Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

SADC ambassadors hear how CIMMYT-SARO is helping to achieve regional food security

Peter Setimela addresses SADC ambassadors. Photo: Masego Forembi/Botswana Embassy.
Peter Setimela addresses SADC ambassadors. Photo: Masego Forembi/Botswana Embassy.

Peter Setimela, senior seed system specialist at the CIMMYT-Southern Africa Regional Office (CIMMYT-SARO), made a presentation to regional ambassadors on CIMMYT’s work helping to achieve food security in southern Africa, during a meeting organized by the Botswana Embassy on 27 July in Harare, Zimbabwe.

The meeting brought together ambassadors from 13 countries (Angola, Botswana, Democratic Republic of Congo, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, and Zimbabwe) that make up the Southern African Development Community (SADC). At a time when the SADC region is grappling with acute maize deficits, the ambassadors invited CIMMYT to highlight its work on stress tolerant maize, as well as on maize biofortified with pro-vitamin A and quality protein maize, which could contribute to reducing malnutrition in the region.

Maize production in southern Africa is the lowest in the world, yet its food security is highly dependent on maize. The region has a maize deficit, with only Zambia recording a surplus during the current agricultural season. While all countries had a bumper harvest last season, South Africa recorded a 33% reduction this season, with reports indicating it will import up to 900,000 tonnes of maize to supplement this year’s harvest. Zambia has been the source market for maize in the past three years, but this year, the country was affected by low rainfall and is expecting reduced maize output, although there is still a surplus.

In his presentation, Setimela highlighted the food security challenges SADC will face in coming years, and recommended urgent action. “We need to reduce poverty and improve nutrition by promoting climate-resilient and nutritious maize.” He also recommended taking steps to improve farmers’ agricultural practices, such as conservation agriculture, as well as their decision- making in crop production and marketing, and giving them opportunities for value-addition.

He emphasized that CIMMYT is working to help farmers cope with drought and climate change, and pointed out that “developing drought tolerant maize will become more critical, especially now that most countries in the region are being affected by the negative effects of drought or, in some cases, flooding.” Food scarcity and unpredictable changes in food availability in SADC are also due to the scourge of HIV and AIDS.

Setimela ended his presentation by urging the ambassadors to support their national research systems to work in partnership with private seed companies and non-governmental organizations on producing stress and drought tolerant maize varieties.

Over the years, the agricultural sector in SADC has become less attractive to investors and has been relegated behind other economic sectors such as mining and manufacturing. Nonetheless, broad-based agricultural research and development has strong potential to drive economic growth, reduce poverty, and improve food security and nutrition.

“Double-hatted” maize variety is good news for farmers in western Kenya

Azbetta Ogembo, a farmer in western Kenya, displays a WH507 maize plant. Photo: Brenda Wawa/CIMMYT
Azbetta Ogembo, a farmer in western Kenya, displays a WH507 maize plant. Photo: Brenda Wawa/CIMMYT

Maize farming in western Kenya is leaping one notch higher thanks to maize variety WH507, which is becoming farmers’ first choice because of two very important traits–drought tolerance and nitrogen-use efficiency.

Like millions of other African smallholders, most farmers in the region struggle with poor soil fertility. Given their economic constraints, they are unable to apply the required amount of fertilizers to boost productivity on their farms. This is exacerbated by erratic rains that increase chances of crop failure and very low yields. Yet many of Africa’s maize-growing households rely on maize not only as their staple food, but also as a source of income.

To help farmers mitigate the challenge of poor soil fertility and drought, the CIMMYT-led project Improved Maize for African Soils (IMAS) provided support to a local seed company in Kenya to mass produce parent seed of hybrid variety WH507. The goal was to increase its availability and ensure farmers can purchase it at the current market price of KES 410 (US$ 4) per two-kilogram pack.

Western Seed Company, the sole distributor of this seed, aims to produce 1,000 tonnes of WH507 parent seed. It has also undertaken various activities to increase adoption of WH507 among farmers in western Kenya. To this end, in 2014 alone, Western Seed conducted demonstrations on 1,200 plots during the short rains to make farmers aware of the variety. One farmer, Azbetta Ogembo, a widow and mother of seven, was pleasantly surprised by her first experience with WH507.

Read more on CIMMYT’s Africa page here.

WEMA hybrid launch to benefit maize farmers in Africa

Through the Water Efficient Maize for Africa (WEMA) project, 13 maize hybrids were approved for commercial production by relevant authorities in Kenya, Uganda, Tanzania and South Africa between October 2014 and March 2015. This means that farmers will soon access these hybrids and benefit from higher yields within their specified environments.

WEMA provides farmers with maize varieties that produce higher yields under moderate drought and are protected from insect damage by their pest resistance. As a key player in the WEMA partnership, CIMMYT contributes its technical expertise, particularly in breeding, to the project.

“Our main focus is to give farmers durable solutions,” explains Stephen Mugo, CIMMYT Regional Representative for Africa and maize breeder who also coordinates CIMMYT’s work in WEMA. “These seeds are bred with important traits that meet farmers’ needs, and have the ability to give higher yields within specific environments.”

All hybrids released under the WEMA project will be sold to farmers under the trade name DroughtTEGOℱ. “Tego” is Latin for cover, protect or defend. The African Agricultural Technology Foundation (AATF), which coordinates the WEMA project, has sub-licensed 22 seed companies in the four countries to produce DroughtTEGOℱ seeds to sell to farmers.View the full story here and read more about WEMA and the newly released hybrids.

 

Pakistani stakeholders evaluate the performance of CIMMYT maize germplasm across Punjab

Participants visit CIMMYT maize trials during the traveling seminar. Photo: M. Waheed Anwar/CIMMYT-Pakistan

Pakistan’s maize sector is heavily dependent on imported hybrid seed, which accounts for 85-90% of the annual seed supply. Such huge imports not only cost the country about US$ 50 million every year, but also mean that Pakistani maize farmers have to pay US$ 6-8 per kg for hybrid seed, depending on the variety and the availability of seed on the market. Availability and affordability of quality seed of widely adapted maize varieties are the key to unlocking the production and productivity potential of maize, Pakistan’s third most important cereal crop.

To address this issue, which is a priority of the government of Pakistan, CIMMYT is conducting maize intervention activities under the Agricultural Innovation Program for Pakistan (AIP), a USAID-funded project. Under the AIP program, CIMMYT has introduced more than 700 diverse maize lines from its regional breeding hubs in Colombia, Mexico and Zimbabwe, and has evaluated them under Pakistan’s diverse ecologies since early 2014.

The germplasm consists of hybrids and open-pollinated varieties with enhanced nutrient content (quality protein maize and varieties enriched with pro-vitamin A) and wide adaptation that have consistently performed well over the past three seasons.

Discussion on CIMMYT maize germplasm at a private seed company research station. Photo: M. Waheed Anwar/CIMMYT-Pakistan

Based on the performance of the materials, CIMMYT, in partnership with Pakistan Agricultural Research Council (PARC), organized a traveling seminar to give stakeholders the chance to evaluate the performance of CIMMYT maize germplasm in Punjab Province. The evaluation focused mainly on spring maize and took place on 15-17 June 2015. Experts from 12 public and private institutions (including seed companies, agricultural universities and public research institutions) evaluated the performance of the materials at different sites across the province.

The event also gave stakeholders the opportunity to share their trial management and field data recording experience. Participants thanked CIMMYT and PARC for creating such a unique platform where stakeholders showcased their activities and discussed and shared information on how CIMMYT materials perform across the different sites. According to AbduRahman Beshir, CIMMYT-Pakistan maize improvement and seed systems specialist, “When we first introduced the range of CIMMYT maize hybrids and OPVs in early 2014, we were not sure how they would perform, particularly in harsh environments where the temperature often exceeds 40 0C.” He added that after such an aggressive intervention, CIMMYT is now at the product allocation phase based on partners’ selection and requests. Today it is clear that CIMMYT has much to offer its Pakistani partners not only in their efforts to produce hybrid seed locally and achieve self-sufficiency, but also to enhance local maize breeding programs through enriched gene pools.

Zero-till wheat raises farmers’ incomes in eastern India, research shows

Farmer-with-wheat-harvest
Photo Credit: Vinaynath Reddy / CIMMYT

In a study published last month in Food Security, CIMMYT researchers reported that wheat farmers’ total annual income increased by 6% on average with the introduction of zero tillage (ZT) in Bihar.

While studies done in the past in the eastern Indo-Gangetic Plains (IGP) have shown ZT impacts in field trials or controlled environments, this research is believed to be the first that studied actual impacts in farmers’ fields in eastern India.

ZT allows direct planting of wheat without plowing, sowing seeds directly into residues of the previous crop on the soil surface, thus saving irrigation water, increasing soil organic matter and suppressing weeds.

“We found that the prevailing ZT practice, without full residue retention, used by farmers in Bihar has led to an average yield gain of 498 kilogram per hectare (19%) over conventional tillage wheat, which is in contrast to the results of a recent global meta-analysis” says Alwin Keil, Senior Agricultural Economist, CIMMYT and the lead author of this study.

The global meta-analysis published last year compared crop yields in ZT and conventionally tilled production systems across 48 crops in 63 countries. It reported that ZT is only profitable in rainfed systems and when it is combined with full residue retention and crop rotation. “However, in Bihar, marginal and resource-poor farmers cannot afford to leave the full residue in the field as they use the rice straw to feed their livestock,” says Keil.

According to Keil, the divergent findings of the meta-analysis may be caused by the fact that most of the reviewed studies were conducted in moderate climatic zones (U.S., Canada, Europe, China) and results were aggregated across various crops.

Bringing a Wheat Revolution to Eastern India

Compared to the prosperous northwestern states, the eastern IGP is characterized by pervasive poverty and high population density, and its resource-poor farmers are more prone to the risks of climate change. Bihar has the lowest wheat yields in the IGP with an average of 2.14 tons per hectare.

To feed a growing wheat-consuming population, Bihar currently imports wheat largely from Punjab, where yields have stagnated over the last five years due to an over-exploitation of resources, especially water.

While ZT is widespread on the mechanized farms of Punjab and Haryana, seat of the first Green Revolution in India, farmers in the eastern IGP are yet to benefit. “There is also evidence that the positive effect of ZT is larger in areas with low agricultural productivity (generally low yields, such as Bihar) than in areas with higher productivity (such as Punjab, for instance),” remarks Keil.

Increasing Access among Smallholders

The study concludes that ZT users reap substantial benefits, and that this technology could help close the growing yield gap between production and consumption of wheat in Bihar. A 19% yield increase would translate into a production increase of 950,000 MT, which exceeds the total wheat imports into Bihar (868,000 MT in 2011).

However, with low ownership of tractors and ZT drills, large-scale adoption of ZT in eastern India hinges on an expansion of the network of service providers, who can custom-hire these kinds of services to smallholder farmers.

With public and private sector partners, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) has supported the development of ZT service providers among tractor owners by facilitating the purchase of ZT drills and providing technical trainings and know-how since 2009. Consequently, the number of ZT service providers in Bihar increased from 17 in 2011 to 1,624 in 2014, servicing a total of approximately 44,700 acres.

“Furthermore, we found that only 32% of non-users of ZT in our sample were aware of the technology. Hence, increasing the number of service providers to enhance farmers’ access to ZT has to go hand-in-hand with large-scale information campaigns to raise their awareness of the technology,” says Keil.

Minimizing yield losses via conservation agriculture

Last year, climatic variability such as untimely rainfall was devastating in northwest India. Mid-season rainfall resulted in massive yield losses during winter 2014-15. Starting that season, a case study of wheat adaptation to climatic risks was undertaken in Karnal by Sakshi Baliyan, a young female student, as an internship project under CIMMYT-CCAFS. The project aimed to evaluate yield losses as evidence of the difference zero till makes in coping with unseasonable rainfall.

The study focused on the vulnerability of wheat yields to untimely mid-season rainfall by comparing conventional vs. conservation agriculture (CA) practices. To construct the database, during the 2013-14 and 2014-15 winter seasons, wheat yield data were collected from 100 randomly selected farmers who produced wheat using conventional tillage and conservation agriculture in 14 climate-smart villages (CSVs) in the Karnal district of Haryana.

The results revealed that CA-based systems produced higher wheat yields (6% higher in 2013-14 and 13% higher in 2014-15) than conventional tillage systems. The study also found that farmers who practiced conventional tillage during winter 2014-15, which had untimely heavy rains, averaged a 19% yield loss, whereas those practicing CA averaged a yield loss of only 10% in the same locations.

These interesting results indicate that the next step should be to introduce climate-smart agricultural practices (CSAPs) in policy decision making. A more in-depth study should be undertaken to verify the results and establish environmentally and farmer friendly policies at the state and national levels. Policies that calculate subsidies and compensations considering the agricultural practices used by farmers are required to motivate them to adopt CSAPs. This will not only reduce losses in times of uncertainty, but also generate gains in favorable times.

Rebuilding livelihoods: CIMMYT supports agricultural recovery in Nepal

Farmer-uses-minitiller-in-Nepal
Farmer uses a mini-tiller in mid-west region of Nepal CSISA

The recent 7.6 magnitude earthquake that struck Nepal on 25 April, followed by a 7.3 magnitude aftershock on 12 May and several hundred additional aftershocks to date, has had huge negative impacts on the country’s agriculture and food security. Around two-thirds of Nepal’s population relies on agriculture for their livelihood and agriculture contributes to 33 percent of Nepal’s GDP. It is estimated that about 8 million people have been affected by the earthquakes, with smallholders in hilly regions being most hard-hit.

The earthquake damaged or destroyed agricultural assets, undermining the longer-term food production capacity of farm families and disrupting critical input supply, trade and processing networks. Farmers lost grain and seed stocks, livestock, agricultural tools and other inputs, and are facing significant shortages of agricultural labour. Widespread damage to seed and grain storage facilities have affected smallholder farmers’ ability to secure their harvested crops through the rainy season.

In response to the devastation, USAID-Nepal has provided US$1 million for earthquake relief and recovery to the CIMMYT-led Cereal Systems Initiative for South Asia in Nepal (CSISA-NP). The Earthquake Recovery Support Program, for a period of 13 months, will be implemented in close coordination with the Ministry of Agricultural Development (MoAD), Department of Agriculture (DoA), Department of Livestock Services (DoLS), Nepal Agricultural Research Council (NARC) and District Disaster Relief Committee (DDRC). The districts that will receive support include Dolkha, Kavre, Khotang, Makwanpur, Nuwakot, Ramechap, Sindhupalchowk, and Solukhumbu, which have suffered particularly high levels of damage.

“Even if seed is available, the capacity for farmers to plant and harvest crops has been severely diminished due to the loss of draft animals and the exacerbation of labor shortages,” said Andrew McDonald, CIMMYT Principal Scientist and CSISA Project Leader. “We will reach more than 33,000 farming households through seed and grain storage facilities, mini-tillers and other farm machines, agricultural hand tools, technical training and agronomy support,” added McDonald.

The program will provide 50,000 grain storage bags, 30 cocoons for community grain storage, 400 mini-tillers and other modern agriculture power tools (e.g., reapers, maize shellers, seeders), 800 sets (5 items in a set) of small agricultural hand tools, and 20,000 posters on better-bet agronomic practices for rice and maize. “We will first focus on getting small horsepower mini-tillers into affected communities, and subsequently broadening the utility of these machines to power a host of essential agricultural activities including seeding, reaping, threshing and shelling, as well as powering small pumps for irrigation,” said Scott Justice, Agricultural Mechanization Specialist, CSISA-NP.

At the program’s inception workshop held recently on 28 August, Dr. Beth Dunford, Mission Director, USAID Nepal, remarked that USAID-Nepal has arranged a special fund to help earthquake-affected people. Beyond the devastation of houses, public infrastructure like roads, the earthquake has seriously disrupted the agriculture and rural economy throughout the impacted districts. Re-establishing vital agricultural markets and services in the aftermath of the earthquake is key to how quickly these communities will recover, underlined Dunford.

For effective coordination and monitoring of activities in the program, Central Level Management Committee, District Level Management Committee and Local Level Management Committee have already been formed. They aim to identify most earthquake affected areas within a district and will ensure efficient and transparent distribution of support items.

Dr. Adhikari, Joint Secretary, MoAD, highlighted that the Ministry feels a real sense of ownership over this program and is committed to implementing the activities through its network. He said the farm machinery support program will be a perfect platform for MoAD to expand its farm mechanization program into other areas of the country. The Earthquake Recovery Support Program also aligns with the Agriculture Development Strategies of the Government of Nepal, which focuses on community-wide inclusive development.

The first heat tolerant maize hybrids are licensed for deployment in Bangladesh, India and Nepal

Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur
Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur

The Bangladesh Agricultural Research Institute (BARI), Bangladesh’s ACI Seeds, India’s Bihar Agricultural University, Sabor, and the University of Agricultural Sciences, Raichur, Ajeet Seeds, and Nepal’s Hariyali Community Seeds and Sean Seeds are the first proud institutions/companies to receive a license for the deployment of heat tolerant maize hybrids. B.M. Prasanna, Director of CIMMYT’s Global Maize Program, formally presented the product licensing certificates to the heads/representatives of these organizations during the Heat Tolerant Maize for Asia (HTMA) project’s 3rd Annual Progress Review and Planning Meeting held from 10-12 August 2015 in Hyderabad, India. Other project partners, including national program and seed companies from Pakistan, Nepal and Bangladesh, have shared their choice of hybrids, and asked to submit them for formal licencing. The hybrids were developed under the HTMA project funded by United States Agency for International Development (USAID) under the Feed the Future (FTF) initiative, a public-private alliance that targets resource-poor people of South Asia who face weather extremes and climate-change effects.Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal.

At the event’s inaugural session, Nora Lapitan, Senior Science Advisor, Bureau for Food Security, USAID, gave an update on the FTF initiative and highlighted its priorities, which include reducing poverty and malnutrition in children in target countries through accelerated inclusive agricultural growth and a high-quality diet. This was followed by an overview by B.M. Prasanna of the new CGIAR research program on Maize Agri-food system, its focus and priorities and the importance of stress-resilient maize in food security and livelihoods, especially in climate-change vulnerable regions, such as the Asian tropics.

The inaugural session was followed by technical sessions, during which Raman Babu, CIMMYT molecular maize breeder, M.T. Vinayan, CIMMYT maize stress specialist for South Asia, A.R. Sadananda, CIMMYT maize seed system specialist, and CIMMYT socioeconomist Christian Boeber presented their latest research results.

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna. Photo: CIMMYT-India

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna.P.H. Zaidi, HTMA project leader and senior maize physiologist at CIMMYT, described the progress achieved at the end of the project’s third year. Representatives from public and private sector partners presented the results of the HTMA trials conducted at their locations, and shared a list of top-ranking, best-bet heat-tolerant maize hybrids to take forward for large-scale testing and deployment. Collaborators from Pakistan’s Maize and Millet Research Institute (MMRI) and Bhutan’s Maize Program could not participate in the meeting but their progress reports were presented by K. Seetharam and Zaidi, respectively. It is quite impressive that within the first three years of the project, each partner has identified promising and unique maize hybrids suitable for their target markets/agro-ecologies.

Participants visited a demonstration of elite HTMA hybrids and their parents, where they observed the performance of their selected hybrids under Indian conditions. They were able to see the hybrids and their parents side by side, assess their performance and request seed of parental lines.

The project is also involved in capacity building, including providing support to a total of nine M.Sc./Ph.D. students, as well as workshops and in-country training courses in Nepal, Bangladesh and India, where over 100 researchers have been trained on developing stress resilient maize. In a special session dedicated to student research projects, four HTMA students, including Mahender Tripathi from Nepal, Ashraful Alam from Bangladesh and Akula Dinesh and C.N. Ranganath from India, presented their research projects.

The project’s progress was critically reviewed by the project steering committee (PSC) headed by Prasanna, who expressed great satisfaction with its overall progress and acheivements. Speaking for USAID, Lapitan said they are highly impressed with the progress of the HTMA project and consider it a model project. Other PSC members also expressed their satisfaction and agreed that the HTMA team deserves special appreciation for remarkable achievements within a period of just three years.

The HTMA project meeting was attended by program leaders, scientists and representatives from collaborating institutions in South Asia, including BARI, Nepal’s National Maize Research Program (NMRP) and two of India’s state agriculture universities. Seed companies operating in the region, including Pioneer Hi-bred, Kaveri Seeds and Ajeet Seeds from India, and Sean Seeds and Hariyali Community Seeds from Nepal, and international institutions such as Purdue University, USAID and CIMMYT also participated in the event.

The HTMA team at CIMMYT, Hyderabad, India. Photo: CIMMYT-India

 

A ‘double-hatted’ maize variety brings good tidings to farmers in western Kenya

double-hatted-picturePoor soil fertility is a major – yet often overlooked – factor affecting food production in Africa. Farmers suffer low yields and crop failure due to poor soils, a situation that has crippled food security for millions of smallholders in the continent.

For farmers like Mrs. Azbetta Ogembo, the challenge of poor soil fertility is common in her village in Kakamega County, western Kenya. To address this problem, she buys fertilizer every planting season to boost productivity. But for better yield, in addition to fertilizer, maize farmers are advised to use certified seed tailored for specific soils and agroecologies.
WH507-teaser_w
Yet when Azbetta received a maize variety called WH507 from the One Acre Fund to plant in preparation for the 2015 long rains, she was very skeptical. And why was this? “I had never used WH507 before. That is why I resisted planting the seed at the beginning. I was afraid of losing yields, which I depend on for food. I just did not know how this variety performs,” says Azbetta. This was her first time to see this variety, and with no one to attest its performance, Azbetta was simply not ready to risk losses from low yield after investing heavily on her farm.

Now, two months before she harvests her maize, the widow and mother of seven is elated. The first thing Azbetta noticed about WH507 is that it matures faster compared to other varieties she has used before. Furthermore, the plant has very strong stalk, good height and the cobs are big and full. This was a very pleasant surprise to her.

“I am certain of harvesting more than 150 kilograms from the two kilograms of seed I planted. I will definitely plant this maize on a bigger land in the next season since I’m assured of very good harvest for food and some extra to sell so I can raise money for my children’s school fees,” says Azbetta. She also plans to use the additional cash to purchase more seed and enough fertilizer for the next planting season.

Maize cobs from the WH507 plant
Maize cobs from the WH507 plant

The Improved Maize for African Soils (IMAS) Project led by CIMMYT, supported the Western Seed Company – the sole distributor of WH507 – to produce parent seed for mass production because WH507 was found to be both nitrogen-use efficient (NUE) and drought-tolerant. This variety not only performs well during moderate drought, but also utilizes more efficiently the small amounts of fertilizers most farmers afford to apply to their maize, giving them higher grain yield compared to other varieties on the market.

Just as in Kenya, most soils in sub-Saharan Africa are nitrogen-deficient, yet nitrogen is one of the most important nutrients for plants. Many farmers in Kenya apply far less fertilizer than the recommended amounts because nitrogen fertilizers are costly. And even with subsidized prices, demand outstrips supply. But affordability is still the crunch, and not awareness – farmers know all too well the importance of applying fertilizers, but cannot afford to buy: for instance, Azbetta uses at most 100 kilograms of fertilizer for her three-acre land. She knows this is an under-dosage, but this is all she can. Farmers who cannot afford fertilizer use manure.

Science offers a partial solution at midpoint to beat the fertilizer crunch: “NUE maize is by no means a replacement for fertilizer. In fact, farmers who do not apply any fertilizers on their farms will not get as much yield as desired. What this variety simply does is it makes the most of what is made available to the soil by the farmers as dictated by their economic ability,” says Dr. Biswanath Das, a maize breeder at CIMMYT.

The Western Seed Company plans to produce 1,000 tonnes from the WH507 parent seed to increase its availability in the market for farmers to buy at the current market value of KES 410 (USD 4) per a two kilogram pack. “In 2015, we produced 150 tonnes of WH507 for selling mainly in Nyanza and western regions where we operate. This variety has become the first choice particularly in Nyanza creating a very big demand in this region because of its suitability in warm and humid areas. In western Kenya the demand is still low,” says Saleem Esmail, the Managing Director of Western Seed Company. The company is actively promoting the variety in western Kenya. “We conducted 1,200 demonstration plots during the short rains in 2014 to sensitize farmers on WH507,” adds Saleem. According to Saleem, the level of production depends on the farmers’ adoption and uptake of the seed, which determine how much of the seed will be produced.

Efforts to increase awareness on improved varieties like WH507 will remain key particularly in western Kenya to ensure that farmers like Azbetta enjoy good harvests to counter the economic and ecological constraints they face. Seed companies and agricultural extension systems can play a major role in creating this awareness, as well as promoting good agronomy practices including proper use of fertilizers.

AAA hybrids move towards commercialization

PLC6 is a term used to refer to an advanced stage of hybrid testing at Syngenta, a partner of the Affordable, Accessible, Asian (AAA) Drought Tolerant Maize Project. Four hybrids, representing combinations of Syngenta and CIMMYT germplasm are currently at PLC6 in big plots at multiple locations.  The trajectory of this process points to pilot marketing of a limited quantity of hybrid seed in 2016 and a full market launch in 2017.

AAA Drought Tolerant Maize Project Meeting, ICRISAT Campus, Hyderabad, India. 22-23 July 2015. Photo: P.S. Rao/ICRISAT

Four million hectares in India and Indonesia is the potential target area of this project.  This translates to a market potential of about 80,000 metric tons of seed and offers the opportunity to address the needs of over five million households.  In Indonesia, this primarily covers the island of Sulawesi and eastern Java province. In India, the targeted west central zone includes drought prone and tribal areas, a high risk environment where farmers require improved low-cost seed.

According to Syngenta, the region’s climate and other dynamics make seed marketing risky, unpredictable and unattractive, and is often overlooked by the private seed sector – exactly the kind of underserved area CIMMYT is mandated to target.

The AAA annual meeting was held at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) campus in Hyderabad, India on 22 and 23 July 2015.  Members of the AAA team highlighted achievements over the past five years that ranged from identifying hybrid combinations, fast tracking them to deployment, developing new inbred lines, identifying molecular marker leads for grain yield under drought and for root traits, generating information on genomic selection and genome wide associations and building human, infrastructural, informatics and networking capacity.  All this was done through an exploratory partnership model that included NARS partners (from Vietnam and Indonesia) in addition to Syngenta.

CIMMYT and the AAA team would like to thank the Syngenta Foundation for Sustainable Agriculture (SFSA), especially Mike Robinson, Chief Science Advisor and the mastermind behind this approach, for the support provided and for enabling such a collaborative opportunity.

Wheat scientists urge funding boost after UK-U.S. food security report

Scientists and members of the international wheat community observe wheat trials in Obregon, Mexico, March 2015. (Photo: Julie Mollins/CIMMYT)
Scientists and members of the international wheat community observe wheat trials in Obregon, Mexico, March 2015. (Photo: Julie Mollins/CIMMYT)

EL BATAN, Mexico (CIMMYT) – Food shortages will escalate due to climate change-related production shocks and the international community must prepare to respond to price increases and social unrest, particularly in less developed countries, cautioned a joint British-U.S. taskforce in a new report.

Instead of occurring once every hundred years, severe food production shocks are likely to occur once every 30 years by 2040, a problem compounded by global warming and increasing population, said the Taskforce on Extreme Weather and Global Food System Resilience.

By 2050, the current global population of 7.3 billion is projected to grow 33 percent to 9.7 billion, according to the United Nations. Demand for food, driven by population, demographic changes and increasing global wealth will rise more than 60 percent, the report said.

“We agree with the premise of the report and the interventions recommended to improve the resilience of the global food system to the impact of climate shocks,” said Matthew Reynolds, a distinguished scientist at the International Maize and Wheat Improvement Center (CIMMYT).

“However, the report fails to address the urgent need for political will to make it happen,” Reynolds said. “It presents a paradox, given the relatively modest economic investments required to bolster long-term food security, compared to the costs not only of crisis management resulting from food shortages, but the incalculable cost of predicted food price-hikes to billions of people who already spend most of their income on food.”

For almost 50 years, CIMMYT and its sister CGIAR centers, which conduct research into agriculture and food security, have been building a vital infrastructure to reduce the risk of famine at a global level.

CIMMYT’s work on wheat was developed in the 1960s and 1970s, helping to avert widespread famine in Asia and other regions. The Mexico-based research center continues its mission to deliver international public goods in the form of improved maize and wheat varieties and cropping systems, focusing on resource poor consumers, particularly in climate vulnerable regions.

“We are slightly baffled,” Reynolds said. “The global food security system has been in a constant funding crisis since the end of the Cold War in 1991. Scientists are often overwhelmed by time-consuming, unrealistic demands to acquire funding, which limits time spent in the field conducting research. We’re hoping the report signals a renewed zeal for allocating funds destined specifically for agricultural research.”

FOOD SECURITY CONTRIBUTIONS

Scientific efforts at CGIAR have included producing heat and drought adapted cultivars of rice, wheat and maize, and disease and pest resistant crop cultivars for farmers who cannot afford protective, but costly, chemical applications.

Under the umbrella of the Borlaug Global Rust Initiative, scientists are working on a major project to avoid a global epidemic of swift-moving Ug99 stem rust wheat disease which, if left uncontrolled, could devastate productivity worldwide.

Under the CGIAR Research Program on Wheat, CIMMYT provided the groundwork for the recently launched $50 millionInternational Wheat Improvement Partnership (IWYP) initiative, which taps into the expertise of leading applied plant scientists worldwide to take wheat productivity to its maximum biological capacity within 25 years.

Similarly, more than 100 scientists representing 40 crop research institutes gathered at a recent meeting in Frankfurt, Germany, to develop a platform to translate decades of research in plant stress physiology and biotechnology into a new generation of wheat cultivars that will be productive under levels of heat and drought stress predicted by climate scientists.

The initiative, called the Heat and Drought Wheat Improvement Consortium (HeDWIC), involves applied plant scientists from all continents.

“HeDWIC scientists are eager to get started, they just need a ‘green light’ from funding agencies,” Reynolds said.

“Ultimately, food shortages could cause wide-spread disillusionment with current political and economic models and have other unpredictable consequences.”

The report, which was sponsored by Britain’s Global Food Security program and was jointly commissioned by the UK Science and Innovation Network and Foreign and Commonwealth Office, notes that agriculture faces a triple challenge.

“Increases in productivity, sustainability and resilience to climate change are required,” the report states, acknowledging that the effort “will require significant investment from the public and private sectors, as well as new cross-sector collaborations between scientists, agriculture, water and environmental specialists, technology providers, policymakers and civil engineers among others.”

CIMMYT farm mechanization project attracts wide coverage by Ethiopian media

It is not often that conservation agriculture, the subject of numerous scholarly articles and dissertations, gets wide coverage from the mainstream media in Ethiopia.

It is thus remarkable that the media gave particular attention to a training event held last June at the ILRI-Ethiopia campus and organized by CIMMYT through the USAID-funded “Africa Research in Sustainable Intensification for the Next Generation” project (Africa RISING project, www.africa-rising.net). A focus of CIMMYT’s work in Ethiopia and other countries of East and Southern Africa is to improve smallholder farming practices by exploiting the synergies between small-scale mechanization and conservation agriculture.

Lead trainer Joseph M. Mutua shows service providers how to drive a two-wheel tractor. Photo: Frédéric Baudron/CIMMYT

Reporters representing two major daily English language newspapers in Addis Ababa attended and wrote extensively about the five-day training event that the project organized for service providers from different states in Ethiopia with the objective of promoting farm mechanization and sustainable productivity.

The Ethiopian Herald gave the most coverage through a lengthy article titled “Advancing farming systems improve food, nutrition and income security.” The article describes the advantages of increasing smallholder production through the adoption of modern agricultural practices and proven new technologies such as the two-wheel tractor, which can help increase the efficiency of seed and fertilizer use, reduce labor, time and post-harvest losses, and improve grain quality and farm income. The article also recommends that “all stakeholders should identify the challenges of promoting mechanization and deliver appropriate technologies to farmers.”

The Monitor gave the story a prominent place under the headline “Two-wheel tractors to improve agriculture in Ethiopian highlands.” The story in particular mentions the role of the project in light of a draft national strategy developed in 2014 by the Ethiopian Agricultural Transformation Agency with the aim of increasing farm power available to Ethiopian farmers by as much as 10-fold by 2025.

The article also reports the testimonies of participating service providers on the suitability and ease of using two-wheel tractor technologies, vis-à-vis traditional tools. One farmer noted, “Compared with using traditional tools like oxen power
 this machine will help increase my income while also saving my time.”

At the end, the article quotes FACASI project coordinator Frédéric Baudron, who noted that the trainees are expected to share their knowledge of two-wheel tractor technologies with their local communities to achieve more impact and productivity in the future.

It is worth noting that CIMMYT employs a range of methodologies to accelerate delivery of two-wheel tractor-based technologies to smallholders in selected sites in SSA countries, including: on-station and on-farm participatory evaluation of two-wheel tractor technologies; business model development; market and policy analysis; and establishment of a permanent knowledge platform as well as a common monitoring and evaluation system that includes gender-disaggregated data.

From the eye in the sky to the cell phone in the field: technologies for all

Think of all the things you do with your cell phone on any given day. You can start your car, buy a coffee and even measure your heart rate. Cell phones are our alarm clocks and our cameras, our gyms and our banks. Cell phones are not just relevant for urban living but offer an opportunity to transform the lives of smallholders beyond compare. Even the most basic handset can empower farmers by providing them with instant information on weather, crop prices, and farming techniques.

For many farmers in the developing world, cell phones are the most accessible form of technology, but are only one of many technologies changing agriculture. Innovations such as the plow, irrigation and fertilizer have shaped the history of humankind. Today, technologies continue to play an essential role in agricultural production and impact the life of farmers everywhere.

Enter the era of hyper precision

Precision farming has been around for more than 30 years, but cheaper and more robust technologies are ushering in an era of hyper precision. With increasing climate uncertainties and price fluctuations, farmers can’t afford risk, and precision agriculture enables them to increase production and profits by linking biophysical determinants and variations in crop yield. A variety of farm equipment is being equipped with GPS and sensors that can measure water needs in the crop and nutrient levels in the soil, and dispense exactly the right amount of fertilizer and water as needed.

Precision agriculture may originate from large-scale, well-resourced farms, but its concept is highly transferable and it is scale independent. The pocket-sized active-crop canopy sensors, is already a game changing technology with the potential to bring precision agriculture within the reach of smallholders. Using such sensors to read crop health provides farmers with basic information that can be used for recommended nitrogen application. This has a dual purpose, both for smallholder farmers in areas where soils typically lack nitrogen, and those that over-fertilize while simultaneously reducing profitability and causing environmental pollution.

In Bangladesh, CIMMYT researchers are developing an irrigation scheduling app that predicts a week ahead of time whether a particular field requires irrigation. Based on satellite-derived estimates of crop water use, a soil water model and weather forecasts, the underlying algorithm for the app is also being tested in the north of Mexico.

The eyes in the sky

The human eye is a remote sensor, but on a farm there are many things that cannot be seen with the unaided eye, including surface temperatures and crop changes caused by extreme weather. At CIMMYT, remote sensing devices are allowing researchers to obtain information about a large area without physical contact that would otherwise be difficult to monitor. Indeed, last month I joined researchers at CIMMYT Headquarters in El Batan, Mexico, to learn more about the use of an Unmanned Aerial Vehicle (UAV) with built-in GPS and thermal and multispectral sensors that captures aerial photography to an image resolution of 3 cm. This device is being used to capture the canopy temperature and nitrogen status of crops.

Remote sensing alone is not going to teach a farmer how to properly sow a field, take the best care of his crops or optimize returns. Remote sensing explores spatial and temporal dimensions to provide a diagnosis but the next crucial step is to turn this into recommendations on nutrient management, irrigation and crop protection. The next question is how to bring these recommendations to small farms. In a low-tech setting, this depends on knowledge transfer to provide recommendations to farmers.

 

Learning about the use of UAV with CIMMYT scientists including (L-R) Francelino Rodrigues, Zia Ahmed, Martin Kropff, Lorena Gonzalez, Alex Park, Kai Sonder, Bruno Gérard and Juan Arista. (Photo: CIMMYT)
Learning about the use of UAV with CIMMYT scientists including (L-R) Francelino Rodrigues, Zia Ahmed, Martin Kropff, Lorena Gonzalez, Alex Park, Kai Sonder, Bruno Gérard and Juan Arista. (Photo: CIMMYT)

Climate change, maize production and food security in sub-Saharan Africa

Although climate change is a global phenomenon, its impacts vary depending on region and season. To formulate appropriate adaptation options and ensure timely responses, we first need to better understand the potential impacts of climate change on maize yield and production, on different spatial and temporal scales.

To help fill this gap in sub-Saharan Africa (SSA), a forthcoming article in the International Journal of Climate Change Strategies and Management titled “Maize systems under climate change in sub-Saharan Africa: Potential impacts on production and food security” (early edition available online) assesses the baseline impact of climate change in a business-as-usual scenario. The study indicates that maize production and food security in most parts of SSA are likely to be severely crippled by climate change, although the projected impacts will vary across countries and regions. Read more on CIMMYT’s website here.

Maize-based smallholder farming system in sub-Saharan Africa. Photo: Dagne Wegary/CIMMYT
Maize-based smallholder farming system in sub-Saharan Africa. Photo: Dagne Wegary/CIMMYT