a few to CIMMYT-India,” he said. “This needs to be replicated again in the near future so that scientists from maize research stations — other than those that are participating in the HTMA project — can get this opportunity.”

Around El BatĂĄn: scientists visit for climate change training

By Brenna Goth/CIMMYT

Indian researchers A.G. Sreenivas and U.K. Shanwad hope their first visit to Mexico will yield the tools they need to address cropping systems and climate change in their home country.

Sreenivas, an associate professor of entomology at the University of Agricultural Sciences Raichur, and Shanwad, an agronomist at the university’s Main Agricultural Research Station, are visiting CIMMYT as trainees. Their university is already collaborating with CIMMYT’s M.L. Jat to spread drill sown rice in India. Coverage reached more than 60,000 acres in the Upper Krishna command area in its first year of introduction.

A.G. Sreenivas (right) and U.K. Shanwad are visiting CIMMYT sites in Mexico for training. Photo: Xochiquezatl Fonseca/CIMMYT
A.G. Sreenivas (right) and U.K. Shanwad are visiting CIMMYT sites in Mexico for training. Photo: Xochiquezatl Fonseca/CIMMYT

The two will spend three months between CIMMYT research stations at El Batán and Ciudad Obregón. The training will first focus on the integrated assessment of cropping systems to determine productivity, resource efficiency and vulnerability and adaptability to climate change. Under Santiago López-Ridaura, the trainees will learn about the trade-offs between performance indicators and constraints to adapting a climatesmart cropping system. Next, in Ciudad Obregón, Sreenivas and Shanwad will learn the methodologies involved in collecting, processing and analyzing greenhouse gases and soil samples under the supervision of Iván Ortiz-Monasterio. “It’s a very rich experience for us,” Shanwad said.

Agricultural production in India faces several challenges, the trainees said. Labor requirements, monsoon gambling, market fluctuations, improved hybrids and pest resistance are some of the themes the two address in their research. New crop insect pests and diseases are consistently emerging while climate change also poses global challenges. The trainings will focus on the analysis of their own cropping systems. The two brought longterm weather data to compare with insect pests, crop production and weather data of the region. “Productivity has to be increased,” Sreenivas said.

Sreenivas and Shanwad said they are enjoying the climate at El Batán as well as the chance to connect with colleagues from India. They are also looking forward to attending The Borlaug Summit on Wheat for Food Security in March and said the opportunity is “like heaven.” CIMMYT packs an enormous amount of research into its headquarters, Sreenivas said. “We are expecting more collaborative research,” he said.

Monsanto recognized for CIMMYT collaboration

By Brenna Goth/CIMMYT

Stephen Mugo, CIMMYT; JesĂșs Madrazo, Monsanto; and John McMurdy, USAID, members of the WEMA Partnership at the ND-GAIN Award program. Photo: Courtesy of Monsanto
Stephen Mugo, CIMMYT; JesĂșs Madrazo, Monsanto; and John McMurdy, USAID, members of the WEMA Partnership at the ND-GAIN Award program. Photo: Courtesy of Monsanto

Monsanto received an award in December recognizing its impact in Africa through the Water Efficient Maize for Africa (WEMA) project. The Notre Dame Global Adaptation Index (ND-GAIN) Corporate Adaption Award is given annually by the University of Notre Dame for contributions to awareness, science or action in creating resilience to climate change. In 2013, Monsanto and PepsiCo were recognized for their impacts on climate change and vulnerability. The awards were announced in Washington, D.C.

WEMA, which is providing improved maize varieties to farmers in Sub-Saharan Africa, is a public-private partnership that includes participation by CIMMYT, the African Agricultural Technology Foundation (AATF) and the national agricultural research systems of Kenya, Mozambique, South Africa, Tanzania and Uganda. Monsanto joins CIMMYT and national agricultural research systems in providing maize germplasm and technical expertise for the project. WEMA is funded by the Bill & Melinda Gates Foundation, the Howard G. Buffett Foundation and USAID. WEMA is in its second phase. Its first conventional maize hybrid, branded under DroughtTEGO, is being sold for planting to smallholder farmers in Kenya. The first harvest is expected early this year.

JesĂșs Madrazo, vice president of corporate engagement for Monsanto, received the award on behalf of the WEMA project. He was accompanied by John McMurdy, international research and biotechnology adviser for the USAID Bureau for Food Security and Rose Barbuto, senior consultant for the Bill & Melinda Gates Foundation. CIMMYT’s Stephen Mugo, principal scientist and maize breeder for the Global Maize Program based in Kenya, represented CIMMYT, AATF and national agricultural research systems partners at the event. “The ceremony was an excellent platform for the work being done by ND-GAIN to raise awareness about the need for national efforts towards adaptation to climate change,” Mugo said. “The fact that Monsanto and the WEMA project were recognized for contributing to Kenya’s rise on the ND-GAIN index ladder was very welcome.” Read more about the award on Monsanto’s blog.

Genome-assisted project develops climate-resilient wheat

By Ravi Valluru, Arun Joshi and Ravi P. Singh/CIMMYT

Innovative approaches to plant genotyping are helping CIMMYT researchers and partners to develop high-yielding, climate-resilient wheat in South Asia.

Researchers sow wheat trials. Photo: Arun Joshi
Researchers sow wheat trials. Photo: Arun Joshi

The genotyping-by-sequencing (GBS) approach offers significant benefits over traditional plant breeding. Conventional breeding relies on scoring phenotypes, which is often laborious and inexact, to determine the estimated breeding value (EBV). This approach delays the verification of breeding results. Plant selection through genome-wide single nucleotide polymorphisms (GS), however, is a variant of marker-assisted selection (MAS) that enables crop breeders to rank best parents accurately and cost-effectively.

Researchers Jesse Poland, a geneticist with Kansas State University, and Ravi P. Singh, head of CIMMYT’s bread wheat improvement program, are developing GBS-assisted wheat with support from Cornell University. The U.S. Agency for International Development (USAID) is funding the $5 million, five-year project under the Feed the Future initiative. “This genotyping project signifies a new era of big science for international wheat development,” Poland said.

The project builds on the established heat tolerance and yield potential framework established by CIMMYT scientists. About 1,000 advanced wheat lines developed in Mexico by CIMMYT were planted at Borlaug Institute for South Asia (BISA) locations as well as in Faisalabad, Pakistan, and six environments in Ciudad ObregĂłn, Mexico, to characterize them for heat tolerance.

Researchers acquire “greenness” data using a hand-held NDVI sensor. Photo: Ravi Valluru
Researchers acquire “greenness” data using a hand-held NDVI sensor. Photo: Ravi Valluru

Through rigorous testing of wheat lines for various traits – including yield – the GS project will promote the best varietal options for testing and release by national programs and the private sector in South Asia. “Incorporating genomic selection criteria into CIMMYT’s bread wheat breeding pipeline will significantly expedite wheat genetic gains,” Singh said. Wheat varieties developed by the GS project will have enhanced climate resilience. Their heat tolerance and maximized yield potential could reduce heat-induced yield losses by 20 to 30 percent. “Efforts will be initiated to incorporate the genomic selection strategy into conventional breeding programs in South Asia,” said CIMMYT wheat breeder Arun Joshi, adding that genomic information, genomic models and optimized strategies generated through the GS project will benefit cultivar selection worldwide.

Though MAS improves breeding decisions, GS has several additional benefits. “Being a hypothesis-independent approach, the beauty of GS is that it tracks genetic variance for a trait in a population and reduces the breeding cycle significantly,” Singh said. Additionally, the genomic data collected will be useful to manage the genetic diversity and the retention of favorable alleles in the population, safeguarding prospects for long-term genetic gains.

Crucial to implementing the approach are adequate and affordable genotyping platforms, simplified breeding schemes to capture additive genetic effects, models for estimating long-term marker effects and a close collaboration between science and industry.

“If GS-assisted crop breeding, by encompassing other possible biological – for example metabolic – markers, lives up to its promise, it will certainly change the face of crop breeding, productivity and food security,” said CIMMYT wheat physiologist Ravi Valluru, interim coordinator of the GS project at BISA.

Turkey hosts global plant breeding congress

By Alexey Morgounov/CIMMYT

TurkeyMore than 650 people from 75 countries attended the International Plant Breeding Congress in Antalya, Turkey, from 11 to 14 November. The congress was organized by the Turkish Union of Plant Breeders, with help from CIMMYT and officials of the Ministry of Food, Agriculture and Livestock of Turkey.

Simultaneous translation in English, Russian and Turkish helped expand speaker diversity. The congress included four main sections: cereals, field crops, horticultural crops and genetic resources. B.M. Prasanna, director of CIMMYT’s Global Maize Program, delivered a key-note speech entitled, “Meeting the challenges of global climate change and food security through innovative maize research.”
The International Winter Wheat Improvement Program, a collaboration between CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA), organized a half-day session highlighting its activities and presentations from its collaborators. Alexey Morgounov, winter wheat breeder for CIMMYT, presented on climate change in winter wheat breeding sites and co-authored four additional oral presentations. In the final plenary session, it was announced that the congress will be held once every two years in Turkey. Participants appreciated the quality and organization of the event.

Improved maize varieties demonstrated in Mexico

By Guillermina Sosa Mendoza/CIMMYT

Members of the collaborative network to test and share CIMMYT experimental maize lines and varieties for Mexico’s highlands learned about the latest improved materials on 7 November in El Batán. The maize varieties and hybrids improved as part of the Sustainable Modernization of Traditional Agriculture (MasAgro) initiative are a key product. MasAgro aims to increase the productivity and sustainability of small- and mediumscale farm production in Mexico.

During a tour of field plots to view the plants and assess their performance, CIMMYT maize breeder JosĂ© Luis Torres explained MasAgro’s maize improvement programs in Hidalgo, Mexico, Puebla and Tlaxcala states to researchers and seed producers, inviting them to score white and yellow maize varieties under low-nitrogen and conservation agriculture conditions. The group then compared their scores with actual data taken by Torres and his team.

Improved-maize-varieties-demonstrated-in-Mexico

Ubaldo Marcos, CIMMYT seed production specialist, shared the results from test plots using MasAgro materials. He explained the best sowing season for each of the hybrids, optimal sowing densities the background of the inbred line parents and the main qualities that affect seed production. Additionally, he explained which conditions give the best yield and highlighted spring and summer cycle production.

“Maize should not only be resistant to biotic and abiotic stresses but also feature the desired grain qualities for consumers and industry,” said Natalia Palacios, CIMMYT maize nutrition quality specialist, who attended the event. Alberto Chassaigne, CIMMYT maize seed systems specialist for Latin America, highlighted the importance of collaboration with the seed sector and affirmed MasAgro’s commitment to improving farm productivity in Mexico.

Collaboration to combat a common climate challenge

By Emma Quilligan/CIMMYT

More than 70 experts on maize, millet, rice, sorghum and wheat identified cross-cutting priorities and goals to address climate change, one of the most pressing issues for food security, at a recent meeting in India.
Entitled “Maintaining cereal productivity under climate change through international collaboration,” the meeting took place during 18-20 November at the National Agriculture Science Centre (NASC) Pusa Campus in New Delhi. CIMMYT organized the meeting with co-sponsorship from the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation (BMGF). “We learn a lot by comparing notes among crops,” said Matthew Reynolds, CIMMYT wheat physiologist and organizer of the meeting’s scientific program. “It can help provide new inspirations as well as avoid reinventing the wheel.”

indiaNorman

Following welcome speeches from Etienne Duveiller, CIMMYT Director for South Asia, as well as Saharah Moon Chapotin and Srivalli Krishnan from USAID, Tony Cavalieri from the BMGF and Swapan Kumar Datta from the Indian Centre for Agricultural Research (ICAR), a diverse panel summarized the challenges climate change poses to cereal production. Mark Rosegrant, director of the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI), highlighted the numerous effects climate change is predicted to have on cereal production and prices. Maize prices are predicted to increase by more than 50 percent and the prices of other crops by 25 to 50 percent by 2050. “This is without accounting for effects of climate change,” he said. “Climate change is a threat multiplier, and significant new expenditures are required to reduce its adverse impacts.”

MReynolds

Other presentations included information on temperature thresholds in different crops, efficient phenotyping and breeding approaches and how crop modeling might facilitate the design of climate-ready crops. Leading scientists focusing on each of the five crops gave presentations on recent genetic gains and research achievements in their field, which enabled participants to see the similarities between the crops and learn about discoveries applicable to their own research. Donor representatives emphasized the importance of collaboration and cross-cutting research to improve yield gains in the face of climate change. “With all the expertise we have in this room, and with all the partners you have across the globe, I really think we can make a difference in this area,” Chapotin said. Participants split into multidisciplinary working groups to identify priorities and potential areas for cross-crop collaboration in the following areas: data management and sharing; genotyping platforms; heat and drought adaptive traits; phenotyping in a breeding context; and the minimum dataset required to define target environments.

K.C. Bansal, director of the National Bureau for Plant Genetic Resources in India, questioned whether people are making the most of plant genetic resources in the face of climate change during his session “Biodiversity Act and Germplasm Access in India.” Many participants highlighted their own difficulties in getting germplasm out of India and Bansal outlined the procedure to simplify the process. Participants agreed that more accessible, synchronous and searchable data sharing will be essential for future collaborations. Data sharing will soon become mandatory for all USAID projects, and participants emphasized the need for a common system. Collecting data requires funding. Scott Chapman, crop adaptation scientist for the Commonwealth Scientific and Industrial Research Organization, estimated Australian programs spend several million dollars annually to collect the data from their national trials. Most participants expressed interest in establishing a working group to continue these fruitful, cross-crop interactions. A web portal to facilitate such dialogue will be established as soon as possible.

Project tests new ways to deliver climate messages to farmers’ cell phones

By Surabhi Mittal/CIMMYT and Dharini Parthasarathy/CCAFS South Asia

Farmers in India are now participating in a new project which aims to tailor phone messages to farmers' real needs with the hope of real impact on their crop yields. Photo: M. DeFreese/CIMMYT
Farmers in India are now participating in a new project which aims to tailor phone messages to farmers’ real needs with the hope of real impact on their crop yields. Photo: M. DeFreese/CIMMYT

This blog post was originally posted by CCAFS here.

What kind of voice-based messaging service will farmers pay for? An eight-month pilot study by CCAFS and CIMMYT is working with farmers in India to find out.
One of the big questions that should be exercising minds at the current Climate Talks in Poland is how smallholder farmers can better manage climate risks. One solution that has been discussed at length – and tried widely – is using mobile phones to deliver climate-related information to farmers; it is seen as being an efficient, cost-effective and quick way to get targeted messages to large audiences such as smallholder farmers.

But are the gains from this type of information dissemination as obvious as they appear?
Does writing or recording a message, punching in a number and pressing send really transform farmers’ abilities to cope with erratic weather events or their willingness to adopt climate-smart agricultural practices?

Read the full post here.

Trees keep Ethiopia’s wheat cool and productive

By Frédéric Baudron/CIMMYT

Researchers with CIMMYT’s Global Conservation Agriculture Program (GCAP) in Ethiopia have found that use of agroforestry systems involving an indigenous tree could mitigate climate change effects in Ethiopian smallholder wheat systems. Specifically, their study showed that maximum temperatures under the canopy of Faidherbia albida, a nitrogen-fixing, acacia-like species found throughout African savannas, were constantly 4 to 5°C lower than temperatures outside the canopy.

Wheat grows under the canopy of F. albida around mid-October in Mojo area, Ethiopia.
Wheat grows under the canopy of F. albida around mid-October in Mojo area, Ethiopia.

By 2050, the maximum daily temperature in wheat-growing areas of Ethiopia is predicted to rise by 2 to 3°C. This could significantly reduce yields of wheat, a crop that accounts for 18 percent of Ethiopia’s cereal area and nearly a fifth of its cereal production. The crop is key to the food security and incomes of smallholder farmers who grow it. CIMMYT researchers are studying the effect of scattered trees that are currently common in farmers’ field.

Keeping trees in fields for the production of firewood and fencing materials is extremely common in Ethiopia. “But these trees have other functions and may positively affect the productivity of crops underneath,” said FrĂ©dĂ©ric Baudron, CIMMYT cropping systems agronomist based in Ethiopia. In addition to more wheat-friendly temperatures, the benefits of F. albida in wheat systems are manifold, according to Baudron. “Soil moisture increases greatly under the canopy, resulting in a greener wheat crop for a longer period of time,” Baudron said. “The presence of F. albida also fosters longer wheat leaf blades, a greater number of tillers per plant, longer spikes and a higher number of seeds per spike — all of which translates into higher stover and grain yields.” Moreover, the incidence of wheat diseases like fusarium wilt and head smut diminishes under the tree canopy.Trigo2

Under the World Agroforestry Centre (ICRAF)-led project Trees4Food, funded by the Australian International Food Security Centre (AIFSC) and managed by the Australian Centre for International Agricultural Research (ACIAR), GCAP-Ethiopia studies interactions between food crops and various indigenous trees in wheat- and maize-based systems. In the case of F. albida, there are no tradeoffs between the provision of tree products and the crop yield underneath. Research aims to come up with management practices – such as proper fertilization rates, genotypes of crops, pruning management and tillage practices – that maximize the existing synergy.

With other tree species commonly found in Ethiopian fields (such as Acacia tortilis, Cordia africana, or Croton macrostachyus), these tradeoffs are often substantial. In that case, research aims to come up with management practices that minimize competition. The project is being implemented in Ethiopia as well as Rwanda.

Working group to enhance seed delivery to African farmers formed

By Florence Sipalla/CIMMYT

DTMA project leader Tsedeke Abate takes notes as AGRA-PASS director Joseph DeVries’ makes his presentation. Photo: Florence Sipalla/CIMMYT
DTMA project leader Tsedeke Abate takes notes as AGRA-PASS director Joseph DeVries’ makes his presentation. Photo: Florence Sipalla/CIMMYT

The Drought Tolerant Maize for Africa (DTMA) project and the Alliance for a Green Revolution in Africa (AGRA) Program for Africa’s Seed Systems (PASS) formed a working group this week to address challenges in commercializing improved seed to benefit smallholder farmers. The two initiatives – funded by the Bill & Melinda Gates Foundation – will combine efforts to ensure farmers have access to improved maize seed. PASS works with seed companies while DTMA partners with research institutes and seed companies to develop and deploy drought-tolerant maize seed. “We want to create synergies by combining efforts to reach more farmers,” said Tsedeke Abate, DTMA project leader.

Donors and research institutions invest in breeding improved seed to benefit farmers, which requires efforts by different members of the seed value chain. Research institutions, seed companies and other partners are needed to bridge the gap between researchers and farmers. This entails working with seed companies and agro-dealers to ensure they stock enough seed and have good distribution networks to reach farmers across the continent. The working group was formed during a meeting held at AGRA’s Nairobi offices on 28 October; scientists from the Tropical Legumes II project, led by the International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), also attended. The organizations have similarities regarding their work, programs and funding. “We want to learn more about this area and see how we can work together,” said Joseph DeVries, PASS director. “We have new varieties in our seed banks; we have to get them to farmers,” he added, explaining farmers will benefit from higher-yielding, insectand drought-resistant varieties.

Commercialization challenges discussed included production of breeder and foundation seed, seed quality, unsold seed stocks, effective branding and packaging of seed and inadequate promotion of new varieties by seed companies through demonstrations. “Breeding a great variety is no guarantee of farmer adoption,” said Regina Richardson, a PASS associate program officer in charge of commercialization. Participants said demonstrations effectively raise farmers’ awareness of new varieties but are expensive to host. “I’m proud to say that we have touched the lives of researchers and farmers,” Abate said. “We have released over 140 maize varieties that have a yield advantage of 20 to 30 percent over the farmers’ traditional varieties. Many of the products coming out of the DTMA breeding pipeline have been commercialized by our partners; mainly seed companies and community-based seed producers,” he added.

Abate called for an interdisciplinary and inter-institutional approach to policy. DeVries added that –in addition to seed– fertilizer and crop management play important roles in ensuring farmers benefit from improved seed. DTMA maize breeder Dan Makumbi highlighted the challenges seed companies face in seed production, such as inadequate irrigation facilities and lack of personnel to maintain the lines. Emmanuel Monyo, ICRISAT’s Tropical Legumes project leader, said ICRISAT benefitted from the existence of about 500 small seed companies during the deployment of improved seed to farmers in India. “Partnerships that have targets and interest changed the adoption of basic seed,” Monyo said. He also highlighted the role of “women’s groups that had been empowered to produce and market legume seed,” as a strategy that contributed to the successful deployment of seed. Partners agreed to continue sharing information by participating in each other’s meetings, sharing success stories and continuing to provide technical backstopping for seed companies and national programs.

Student reflection: my visit to CIMMYT-Hyderabad, India

Alex-RenaudAlex Renaud is a third-year graduate student pursuing a doctorate degree in plant breeding and genetics from Purdue University in West Lafayette, Indiana, USA.

When given the opportunity to travel to India to work on heat tolerance in maize, I leaped at the prospect. I was excited by the potential for professional development and the chance to experience a different culture. My visit was part of the Heat Tolerant Maize for Asia (HTMA) collaborative project, funded by the United States Agency for International Development Feed the Future Initiative. The project supports graduate students in plant breeding to learn about and contribute to completing initiative objectives. HTMA is a public-private partnership (PPP) led by CIMMYT-Asia. Partners include Purdue University, Pioneer Hi-Bred and other seed companies and public sector maize programs in South Asia.

CIMMYT-Asia in Hyderabad, India, provides an ideal environment to evaluate or phenotype maize genotypes for heat stress tolerance. Temperatures regularly reach 40°C or higher and the relative humidity is usually below 30 percent during the reproductive development of maize planted during spring season. Additionally, the CIMMYT facilities in Hyderabad provided an excellent laboratory environment for testing hypotheses concerning the basis of heat stress tolerance in maize.

Having never been to India, I really enjoyed my stay in Hyderabad, from both research and cultural standpoints. I enjoyed getting to know the research scientists and technicians involved in the research project and had ample opportunities to learn in workshops, trainings, field visits and over dinner. My stay, which was longer than two months, provided me with the opportunity to build both personal and professional relationships. Anyone who has visited Hyderabad in May will understand just how hot it can be. It took time for me to adapt to the heat. As I was leaving the U.S. for India, my hometown received 300 millimeters of snow in 24 hours. During my first week in Hyderabad, the temperatures exceeded 40°C. It was quite a change.

Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud
Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud

In addition to taking advantage of research opportunities, I visited several interesting cultural sites, including the Taj Mahal. My favorite memories include sampling many different types of food, from Hyderabadi biryani to India’s version of Kentucky Fried Chicken; I never tried anything I did not like! As an aspiring plant breeder, this was a great experience, and I hope to continue my involvement with the PPP as it develops heat-stress-tolerant maize for South Asia.

I would like to sincerely thank Mitch Tuinstra, professor of plant breeding at Purdue University for providing me with this opportunity as well as P.H. Zaidi, senior maize physiologist at CIMMYT-Hyderabad and project leader of HTMA, and his wonderful team for everything that made my two-month stay professionally productive and personally memorable.

CIMMYT rebuilds partnerships in Pakistan

CIMMYT Faisalabad Office (left-right): Dr, Imtiaz Muhammed, Country Liaison Officer, CIMMYT Pakistan; Dr. Etienne Duveiller, South Asia Regional Director, CIMMYT; Dr. Thomas Lumpkin, Director General, CIMMYT; Dr. Javed Ahmad, Wheat Botanist, Wheat Research Institute WRI Faisalabad; Dr. Makhdoom Hussain, Director, Wheat Research Institute WRI Faisalabad; Mr. Abdul Hamid, CIMMYT Faisalabad; Mr. Muhammad Noor, CIMMYT Faisalabad. Photo by Miriam Shindler.
CIMMYT Faisalabad Office (left-right): Dr, Imtiaz Muhammed, Country Liaison Officer, CIMMYT Pakistan;
Dr. Etienne Duveiller, South Asia Regional Director, CIMMYT; Dr. Thomas Lumpkin, Director General,
CIMMYT; Dr. Javed Ahmad, Wheat Botanist, Wheat Research Institute WRI Faisalabad; Dr. Makhdoom
Hussain, Director, Wheat Research Institute WRI Faisalabad; Mr. Abdul Hamid, CIMMYT Faisalabad; Mr.
Muhammad Noor, CIMMYT Faisalabad. Photo by Miriam Shindler.

By Imtiaz Muhammad/CIMMYT

CIMMYT has a long history with Pakistan. The majority of wheat grown in the country is a result of their collaboration. Dr. Norman Borlaug’s principles of free germplasm exchange still support Pakistan’s national program. 

In 1961, Manzoor A. Bajwa, a young Pakistani wheat scientist, arrived in Mexico to receive training in improved wheat production. While working alongside Borlaug and his team in Ciudad Obregón, Bajwa identified a medium-to-hard white grain line with a high-gluten content ideal for making good chapattis. The new variety also showed promising resistance to rust and powdery mildew. To mark this momentous collaboration, the line was named MexiPak –meaning line selection in Mexico by a Pakistani researcher.

In Pakistan, the name MexiPak is synonymous with the successes of the Green Revolution. In a recent meeting between CIMMYT and Sikandar Hayat Khan Bosan, the Minister for Food Security and Research, he recalled experiences in rural Punjab when he was 7 or 8 years old. One year, his father had record wheat harvests. The reason? “MexiPak,” he said. This is just one example of CIMMYT-Pakistani collaboration. The Pak-81 line, which has been released in more countries than any other wheat variety in history, was selected by a Pakistani breeder while training at CIMMYT.

Today, Pakistan faces daunting challenges due to climate change, changing diets, increasing population, groundwater depletion and growing food security concerns. The new Prime Minister and cabinet have indicated an increased interest in developing Pakistan’s agriculture sector and the country’s agricultural research abilities. In a related development, the University of Agriculture, Faisalabad, recently became the top-ranked university for agricultural sciences in South Asia (NTU Rankings, 2013). CIMMYT and the Pakistan Agricultural Research Council (PARC) are reigniting agricultural research for development across Pakistan.

Wheat Productivity Enhancement Program (WPEP) Farm Machinery Shed at the Wheat Research Institute, Faisalabad. Photo by Miriam Shindler.
Wheat Productivity Enhancement Program (WPEP) Farm Machinery Shed at the Wheat Research Institute, Faisalabad. Photo by Miriam Shindler.

Since 2010, PARC and CIMMYT have worked closely to improve agronomic practices through projects such as the Wheat Productivity Enhancement Program (W-PEP) and the new Agricultural Innovation Program for Pakistan (AIP), a $30 million program funded by the United States Agency for International Development. The PARC complex in Islamabad houses CIMMYT offices where agronomists, breeders and socio-economic experts work to improve maize and wheat yields.

In a recent visit to Pakistan by CIMMYT Director General Thomas Lumpkin, PARC and the Pakistani government reaffirmed their commitment to establishing the Borlaug Institute for South Asia (BISA) in Pakistan. PARC donated land on its Islamabad campus to erect the BISA-CIMMYT headquarters in Pakistan, as well as land that will be converted into an experimental farm. The Pakistani government also asked BISA to build an experimental farm in every province. BISA will provide Pakistani researchers with the opportunity to collaborate with South Asian counterparts to increase wheat yields and develop more nutritious and heat-resistant maize. BISA is following in the steps of Borlaug in starting a second productive and sustainable Green Revolution.

Asia wheat breeders review progress and look ahead

By Arun Joshi /CIMMYT

Over the past five years, more than a dozen new stress tolerant wheat varieties have become available to farmers in South Asia, through breeding research and partnerships as part of the Cereal Systems Initiative for South Asia (CSISA), according to Arun K. Joshi, CIMMYT wheat breeder. Joshi said that germplasm exchange with CIMMYT had increased significantly; that most advanced breeding lines in CIMMYT trials were resistant to Ug99 stem rust and other rusts; more segregating generation lines from South Asia were being sent to Njoro, Kenya, for stem rust resistance screening; the use of physiological tools to select for heat and drought tolerance in the region had increased; links among breeders, seed producers and farmers had strengthened; and capacity building had been promoted.

Photo: Mohammad Shahin Sha Mahin for CIMMYT
Photo: Mohammad Shahin Sha Mahin for CIMMYT

These and other achievements, as well as challenges and opportunities for improvement, came to light in two recent review meetings in Dhaka, Bangladesh. From 6 to 8 October, 56 scientists from Bangladesh, Bhutan, India and Nepal, as well as representatives of government councils and ministries, research centers, agricultural institutes and universities, convened for CSISA’s 5th wheat breeding review meeting. Participants also attended the 2nd review and work plan meeting for the project, “Increasing the productivity of the wheat crop under conditions of rising temperatures and water scarcity in South Asia,” funded by the Federal Ministry for Economic Cooperation and Development, Germany. The meetings were organized by Joshi, team leader of the two projects in South Asia, and facilitated by CIMMYT’s Dhaka office, led by T.P. Tiwari. CIMMYT was represented in the meetings by scientists from Bangladesh, India and Nepal and a consultant from Cambridge.

The CSISA meeting reviewed the progress of the 2012-13 wheat cycle and established work plans for the 2013-14 crop cycle. The event was inaugurated by chief guest Khalid Sultan, director of research at the Bangladesh Agricultural Research Institute (BARI), and R.P. Dua, assistant director general for the Indian Council of Agricultural research (ICAR). Dua praised the regional focus and presence of CSISA wheat breeding, and Sultan said “the South Asia-CIMMYT collaboration is paramount to the food security of the region.” Ten participating research centers presented reports and work plans.

Participants discussed how to strengthen links among wheat breeding, fast-track seed production, distribute new, improved varieties to farmers and work on conservation agriculture and participatory variety selection. Wheat breeders, pathologists, physiologists, agronomists and soil scientists attended the “Increasing the productivity of the wheat crop” meeting, which addressed project work plans and progress in breeding and agronomy.

Six Indian research centers reported on progress in evaluating more than 3,300 wheat lines screened last cycle for early sowing, as well as the 2013-14 work plan. The top 50 lines will be used to develop two trials in India: one for the northwestern plains and one for the central and peninsular zone, Joshi said. He also presented the highlights of the molecular research by Marion Roder, Leibniz Institute of Plant Genetics and Crop Plant Research, Germany, and Susanne Dreisigacker, CIMMYT molecular breeder, in screening some 3,000 wheat lines for genes controlling vernalization and response to changes in day length.