Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

India maize summit focuses on partnerships

By Christian Böeber and Subash S.P./CIMMYT

A recent summit in India provided a platform for various stakeholders along the maize value chain to discuss maize trade, technological gaps, industrial utilization, post-harvest management, risk management, marketing and scaling up of maize value chains through public-private partnerships (PPP).

“Road Map for Sustainable Growth and Developing Value Chain” was the title of the India Maize 2014 Summit held on 20-21 March in New Delhi. The summit was organized by the Federation of Indian Chambers of Commerce and Industry (FICCI) and the National Commodity and Derivatives Exchange (NCDEX). Participants included representatives from private input companies, millers, the poultry industry, the starch industry, service providers, national and international research institutions, policy makers, embassies and farmers from across India. A. Didar Singh, secretary general of FICCI, said there has been a “quiet revolution” happening in Indian agriculture with the emergence of the export market and an evolving private sector, particularly in maize, during the last several years.

The diversification of cropping patterns in Punjab and Haryana to promote maize in these states was reviewed by Ashok Gulati, chair professor for agriculture at the Indian Council for Research on International Economic Relations, during his keynote address. He said the maize sector in India currently depends on the poultry and export sector and is therefore vulnerable if demand from those sectors weakens. He emphasized policy should support quality protein maize (QPM) as an ingredient for poultry feed but also for human consumption. Adel Yusupov, regional director for the U.S. Grain Council in South and Southeast Asia, highlighted Southeast Asia’s prospects for becoming a major importer of maize. India’s advantage in targeting those emerging markets due to its proximity and lower pricing was highlighted by Rajiv Yadav, vice president of the Nobel Group. He noted nonetheless that Indian maize exports are constrained by unreliable production, lack of quality produce, high levels of moisture and aflatoxins, logistics and warehousing facilities.

Christian Böeber presents at the India Maize Summit 2014. Photo: Subash S.P./CIMMYT

Maize production and productivity are stagnant because farmers have been slow to adopt new technologies such as hybrids, said Sain Dass, president of the Indian Maize Development Association, adding that the main hurdle in the adoption of hybrids is the lack of seed. Christian Böeber, CIMMYT agricultural and market economist, presented information about CIMMYT’s maize research activities in India, including the Abiotic Stress Tolerant Maize for Asia project (ATMA) and the Heat Stress Tolerant Maize for Asia project (HTMA). He also reflected on the diverse uses of maize and the challenges faced by maize production systems in the country, including the commercial seed supply gap. Success stories in India involving PPPs were discussed.

O.P. Yadav, director of the Directorate of Maize Research of the Indian Council of Agricultural Research, highlighted the need to improve maize productivity in India through PPPs and by working through the proper national channels for seed development and deployment. Shipla Divekar Nirula, director of corporate affairs and strategy for Monsanto, presented her perspective on scaling up maize value chains through PPPs and referred to the Water Efficient Maize for Africa (WEMA) project as an example for successful PPPs in developing and deploying improved maize varieties. She emphasized that for a partnership to be effective, it is important to clearly define the purpose, platforms and principles of working together. A viable platform should include crop diversification, infrastructure provision, knowledge sharing, a viable extension network and growth policies.

Organization takes technology to farmers in India

By Meenakshi Singh, Raj Kumar Jat and Raj Gupta/CIMMYT

A recent field day in Bihar, India, showed farmers have confidence in conservation agriculture and don’t need agri-input subsidies but rather easy access to quality inputs and fair compensation for their produce.

During a field day on 12 March, about 100 farmers shared their experiences regarding zero tillage and its benefits and travelled through seven villages to see the performance of zero-till crops. The non-governmental organization (NGO) GUVVS is developing alternate options for rural improvement and has been working in several areas of Uttar Pradesh, Bihar and West Bengal since 2011. India’s Eastern Gangetic Plains are characterized by fragmented land holdings and resource-poor farmers who consistently face drought or floods. These conditions and the suboptimal crop management practices make agriculture risky.

Farmers in Bhagalpur, a district in Bihar near the Ganges River, face a variety of challenges. Low areas flood during the rainy season while rice in the uplands and midlands suffer from a lack of surface and ground water. Winter crops are sown late, resulting in low productivity. Excess soil moisture during winter crop seeding, terminal heat stresses in late-planting wheat, weeds and low-quality seed are some of the main issues hindering agriculture in the region.

Raj Kumar Jat explains weed management in maize to farmers. Photo: CIMMYT

With maize and wheat seed and other support from CIMMYT, Meenakshi Singh, GUVVS coordinator, has introduced new rice, wheat and pigeon pea cultivars with heat tolerance, water-logging tolerance and other adaptations. GUVVS also introduced resourceconserving zero till technology and new seeds through the seed production chain. Seed is provided to farmers in seven villages. Farmers get 20 to 30 kilograms of free seed from the NGO. They then repay the same amount of seed at harvest and sell what remains to fellow farmers. The NGO redistributes the collected seed to other farmers. GUVVS also provides new certified planting material for fruit tree crops at one-third of the cost for use by resource-poor farmers.

During the field day, farmer Bhola Yadav said zero-till technology has taken root in his village and is being practiced on more than 1,000 acres. The farmer-to-farmer distribution of quality seed has reached 500 farmers in the seven villages of Bhagalpur. Along with new seeds, they are promoting zero till for rice, wheat, maize, pigeon pea, pearl millet, chickpea and lentils. Zero tillage helped them in the early planting of the crops.

Raj Gupta, team leader for the Borlaug Institute for South Asia (BISA) Research Station Development, praised the farmers’ efforts and answered questions about conservation agriculture. Raj Kumar Jat, BISA cropping systems agronomist, responded to questions related to weed management and fertilizer use.

Partners recognize achievements in insect-resistant maize delivery

By Wandera Ojanji/CIMMYT

The Insect Resistant Maize for Africa (IRMA) project received praise for significant progress on field and post-harvest insect pest research at its conclusion last month.

“Several new maize hybrids and open pollinated varieties with substantial insect resistance have been produced that will greatly benefit maize growers in eastern and southern Africa,” said Mike Robinson, program officer for the Syngenta Foundation for Sustainable Agriculture (SFSA) at the IRMA End-of-Project Conference in Nairobi, Kenya, from 24-26 February. Robinson congratulated CIMMYT and project partners and wished the participating organizations continued success. The purpose of the conference was to share experiences, achievements and lessons from IRMA III and discuss future prospects in the release, dissemination and use of insect-resistant maize in eastern and southern Africa.

It drew more than 80 participants from CIMMYT, national agricultural research systems, national universities, donors and the seed industry. The Developing Maize Resistant to Stem Borer and Storage Insect Pests for Eastern and Southern Africa project, known as IRMA III Conventional Project 2009-2013, was managed by CIMMYT and funded by SFSA. Building on progress and breakthroughs of IRMA I and II, IRMA III contributed to food security by developing and availing field and post-harvest insect-resistant maize varieties in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda, Zambia and Zimbabwe.

(Photo: Wandera Ojanji)

Collectively, these countries produce about 26 million tons and consume 32 million tons of maize annually. Relatively low maize productivity in the countries – about 1.3 tons per hectare (t/ha) compared to 4.9 t/ha worldwide – can be attributed in part to stem borers, according to Stephen Mugo, CIMMYT principal scientist and IRMA project leader. Stem borers destroy as much as 15 percent of maize crops, while maize weevils and the larger grain borer destroy 20 to 30 percent of harvested maize. Hugo De Groote, CIMMYT economist, estimated the losses from stem borers at 13.5 percent, or 4 million tons, and those from storage pests at 11.2 percent, or 3.5 million tons, with the total value of these losses estimated at just over US$1 billion in the region. “Addressing the challenges that farmers face in producing and storing maize is vital to the future food security of the region,” Robinson said. “Minimizing such losses in an economically sustainable way will significantly contribute to nutrition and food security.”

IRMA III addressed these challenges through identification and commercial release of major insect-resistant maize cultivars; identification of new germplasm sources of resistance to stem borer and post-harvest insect pests among landraces, open pollinated varieties (OPVs) and CIMMYT lines (CMLs); and development of new insect-resistant germplasm. Kenya released 13 stem borer-resistant (SBR) conventional maize varieties (three OPVs and 10 hybrids) and four storage pest-resistant (SPR) hybrids. Kenya has also nominated nearly 10 stem borer- and four postharvest- resistant hybrids to national performance trials.

Three insect-resistant varieties —two hybrids (KH 414-1 SBR and KH 414-4 SBR) and one OPV (Pamuka) – were commercialized in Kenya by Monsanto, Wakala Seeds and the Kenya Agricultural Research Institute Seed Unit. De Groote estimated the annual value of project benefits at between US$ 19 million and US$ 388 million. He put the benefit-cost ratio at 94 in the optimistic scenario, meaning that for each dollar the project spent, farmers would gain 95, indicating very good returns.

“These results justify the important role that breeding for resistance could play in reducing maize losses, and the high potential returns to such programs in the future,” De Groote stated. Looking to the future, Mugo emphasized the need to ensure farmers have access to the insect-resistant varieties. “We must, from now on, engage in variety dissemination and commercialization of the new SBR and SPR varieties,” Mugo said. “We need a more targeted breeding program that incorporates drought, nitrogen use efficiency and maize lethal necrotic disease tolerance.”

The Borlaug Summit on Wheat for Food Security: 27 March

By Brenna Goth/CIMMYT

Check out the Storify recap here.

Wheat’s importance in the world was the focus of day three of the Borlaug Summit on Wheat for Food Security. Wheat’s history, production needs and methods of improvement were among the topics of discussion.

CIMMYT receives the World Food Prize’s Norman E. Borlaug medallion. (photo: Brenna Goth)

Wheat has socially evolved from the grain of “civilized people” to a crop for everyone, said food historian Rachel Laudan. Mechanized milling eliminated the need to devote significant time and back-breaking labor  grinding wheat and led to consumption of the grain worldwide.

 

“Wheat has touched every corner of the world,” Laudan said. Today, tortillas, noodles, breads and other regional products are available in nearly every country.

 

This global dependence on wheat highlights the importance of its nutritional value, according to Wolfgang Pfeiffer, deputy director of operations for HarvestPlus. The organization is working on biofortification, which can pack crops with minerals at no additional cost, he said.

Current efforts focus on zinc-dense wheat, though biofortication in general requires branding, marketing and advocacy. Biofortified crops have been released in 27 countries, and HarvestPlus is working to demonstrate the viability of biofortification as a global solution.

 

Apart from improving nutrition, increasing wheat yield to meet worldwide demand is a challenge, said Tony Fischer, honorary research fellow for the Commonwealth Scientific and Industrial Research Organization in Australia.

 

However, new agronomy and tools, untapped wheat genetic diversity, non-conventional breeding and intensification on all fronts could lift yields. Conventional breeding is also helping, Fischer said.

 

“Even in the toughest environments, science can make progress,” he added.

 

Factors such as water use and climate change challenge wheat production and present uncertainty, said independent scholar Uma Lele and Graham Farquhar, professor at the Australian National University.

 

Declining water availability is causing discussions, debates and conflicts worldwide, yet research and development on water management and rainfed agriculture is often ignored. This complacency could lead to sudden food shortages or dramatic rises in prices, Lele said.

 

“We’ll wake up and say that we should have paid more attention to water,” she added.

 

Farquhar said farmers have faced challenges presented by climate change before but that water use efficiency for drought tolerance is becoming increasingly important. Some grain-producing areas, including Australia, Central America, Chile, Mexico and southern Africa, are projected to become drier.

 

Summit sessions emphasized that agricultural research offers tools to help.

 

The use of wheat’s distant relatives – such as rye and triticum – can help improve salt tolerance, biomass, disease and insect resistance, said Ian King, researcher at the University of Nottingham in the United Kingdom. The university works with a UK consortium to increase the gene pool of wheat and the screening of germplasm produced at Nottingham will take place at CIMMYT.

 

Additionally, genomic selection and precision phenotyping improve breeding efficiency, said Jesse Poland, assistant professor at Kansas State University.

 

Bruno Gerard, director of CIMMYT’s Conservation Agriculture Program, explained sustainable intensification and precision agriculture principles.  Technological breakthroughs allow for more research that’s better, easier, faster and cheaper.
Not every solution will work in every country. Speakers addressed regional differences with specific presentations on wheat in Mexico, China, India, Central and West Asia and North Africa. After, a panel discussion focused on how private-public partnerships can be used to foster collaboration in addressing these challenges.

 

A special highlight of the day  occurred during the Summit dinner. CIMMYT was honored with the World Food Prize Foundation Norman E. Borlaug Medallion. CIMMYT is the Foundation’s fifth recipient of the medal, which recognizes organizations and heads of state who are not eligible for the World Food Prize but have made outstanding contributions to improving food security and nutrition.

 

Summit speakers Sir Gordon Conway, Ronnie Coffman, Per Pinstrup-Andersen (2001 World Food Prize Laureate) and Robb Fraley (2013 World Food Prize Laureate) presented the award, along with Julie Borlaug, Dr. Borlaug’s granddaughter. Marianne BĂ€nziger, CIMMYT’s deputy director general for research and partnerships, accepted the medal on CIMMYT’s behalf.

 

The Summit ends tomorrow with sessions focusing on the future of wheat and food security.

 

Stress-resilient maize hybrids developed for Asian tropics

By K. Seetharam, M.T. Vinayan and P.H. Zaidi/CIMMYT

The development of maize germplasm with combined drought and water-logging tolerance and a strong product line ready for deployment in Asia’s stress-prone, rain-fed production systems are notable successes of a CIMMYT project nearing its official end date.

Participants closely watch water-logging-tolerant hybrids developed under the ATMA project. Photo: Do Van Dung

Maize production in tropical Asia is vulnerable to the effects of climate change. The erratic distribution of monsoon rains causes intermittent drought and water-logging within a single crop season, especially in eastern India, Bangladesh and other parts of South and Southeast Asia, and is the major cause of the low productivity of rain-fed maize. About 80 percent of maize in the Asian tropics is grown as a rain-fed crop.

Maize yields in irrigated systems are more than double those of rain-fed maize but the production capacity of irrigated systems in Asia is close to saturation. Rain-fed areas must play a greater role in meeting the increasing demand for maize in Asia.

The private seed sector focuses largely on irrigated systems and is not producing stress-tolerant varieties. However, small and medium seed companies and public sector institutions are beginning to show interest in abiotic stress tolerant maize germplasm from CIMMYT.

To develop this germplasm, CIMMYT, in collaboration with national partners in South and Southeast Asia, launched Abiotic Stress Tolerant Maize for Asia (ATMA) in May 2011, supported by GIZ, Germany. Partners include the Directorate of Maize Research (DMR); Maharana Pratap Agriculture University (MPUAT); Udaipur and Acharya N.G. Ranga Agriculture University (ANGRAU); the Bangladesh Agricultural Research Institute (BARI); Vietnam’s National Maize Research Institute (NMRI), the Institute of Plant Breeding, University of Philippines (UPLB); and the University of Hohenheim (UoH) in Stuttgart, Germany. CIMMYT-Hyderabad, India, hosted the final year progress review meeting during 17-18 February.

ATMA hybrids combine drought and water-logging tolerance. Photo: P.H. Zaidi

B.M. Prasanna, director of CIMMYT’s Global Maize Program, highlighted the need and importance of maize breeding for rain-fed conditions. This was followed by a talk on the power of genomic selection in breeding for polygenic traits, which was delivered by Albert Melchinger from UoH. O.P. Yadav, director of the DMR, New Delhi, spoke about the importance of abiotic stress-resilient maize hybrids and appreciated recent developments in the area. Partner institutions presented the results of trials conducted in their target environments.

P.H. Zaidi, senior maize physiologist and project coordinator, presented the across-environment results of the trials conducted in partner countries. Raman Babu, maize molecular breeder, gave an update on identifying large effect quantitative trait loci (QTL) for water-logging tolerance and progress in genomic selection. Apart from established breeding methods and a phenotypic selection approach, methods include genomewide association studies (GWAS) and rapid-cycle genomic selection (RC-GS). Results of socioeconomic studies demonstrating the high demand for water stress-resilient maize varieties with combined drought and waterlogging tolerance in eastern India and Bangladesh were presented by Surabhi Mittal, CIMMYT socioeconomist.

Participants toured ATMA trials at the CIMMYT-Hyderabad experiment station as well as the state-of-the-art phenotyping system for drought and waterlogging stress. Zaidi explained how effectively the data on growing degree days (GDD) and from the soil moisture profile probe are used in managing drought at the desired level of intensity and uniformity. “Such a well-defined phenotyping system is the key to success, which can assure breeding gains for complex traits such as drought or water-logging, whether using conventional or molecular breeding approaches,” said Dang Ngoc Ha, vice director of the NMRI.

Though the project is approaching its official end, partners aim to carry it forward by formulating a new proposal to submit to a potential donor. “In case no immediate funding is arranged, we should take the products forward using our own institutional resources, as this is much-needed type of product for our maize farmers living in stress-prone ecologies,” O.P. Yadav said.

In his concluding remarks, Prasanna praised the contributions of partnering institutions throughout the project duration, which resulted in a strong germplasm base and product pipeline for complex traits such as drought, water-logging and the new product with combined stress tolerance.

WEMA releases record number of maize varieties in Africa

By Wandera Ojanji/CIMMYT

The Water Efficient Maize for Africa (WEMA) project is on-track to produce and distribute at least 25 drought-tolerant maize hybrids for farmers in Kenya, Mozambique, South Africa, Tanzania and Uganda during its second phase.

In 2013, the project commercially released 15 drought-tolerant maize hybrids, with 84 more nominated for national performance trials. “This is a rare feat,” said Sylvester Oikeh, WEMA project manager, during the project’s Sixth Annual Review and Planning meeting from 7 to13 February. “In the history of maize research in Africa, only one entity – WEMA – has released 15 hybrids in a single year.”

At its inception in 2008, WEMA promised to develop and deploy maize varieties that would not only tolerate moderate drought but also provide 20 to 35 percent more grain yield than currently available commercial hybrids. Buoyed by the success of the breeding pipelines in Phase I (2008-2013), the partnership set the 25-hybrid target in February 2013 for Phase II (2013-2017).

 

Also in 2013, WEMA helped smallholder farmers harvest the drought-tolerant maize variety WE1101, sold under the brand name DroughtTEGOℱ, said Denis Kyetere, executive director of the African Agricultural Technology Foundation (AATF). The hybrid recorded impressive sales in Kenya, according to Gospel Omanya, AATF’s seed systems manager and WEMA deployment team leader. From September 2013 to January 2014, farmers purchased 42.5 tons of the 72 total tons of seed distributed to seed companies. Omanya expects additional sales and adoption of the hybrid, due to its outstanding performance – an average yield of 4.5 tons per hectare (t/ha) during the short rain season, compared to Kenya’s average maize yield of 1.8 t/ha. WE1101 is one of the hybrids developed using breeding lines from the Drought Tolerant Maize for Africa (DTMA) project. Natalie DiNicola, vice president for Europe and Africa for Monsanto, lauded WEMA partners for the achievement. “Thank you for making it happen, for getting the products into the hands of farmers,” DiNicola said.

 

Uganda Minister of State for Agriculture Nyiira Zerubabel also praised the progress. “Your effort in addressing maize production constraints and increasing productivity levels are highly commendable,” stated Nyiira in a speech read on his behalf by Okaasai Opolot, Uganda’s director of crop resources, during the official opening of the meeting. He urged the project partners to deliver a holistic package to the farmers. “Your work should ensure that the varieties you develop achieve the expected performance that delivers high quantities and qualities by addressing these issues: good crop and post-harvest management practices and productivity, access to markets for rural farmers, efficient seed systems to boost productivity, and value addition initiatives that will improve rural incomes.”

 

Participants experienced the best of WEMA breeding and testing in Uganda when they visited Namulonge Research Station, where confined field trials of MON810 and other WEMA conventional hybrids are under way. Lawrence Kent, senior program officer of agriculture, science and technology for the Bill & Melinda Gates Foundation, urged WEMA partners to aim for higher impact over the next four years. “We must generate and reach more farmers with products. I am excited about the promising MON810 results so far and I urge you to seize the opportunity and forge ahead with commercializing it and making it available to needy farmers.”

(Seated from right) John MuMurdy, international research and biotechnology advisor, USAID; Natalie DiNicola, Monsanto’s vice president for Europe and Africa; Lawrence Kent, senior program officer, Agriculture, Science and Technology, the Bill & Melinda Gates Foundation; Okaasai Opolot, Uganda’s director of crop resources; and Denis Kyetere, executive director, the Africa Agricultural Technology Foundation. Speaking is B.M. Prasanna, director of CIMMYT’s global maize program. Photos: Wandera Ojanji/CIMMYT

 

B.M. Prasanna, director of CIMMYT’s global maize program, noted that maize lethal necrosis (MLN) disease had serious consequences on seed production and delivery and crop production in 2013. “Seed shipments were restricted,” said Prasanna, “and maize cultivation was shut down in affected areas, limiting seed production and breeding activities.” At the same time, said Prasanna, the MLN threat is an opportunity to replace old varieties on the market with higher-yielding, resistant ones. More than 2,000 maize lines were screened under natural infections of MLN in two seasons in Kenya during 2013. “We found clear-cut responses and identified some very promising resistance,” Prasanna said.

 

He added that the resistance would be speedily incorporated into breeding lines and populations through screening at the MLN facility in Naivasha and use of the doubled haploid facility in Kiboko, both inaugurated in March 2013. Partners are also following protocols circulated by CIMMYT to ensure the pathogen-free production and exchange of maize breeding materials. The WEMA advisory board has recommended that the project intensify the breeding of conventional maize varieties for Mozambique and Tanzania, engage large seed companies to use WEMA products, develop exclusive licensing for current products and encourage governments to facilitate trials of transgenic maize.

 

WEMA Phase II is funded by the Bill & Melinda Gates Foundation, the U.S. Agency for International Development (USAID) and the Howard G. Buffett Foundation.

Climate smart villages: local adaption to promote climate smart agriculture

By M.L. Jat, Tripti Agarwal, R.S. Dadarwal and Promil Kapur/ CIMMYT and CCAFS

To witness firsthand the mainstreaming of climate-smart agriculture practices and innovative community-based adaptation strategies in India, Alok K. Sikka, deputy director general of the Natural Resource Management Division of the Indian Council of Agriculture Research’s (ICAR) and leader of ICAR’s National Initiative on Climate Resilient Agriculture (NICRA), visited and interacted with farmers at a climate-smart village (CSV) in Haryana on 11 February.

AK Sikka (center) at Taraori CSV. Photo: Vikas

 

He was accompanied by D.K. Sharma, director of the Central Soil Salinity Research Institute, and P.C. Sharma, one of the Institute’s principal scientists, along with other scientists from ICAR and CIMMYT. Participants agreed that South Asian agriculture needs new technologies, community-based adaptation of relevant practices and the strengthening of local decision-making. The 27 CSVs being piloted in Haryana, India, will disseminate key climate-smart agricultural interventions, focusing on water, energy, carbon nutrient, weather and knowledge implemented through innovative partnerships and farmer cooperatives, according to M.L. Jat, CIMMYT senior cropping system agronomist.

The climate-smart villages are implemented through the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), in close collaboration with NICRA and a range of innovative partnerships. Under CCAFS, CIMMYT in close collaboration with national agriculture research and extension systems, other CGIAR centers, farmer cooperatives, the Haryana Department of Agriculture and policy planners, have piloted several CSVs in Haryana for research and as learning sites. Sustainable intensification and conservation agriculture-based management systems are the key areas in which CIMMYT and these partners work together.

 

Visitors interacted with farmers and members of farmer cooperatives who are actively disseminating the practices to local communities. The model of innovation platforms for strategic participatory research and learning at CSVs was recognized as an effective method to link science with society. Sikka emphasized that the depleting water table, deteriorating soil health, escalating input costs and weather uncertainties constitute critical concerns and that current production systems are not sustainable.

Discussion regarding damage to conventional tillage based wheat crop due to excess moisture owing to heavy rains and back side a happy wheat crop under CA-Photo RS Dadarwal-CIMMYT. Photo: RS Dadarwal/CIMMYT-Karnal

 

He cited conservation agriculture-based sustainable intensification, supplemented by more precise use of inputs like fertilizer, as the way to achieve resilience in production and natural resource conservation. Institutions and organizations must work with emerging technologies to address climate change and provide relevant options for farmers. CCAFS and NICRA are good examples of this.

India festival takes technology to farmers

By Raj Kumar Jat, M.L. Jat, R. Valluru, Raju Singh, Nikhil Singh, Jagman Dhillon and Raj Gupta/CIMMYT

  
A day-long “FarmFest” hosted by the Borlaug Institute for South Asia (BISA) allowed farmers to interact directly with researchers on issues including new planting machines, cultivar choices for early, timely and late planting, weed management options and crop diversification.

 

During the “Take it to the Farmers – FarmFest” event on 22 February, BISA showcased innovative, farmer-friendly sustainable intensification options. The trials focus on increasing yields using timely planting and increased nutrient inputs; increasing cropping intensity by using short season cultivars, relay and inter-cropping; and mechanization and marketing by substituting highvalue commodities for those that fetch lower prices. Farmers were shown soil conservation measures such as gully plugs, check dams and temporary structures to store rainwater, which reduce negative environmental impact and contribute to natural capital of environmental services.

 

About 1,500 farmers came from 7 districts to collect information and see the performance of 1,500 bread and durum wheat genotypes grown through new BISA shuttle breeding efforts. The efforts include collaboration among the Indian Agricultural Research Institute (IARI)-New Delhi, Punjab Agricultural University (PAU)- Ludhiana and CIMMYT-Mexico. The Jawaharlal Nehru Krishi VishwaVidyalaya University (JNKVV) agreed to participate next season.

 

The BISA research farm was established in November 2011 in a cotton production region that suffers from land degradation, large yield gaps and low cropping intensity. The farm’s successful conservation agriculture (CA) platform is attracting the attention of the Madhya Pradesh farmers. Scientists grow rice, wheat, maize, Indian mustard, pigeon pea and soybean without plowing or burning crop residues. Production on the 223-hectare farm is improving every season and costs are going down with the CA practices.

 

Many visiting farmers said they have watched the BISA farm evolve from their “pasture backyard to a granary.” They now want BISA to train them in CA and help them procure appropriate machinery. Ramlal Vishkarma of Sonpur village, whose son is a temporary worker on the BISA farm, said CA saves him US $26 to 32 per hectare each season in planting costs. He also stated that surface mulching helps conserve soil moisture and control cracks in black soils on his farm. In collaboration with JNKVV, the Directorate of Weed Science Research (DWSR), the State Agriculture Department and the seed company JPCL, BISA is promoting resource-conserving no-till agriculture to avoid residue burning, conserve ground water aquifers and provide “seeds of needs” to resource-poor smallholder farmers.

 

Participants were addressed by CIMMYT director general Thomas Lumpkin; V.S. Tomar, vice chancellor of JNKVV; S.K. Rao, JNKVV dean of faculty; and B.P. Tripathi, joint director of agriculture for the Government of Madhya Pradesh. Raj Kumar Jat and the BISA team coordinated visits for stakeholders to research and production plots. JNKVV volunteers explained new farm implements while M.L. Jat, Raj Kumar, Ravi Valluru, Raju Singh, Jagman Dhillon, Nikhil Singh and others discussed significant results of their research trials.

 

Tomar emphasized the need to develop climate-resilient, high-yielding varieties and recommended the promotion of low-cost sustainable intensification practices to improve farmers’ economic conditions. He appreciated the efforts of BISA-CIMMYT in introducing CA-based systems. Lumpkin encouraged farmers to adopt cost-saving technologies that offset ever-increasing input costs and low profits from farm outputs, adding that CA-based management practices buffer the negative effects of climatic extremes. He urged farmers to visit BISA regularly and tell researchers what would directly benefit them. M.L. Jat, CIMMYT senior cropping systems agronomist, facilitated a question-and-answer session between farmers and experts from BISA, DSWR and JNKVV.

 

Farmers’ feedback will help shape future research priorities at BISA, such as the need to bridge large management yield gaps, mechanization, weed management, soil moisture conservation, improved maize and wheat cultivars, quality seeds and training on new machinery and technologies

Seed systems team strategizes and plans for Africa

By Florence Sipalla/CIMMYT

 

The CIMMYT-Africa seed systems team met in Nairobi, Kenya, on 7 February to take stock of progress in 2013, identify challenges and brainstorm on turning those challenges into opportunities. Global Maize Program (GMP) Director B.M. Prasanna and members of the breeding, communications and socioeconomics teams also attended.

Continue reading

Nepal project explores wheat diversity

By Brenna Goth/CIMMYT
A CIMMYT project in Nepal made significant progress in identifying local wheat diversity last year.

Members of a seed cooperative in the Changathali village, Lalitpur district near Kathmandu, Nepal. The group has been practicing participatory
varietal selection (PVS), seed production and dissemination for the last 10 years, but is now facing problems due to urbanization. Maiya Maharjam (wearing the yellow scarf) is the leader of this cooperative and previously won the NARC award for PVS and seed distribution.

The project, “Collection, multiplication, characterization and safety duplication of wheat and barley landraces from Nepal,” led by Arun Kumar Joshi, principal scientist for the Global Wheat Program, began in January 2013 and will run until October 2015. National partners include Madan Raj Bhatta and Bal Krishna Joshi from the Nepal Agriculture Research Council, Khumaltar, Lalitpur.

Since the project began, researchers have developed guidelines “to explore, collect and characterize wheat and barley diversity,” according to the project’s 2013 Technical and Financial Progress Report. They found that traditional wheat diversity exists with opportunities for further exploration.

A cabinet in the headquarters of the National Wheat Research Program, Bhairhawa, displays a selection of wheat seed. Photos: Emma Quilligan

Researchers focused on the Baitadi, Dadeldhura and Doti districts in western Nepal, a traditional wheat region. Researchers visited Village Development Committees and farmers to collect seed and interviews. Farmers are still cultivating a variety of landraces, which feature drought tolerance and good chapatti quality. In total, 85 wheat accessions were collected and mapped along with 16 barley landraces. Employees from Nepal’s gene bank also helped with the effort.

The collections are currently under regeneration. The gene bank will send about 180 wheat and 50 barley collections to CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) by June 2015 for duplication.

Afghan farmers visit conservation agriculture farm

By Raj Kumar Jat/CIMMYT

Nine Afghan farmers, including four women, recently learned about conservation agriculture in Pusa, Bihar, India.

Their visit to the Borlaug Institute for South Asia (BISA) on 18 January focused on advances in conservation agriculture (CA)-based management, improved wheat varieties and climate change variability coping strategies. The visit was part of an agribusiness study tour organized by the U.S. Department of Commerce. Representatives of the Government of Bihar met with the farmers at BISA-Pusa to hear their reactions to the latest technological developments. The delegation was led by Mohamed Ali and facilitated by Vijay Prakash, project director of the Agriculture Technology Management Agency (ATMA), Department of Agriculture, Government of Bihar.

Raj Kumar Jat, cropping systems agronomist for BISA, gave an overview of BISA-CIMMYT research-for-development activities and strategies for the region to improve crop productivity and farm profitability. He explained that BISA develops and promotes CA-based best practices for maize- and wheatbased cropping systems that directly benefit farmers in the region. BISA collaborates with the State Agricultural University, the Indian Council of Agricultural Research, different CIMMYT programs such as the Cereal Systems Initiative for South Asia (CSISA) and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

Afghan farmers, officers from the government of Bihar and the staff of BISA-CIMMYT gather in wheat grown on permanent raised beds at the BISA Farm in Pusa Samastipur. Photo: Raj Kumar Jat

The delegation viewed agricultural machinery, strategic research trials and demonstration plots of wheat, maize, mustard and chickpea, which were planted on permanent raised beds using zero-tillage in laser-leveled fields. Jat explained different CA technologies and the comparative advantages of zero tillage, permanent raised bed planting and laser land leveling over conventional practices.

Farmers in the region face high labor costs and low labor availability, increasing energy prices and frequent climate variability, which require climate-resilient, lowcost alternatives to improve farm profitability. Jat said CA-based management practices can reduce production costs and improve resource-use efficiency, productivity and profitability. Planting different field crops on permanent raised beds using zero tillage reduces tillage and irrigation costs, improves water and nutrient-use efficiency and produces higher yields. He added that crop residue retention reduces weed population and improves soil fertility.

Inclusion of laser land leveling in conservation agriculture also saves water, promotes a uniform crop stand and improves nutrient-use efficiency and crop yields. Zero tillage seeding advances the sowing of different crops by one week, though the use of improved varieties and quality seed are equally important.

Growing more: sustainable intensification in southern Africa

By Christian Thierfelder/CIMMYT

The “double-up legume system” improves food security in Malawi by increasing yield and farmers’ incomes. Photos: Christian Thierfelder

Gently undulating plains and green maize fields dominate the landscape of central Malawi as far as the eye can see. The ridges, furrows and bare soil in between, resulting from traditional land preparation, are common. Heavy rainfalls and accelerated soil erosion turn the Chia Lagoon, connected to Lake Malawi, brown and murky. The continued loss of soil fertility and the need to adapt to climate variability led CIMMYT and its partners to introduce conservation agriculture (CA) in Malawi in 2005.

The Nkhotakota district, where conservation agriculture systems have been widely adopted, shows changes in the landscape, such as residue-covered soil surfaces along the roadsides. Farmers are embracing the new CA concepts and are successfully growing maize directly planted with a pointed stick. CIMMYT and partner organizations including Total LandCare and the Ministry of Agriculture, funded by the International Fund for Agricultural Development, support these efforts. The impacts of CA in Malawi are obvious. More than 30,000 farmers in the central part of the country have been informed about the practices and now use them on their own fields, which is a direct result of CIMMYT science and the concerted efforts of private, governmental extension and national research organizations.

Farmer Christopher Helima shows a new drought-tolerant maize variety grown using conservation agriculture.

Farmer Belemoti Sikelo, from the Mwansambo Extension Planning Area, has participated in the program for more than eight years. “I used to be a farmer that always ran out of maize grain in February or March and had to work for other farmers in the area to enable my family and me to survive,” Sikelo said. “Since I started using conservation agriculture practices, we have always had enough food during the critical months. I have expanded the land area under conservation agriculture on my farm and I have also tried conservation agriculture without expensive herbicides; I believe it is possible to apply conservation agriculture techniques without chemical weed control, but it needs good management and residue cover to reduce the weed pressure. Farmers around me come and visit my demonstration plots and ask me about my secrets for a good-looking maize crop. They admire the fields where I have planted groundnuts and maize under conservation agriculture.”

Disease pressure on traditionally monocropped maize has forced farmers to rotate maize with cowpeas, groundnuts and pigeonpea. Through diversified crop rotations, they have managed to control the parasitic weed striga   (Striga asiatica L.), fungal diseases and damage from white grubs, the larvae of the black maize beetle (Phyllophaga ssp. and Heteronychus spp.). As an added advantage, they have improved family nutrition and have surplus produce to sell in local markets.

A team of researchers from Brazil, Malawi, Mexico and Zimbabwe visited longterm on-station and on-farm CA trials and demonstrations in central Malawi during 4-8 February to monitor progress and impact, in their quest to sustainably intensify smallholder farming systems.

The use of conservation agriculture multiplies these benefits. Legumes such as groundnuts, cowpeas and soybeans can be grown on flat soil with half the row spacing, which is not possible under the conventional ridge and furrow system. The increased plant population has more than doubled grain yield, provides better ground cover and reduces soil erosion. The need to grow more food on the same land area has spurred innovation. To increase legume production, farmers have started to adopt the “double-up legume system.” Growing legumes with different growth habits side-byside – for example pigeon pea with cowpea or groundnuts – increases farmers’ yields and incomes even more, while also improving food security.

Lastly, drought-tolerant maize varieties provided by the Bill & Melinda Gates Foundation-funded Drought Tolerant Maize for Africa (DTMA) project were recently introduced and are being tested under different crop management systems. With the new stress-tolerant maize cultivars, farmers can now overcome seasonal dry spells and to grow longer season varieties. The risk of crop failure is reduced under conservation agriculture due to better moisture retention on residue-covered fields. This important benefit will be key in the coming years, as temperatures will likely increase and rainfalls become more erratic.

Innovative farm machinery transforms agriculture in Bangladesh

By Anuradha Dhar/CIMMYT

A new CIMMYT book, Made in Bangladesh: Scale-appropriate machinery for agricultural resource conservation, highlights the innovative machinery that can be used with two-wheeled tractors (2WT) for sustainable farming and gives detailed technical designs to help standardize production quality, making the machines more accessible to farmers.

A local service provider uses a 2WT-based seed drill. (Photo by Color Horizon)

Agricultural mechanization in South Asia is helping conserve natural resources, improve productivity and increase profits, but many small-scale farmers have yet to benefit. Factors such as high costs and farmers’ lack of access to credit make the machinery unaffordable for resource-poor farmers. However, Bangladesh leads by example and has been a hotbed of innovation, particularly with the 2WTs that are more appropriate for small-scale farmers than the four-wheel variety. Bangladesh has a strong agricultural tradition – nearly twothirds of its population works in agriculture. It has achieved near self-sufficiency in rice production and has rapidly developed its agricultural sector over the past 20 years, despite being ranked 146th on the global human development index and having roughly half the per capita income of India. Bangladesh’s agriculture sector contributes 19 percent to the country’s gross domestic product. This is the bright side.

The other side, however, is that farmers’ land-holdings are very small – an average farming household owns just 0.2 hectares or less – and Bangladesh is home to intensive cropping rotations. Every square centimeter of arable land is used 1.8 times a year, putting intense pressure on natural resources and making the system unsustainable in the long term. Farmers have to continually adapt to challenges including climate change, rising temperatures and increasing fuel prices to sustain productivity.

Many farmers are using innovative agricultural machinery to improve the precision and speed of planting and harvesting operations while reducing fuel, irrigation water and labor requirements. With the introduction of cheap, easy-to-operate and easy-to-maintain 2WTs, agriculture in Bangladesh has become highly mechanized during the last decade. Nearly 80 percent of farmers use 2WTs because they are versatile and can be fitted with a variety of innovative auxiliary equipment for planting, threshing and irrigation.

Made in Bangladesh highlights these innovations and includes reviews and designs of the machinery used with 2WTs for resource-conserving practices, including zero tillage and strip tillage seed and fertilizer drills, bed planters, axial flow irrigation pumps, strip tillage blades, improved furrow openers and seed metering mechanisms. Each chapter has scaled technical designs of the machinery, developed with computer-aided drafting to allow manufacturers in Bangladesh and beyond to reproduce and make improvements on the machines. “Many of the machines in the book are inspiring innovations,” said Timothy Krupnik, CIMMYT cropping systems agronomist and one of the book’s authors. “Bangladesh is often seen in a negative light – most international media focuses on its political tragedies, grinding poverty and pressing environmental concerns. But, if you live in Bangladesh, you get inspired every day by the creative ways that many of the world’s poorest people come up with creative solutions to the problems they face. All of the machines in the book were either designed and made in Bangladesh, or borrowed from other machines in South and Southeast Asia and then were manufactured in Bangladesh.”

CSISA-MI is helping increase the adoption of resource-conserving machines by farmers. (Photo: Timothy Krupnik)

The book’s technical designs can be easily replicated by machinery manufacturers, scientists or farmers. “The drawings were developed in a reverse engineering process, where I measured the machines manually and immediately sketched them on paper by hand,” said co-author Santiago Santos Valle. “Once back in the office, I produced the computer-aided drawings using the hand-made sketches.” Spending hours of work recreating these sketches on the computer, Santos Valle painstakingly created all the technical designs in the book.

A learning module on technical drawing interpretation and instructions on how to use the drawings have also been included. Standardization and Affordability There is a great need for small-scale farmers to adopt new machinery to overcome rural labor shortages in places like Bangladesh. “Wheat and maize yields decline between 1 and 1.5 percent per day when planted late, so you can imagine the effect if you use the machines to reduce tillage,” Krupnik explained. “Applying seed and fertilizer in one go can save seven to eight days that farmers would have otherwise spent plowing and preparing the land.” One of the most significant problems confronting mechanization in South Asia is design standardization. “Bangladesh has been a ‘hot bed’ of innovation, particularly for the two-wheel tractor,” said Andrew McDonald, CIMMYT cropping systems agronomist and co-author. “But much of this innovation has not reached farmers at scale because commercialization has been impeded by the lack of standardization. Essentially, most workshops create a unique machine every time a new piece is fabricated, which drives up costs to both manufacture and repair the machinery. Quality control is also an issue.”

He emphasized that CIMMYT is playing a catalytic role to ensure high-quality machinery is available at a reasonable cost in Bangladesh. The organization is helping formalize the design elements of innovative machinery and working with workshops and industrial houses to implement these designs. In the USAID-Bangladesh Mission funded project, Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI), CIMMYT works with the NGO International Development Enterprises (iDE) to develop and execute business models to encourage companies and agricultural manufacturers to produce and distribute the machines through commercial mechanisms.

In turn, agricultural service providers are linked to finance entities and farmers to purchase machines and to assure demand in the field. These efforts receive technical backing from CIMMYT scientists, who assure that land is planted with reduced tillage implements or irrigated with energy efficient pumps. As a result, the adoption of these machines has significantly increased in the last few months – the machinery is now being used on over 2,000 hectares of new land in southern Bangladesh alone – more than a four-fold increase compared to the year before.

The machines included in the book have wide applicability outside of Bangladesh, such as in smallholder farming contexts in Asia and Africa. “We want the work done in Bangladesh to inspire agricultural machinery manufacturers to reproduce and improve machines in other countries,” Krupnik said. “For this reason the book is free and available through open access and can be downloaded, printed and shared with others as widely as possible.” The PDF version of the book is available from the CIMMYT repository.

CIMMYT seed heads to the frozen north

By Miriam Shindler/CIMMYT

CIMMYT’s Wellhausen-Anderson Gene Bank sent its fifth shipment of seed to the Svalbard Global Seed Vault in Norway last week for safeguarding.

Thirty-four boxes containing about 420 kilograms of seed left from CIMMYT’s El Batán headquarters on 7 February for the vault, which is deeply embedded in the frozen mountains of Svalbard. Isolated on the Norwegian Island of Spitsbergen, halfway between mainland Norway and the North Pole, the Global Seed Vault is keeping the genetic diversity of the world’s crops safe for future generations by storing duplicates of seeds from gene banks across the globe.

Tom Payne (left), Denise Costich and Miguel Ángel López help load the seed shipment from the CIMMYT Germplasm Bank, on its way to the Svalbard Global Seed Vault in Norway. Photo: Xochiquetzal Fonseca/CIMMYT
Tom Payne (left), Denise Costich and Miguel Ángel López help load the seed shipment from the CIMMYT Germplasm Bank, on its way to the Svalbard Global Seed Vault in Norway. Photo: Xochiquetzal Fonseca/CIMMYT

CIMMYT sent 1,946 accessions of maize and 5,964 of wheat accessions to add to that collection. Over the past several years, CIMMYT has sent 123,057 accessions of maize and wheat, which is essential for protecting valuable genetic diversity. CIMMYT is working with the Norwegian government and the Global Crop Diversity Trust, who manage the Global Seed Vault, to keep maize and wheat seed safe against a global catastrophe.

CIMMYT will continue to send backups of regenerated seed to Svalbard each year until its entire maize and wheat collection is represented in the vault, according to Denise Costich, head of the Maize Germplasm Bank. “Our goal is to have 100 percent of our collection backed up at Svalbard by 2021,” she said. “We continually compile a list of accessions that still need to be backed up; these are new introductions or new regenerations of accessions with low seed count or low germination.”

With more than 27,000 accessions of maize and 130,000 of wheat, CIMMYT’s gene bank is a treasure chest of genetic resources for two of the planet’s most important crops. Nonetheless, the Wellhausen-Anderson Gene Bank does not just help insure against seed loss – CIMMYT actively makes use of these collections, distributing seed, free of charge, to more than 700 partner organizations in almost every country across the globe.

In addition, through the Seeds of Discovery (SeeD) project, CIMMYT scientists are unleashing the genetic potential of thousands of landraces and improving understanding of traits utilized in current varieties. It is providing scientists and breeders worldwide with new building blocks to develop climate-smart varieties for resource-poor farmers that will safeguard valuable natural resources and provide affordable and more nutritious food to current and future generations.

Climate change mitigation: social learning in smallholder systems

By Tek Sapkota, Promil Kapoor and M.L. Jat, CIMMYT/CCAFS 

The eastern Indo-Gangetic Plain in South Asia is one of the world’s most vulnerable regions to climate change. As part of propoor climate change mitigation work – which focuses on poverty reduction – under the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), CIMMYT is actively working on adaptation, risk management and quantifying the mitigation potential of traditional and resilient management practices in smallholder systems in the region.

Participants gather in Bihar, India. Photo: Manish Kumar/CIMMYT
Participants gather in Bihar, India. Photo: Manish Kumar/CIMMYT

CIMMYT, in close collaboration with India’s national agricultural research system, manages extensive research on the quantification of climate change mitigation potential for precision-conservation agriculture-based cereal systems in South Asia. CIMMYT scientists and collaborators are working on the quantification of greenhouse gases (GHGs) under different scenarios and gathered for a twoday social learning workshop on standardizing related protocols. Attendees from CIMMYT and the Borlaug Institute for South Asia (BISA), along with participants from the International Water Management Institute (IWMI), Indian Agricultural Research Institute (IARI), the national research system and two students from the Climate Food and Farming Network (CLIFF), gathered in Pusa, Samastipur, Bihar, during 15-16 January.

Participants shared experiences on GHG mitigation under contrasting production systems and ecologies and took stock of ongoing mitigation work at the Delhi, Karnal and Pusa sites. The event provided an opportunity to discuss different approaches for GHG quantification approaches. Quantification suitable for smallholder production systems in developing countries were presented by Tek Sapkota, CIMMYT mitigation agronomist. Scientists from Karnal, New Delhi and Pusa presented the current status of GHG measurement work and work plans for 2014. The results from these regional laboratories will be used for larger-scale studies, spanning all levels, from plot to landscape.

As part of its ongoing mitigation work, CIMMYT is measuring GHG emissions in six agronomic trials representing various cropping, tillage, residue and nutrient management systems in Karnal, New Delhi and Pusa, three different agro-ecologies of the Indo- Gangetic Plain. CIMMYT actively collaborates with universities, national research institutes and international organizations like BISA on its mitigation work and capacity building, including developing a new generation of researchers. Attendees also discussed the importance of setting professional and personal goals and priorities, effective time management, effective communication and delegating tasks. They shared perceptions and ideas on mitigation activities and what changes are necessary to strengthen mitigation work. CIMMYT-CCAFS South Asia Coordinator M.L. Jat emphasized the need to move beyond plot level to quantify mitigation potential at the landscape, regional and national levels. Attendees also discussed and agreed to use tools ranging from measurement to estimation.

The meeting concluded with the development of a 2014 roadmap for mitigation activities. Participants also visited the BISA farm and CCAFS climate-smart villages (CSVs) in the Vaishali district of Bihar to learn smallholders’ perceptions about climate change.