Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

Scientists seek key to boost yields, ensure future food supply

We must improve the productivity of our key crops if we are to feed the world's growing population, say scientists.
Reducing the length of time it takes to naturally breed more productive crop varieties is key to feed the world’s growing population, say scientists. Photo: CIMMYT archives

EL BATAN, Mexico (CIMMYT) — Crop genetic gains remain too low, and international scientists are making a concerted effort to determine how best to increase yields to ensure there is enough food to feed everyone on the planet by 2050.

The complex task of increasing genetic gains – the amount of increase in performance achieved per unit time through artificial selection – involves considering many variables, including genotypes and phenotypes – selecting crop varieties with desired gene traits and considering how well they perform in a given environment.

Two new research papers by scientists at the International Maize and Wheat Improvement Center (CIMMYT) and partners at Australia’s University of Queensland and Spain’s University of Barcelona published in “Trends in Plant Science” highlight some of the best available tools and strategies for meeting the challenge.

Currently, crop breeding methods and agronomic management put annual productivity increases at 1.2 percent a year, but to ensure food security for future generations, productivity should be at 2.4 percent a year.

By 2050, the United Nations projects that the current global population of 7.6 billion will grow to more than 9.8 billion, making yield increases vital.

The results of grain yield increases each year are a function of the length of the breeding process, the accuracy of which breeders can estimate the potential of new germplasm, the size of the breeding program, the intensity of selection, and the genetic variation for the trait of interest.

“Reducing the length of the breeding process is the fastest way for breeders to increase their gains in grain yield per year,” said HuiHui Li, quantitative geneticist based at CIMMYT Beijing.

Speed breeding and other new techniques have the potential to double gains made by breeders some crops. Speed breeding protocols enable six generations of crops to be generated within a single year, compared to just two generations using traditional protocols.

Pioneered by scientist Lee Hickey at University of Queensland, speed breeding relies on continuous light to trick plants into growing faster, which means speed breeding can only be undertaken in a controlled environment.

Tapping into larger populations increases the probability of identifying superior offspring, but breeding is an expensive and time consuming process due to the variables involved.

One challenge scientists face is high-throughput field phenotyping, which involves characterising hundreds of plants a day to identify the best genetic variation for making new varieties. New phenotyping tools can estimate key traits such as senescence, reducing the time of data collection from a day or more to less than an hour.

“If breeders could reduce the cost of phenotyping, they can reallocate resources towards growing larger populations,” said Mainassara Zaman-Allah, a senior scientist at CIMMYT-Zimbabwe and a key contributor to the paper “Translating High Throughput Phenotyping into Genetic Gain.”

“Limitations on phenotyping efficiency are considered a key constraint to genetic advance in breeding programs,” said Mike Olsen, maize upstream trait pipeline coordinator with CIMMYT, based in Nairobi. “New phenotyping tools to more efficiently measure required traits will play an important role in increasing gains.”

New tools and techniques can only help contribute to food security if they are easily available and adopted. The CGIAR Excellence in Breeding Platform, launched in 2017, will play a pivotal role in ensuring these new tools reach breeding programs targeting the developing world.

Related:

Translating high-throughput phenotyping into genetic gain

Fast-forwarding genetic gain

 

CIMMYTNEWSlayer1

 

Science can reverse “new normal” of climate change-related disasters

Naivasha, Kenya 2017. Photo: CIMMYT/ P.Lowe
Naivasha, Kenya 2017. Photo: CIMMYT/ P.Lowe

In the last decade, the climate of Africa has been changing in dramatic ways. Many regions face unpredictable levels of rainfall, which can lead both droughts and severe flooding. Sub-Saharan Africa is the only region in the world with over 30 percent of children under five facing stunting – severe malnutrition, and is the only region where the rate of undernourished people has consistently increased.

The Sustainable IntensiïŹcation of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) program, launched in 2010, works to improve maize and legume productivity and reduce yield risk for over 650,000 farm households in sub-Saharan Africa.

Maize is a vital staple cash and sustenance crop in most of Africa, and legumes provide nutrition, income and improve soil fertility. However, farmers’ yields are suffering due to declining soil fertility, drought and poor access to improved technologies.

Over the last eight years, SIMLESA has developed productive, resilient and sustainable smallholder maize-legume cropping systems. SIMLESA focuses on improving maize-legume cropping systems by encouraging the adoption of sustainable agriculture systems through conservation agriculture practices such as crop residue retention, crop rotation and intercropping practices to simultaneously maintain and boost yields, increase proïŹts and protect the environment.

Recently, Elliud Kireger, director general of the Kenya Agricultural and Livestock Research Organization (KALRO), Mulugetta Mekuria Asfaw, SIMLESA project leader and Daniel Rodriguez, associate professor, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland, wrote a joint opinion piece “Africa: Science Can Reverse ‘New Normal’ of Hunger and Climate Disaster” in All Africa on the impacts of SIMLESA, read it here.

The Sustainable IntensiïŹcation of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) program is funded by the Australian Centre for International Agricultural Research (ACIAR).

CIMMYTNEWSlayer1

“Bazooka” maize makes a bang in Uganda

Photo: Christopher Bendana
Photo: Christopher Bendana

Unprecedented droughts have hit Uganda’s farmers hard in recent years, affecting household income and food security by drastically cutting maize yields, a staple crop in the country. In 2016, at least 1.3 million people in Uganda faced hunger and urgently needed food aid after a dry spell decimated harvests, leaving some with less than one meal per day. When MLN, a maize disease with the ability to cause extreme or complete crop loss in maize, arrived in Uganda in 2013, farmers needed a variety that could cope.

Enter, “bazooka,” a new maize variety that is giving hope to Ugandan farmers facing climate change-related drought and MLN.

Developed by Uganda’s National Crops Research Resources Institute (NaCRRI) and National Agricultural Research Organization (NARO) using traditional breeding methods and materials from the CGIAR Research Program on Maize (MAIZE) and the International Maize and Wheat Improvement Center (CIMMYT), bazooka maize has natural resistance to drought and MLN. Produced and distributed by the Naseco seed company, bazooka is gaining immense popularity in Uganda.

300 million people depend on maize as their main food source in sub-Saharan Africa, where many smallholder farmers do not have access to irrigation systems, and extended drought can be a death sentence for their crops. Now, with new drought tolerant varieties such as bazooka, they can expect better harvests.

 

To read the full story, please click here to view the original article from Seed World and CS Monitor.

CIMMYTNEWSlayer1

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.
Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver to farmers over 3,400 tons of high quality seed that was sown on more than 100,300 hectares.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Farmers are using maize and wheat varieties suitable for drought-affected areas and resistant to prevalent crop diseases. Photo: CIMMYT/A.Habtamu
Farmers are growing maize and wheat varieties suitable for drought- and disease-affected areas. Photo: CIMMYT/ A. Habtamu

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates Foundation, Ethiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

Facing the fall armyworm threat

MEXICO CITY, Mexico (CIMMYT) – In a new blog published by Farming First, B.M. Prasanna, Director of the Global Maize Program and the CGIAR Research Program on Maize at the International Maize and Wheat Improvement Center (CIMMYT) discusses overcoming a pest that has been ravaging fields in Africa.

“Fall armyworm is one of the most destructive insect pests worldwide
In just under two years, the pest has devastated almost 1.5 million hectares of maize crops in 6 countries in Africa,” he said.

Prasanna advises that without proper management, over the next two years, “fall armyworm is expected to cause up to six billion dollars of damage across affected maize growing regions.”

With the rapid rise of this pest, some countries purchased highly toxic pesticides and started distributing these pesticides to people without proper personal protective equipment or an understanding of the potential danger.

“We must raise awareness among farming communities on how to make wise decisions on application of the right kind of pesticides at the right stage.”

In terms of immediate solutions, “There are many pesticides derived from naturally occurring bacteria and viruses that could be helpful. The capacity to quickly validate these options, scale them up and release them is extremely important”, he said.

“We are running a marathon here, not a 100-meter race. “

In terms of long-term solutions, “we are extensively testing maize and wheat varieties against the fall armyworm populations in Africa and we have some very promising sources of resistance which we will be validating very soon.”

“CIMMYT, in partnership with USAID and other collaborators, is working to produce a comprehensive manual on fall armyworm pest management in Africa which will be available in January.”

Prasanna emphasized, “there is a tremendous coordination effort that is required in the years to come in order to make these things happen,” but said that CIMMYT is ready to stand with others to beat this pest. With a unified and systematic approach, it can be done.

Read the entire blog “How Fall Armyworm Can Be Beaten in Africa” on the Farming First website.

Fall armyworm found on crops in Zimbabwe. Photo credit: CIMMYT/M. Shindler
Fall armyworm found on crops in Zimbabwe. Photo credit: CIMMYT/M. Shindler

CIMMYTNEWSlayer1

Breaking Ground: Leonard Rusinamhodzi on innovating farming systems for climate change

TwitterBGLernardFood security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the region by 2025, said Leonard Rusinamhodzi, a systems agronomist at the International Maize and Wheat Improvement Center.

Erratic rainfall and increasing temperatures are already causing crops to fail, threatening African farmers’ ability to ensure household food security, he said. Africa is the region most vulnerable to climate variability and change, according to the UN Intergovernmental Panel on Climate Change.

Small-scale family farmers, who provide the majority of food production in Africa, are set to be among the worst affected. Rusinamhodzi’s work includes educating African farmers about the impacts of climate change and working with them to tailor sustainable agriculture solutions to increase their food production in the face of increasingly variable weather.

The world’s population is projected to reach 9.8 billion by 2050, with 2.1 billion people set to live in sub-Saharan Africa alone. The UN Food and Agriculture Organization estimates farmers will need to increase production by at least 70 percent to meet demand. However, climate change is bringing numerous risks to traditional farming systems challenging the ability to increase production, said Rusinamhodzi.

Graphic created by Gerardo Mejia. Data sourced form the UN Intergovernmental Panel on Climate Change.
Graphic created by Gerardo Mejia. Data sourced from the UN Intergovernmental Panel on Climate Change.

Rusinamhodzi believes increasing farmers’ awareness of climate risks and working with them to implement sustainable solutions is key to ensuring they can buffer climate shocks, such as drought and erratic rainfall.

“The onset of rainfall is starting late and the seasonal dry spells or outright droughts are becoming commonplace,” said Rusinamhodzi. “Farmers need more knowledge and resources on altering planting dates and densities, crop varieties and species, fertilizer regimes and crop rotations to sustainably intensify food production.”

Growing up in Zimbabwe – a country that is now experiencing the impacts of climate change first hand – Rusinamhodzi understands the importance of small-scale agriculture and the damage erratic weather can have on household food security.

He studied soil science and agronomy and began his career as a research associate at the International Center for Tropical Agriculture in Zimbabwe learning how to use conservation agriculture as a sustainable entry point to increase food production.

Conservation agriculture is based on the principles of minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It improves soil function and quality, which can improve resilience to climate variability.

It is a sustainable intensification practice, which is aimed at enhancing the productivity of labor, land and capital. Sustainable intensification practices offer the potential to simultaneously address a number of pressing development objectives, unlocking agriculture’s potential to adapt farming systems to climate change and sustainable manage land, soil, nutrient and water resources, while improving food and nutrition.

Tailoring sustainable agriculture to farmers

Smallholder farming systems in Africa are diverse in character and content, although maize is usually the major crop. Within each system, farmers are also diverse in terms of resources and production processes. Biophysically, conditions – such as soil and rainfall – change significantly within short distances.

Given the varying circumstances, conservation agriculture cannot be promoted as rigid or one-size fits all solution as defined by the three principles, said Rusinamhodzi.

The systems agronomist studied for his doctoral at Wageningen University with a special focus on targeting appropriate crop intensification options to selected farming systems in southern Africa. Now, with CIMMYT he works with African farming communities to adapt conservation agriculture to farmers’ specific circumstances to boost their food production.

Rusinamhodzi’s focus in the region is to design cropping systems around maize-legume intercropping and conservation agriculture. Intercropping has the added advantage of producing two crops from the same piece of land in a single season; different species such as maize and legumes can increase facilitation and help overcome the negative effects of prolonged dry spells and poor soil quality.

Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT
Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT

“The key is to understand the farmers, their resources including the biophysical circumstances and their production systems, and assist in adapting conservation agriculture to local needs,” he said.

Working with CIMMYT’s Sustainable Intensification Program, Rusinamhodzi seeks to understand production constraints and opportunities for increased productivity starting with locally available resources.

Using crop simulation modeling and experimentation, he estimates how the farming system will perform under different conditions and works to formulate a set of options to help farmers. The options can include agroforestry, intercropping, improved varieties resistant to heat and drought, fertilizers and manures along with the principles of conservation agriculture to obtain the best results.

The models are an innovative way assess the success or trade-off farmers could have when adding new processes to their farming system. However, the application of these tools are still limited due to the large amounts of data needed for calibration and the complexity, he added.

Information gathered is shared with farmers in order to offer researched options on how to sustainably boost their food production under their conditions, Rusinamhodzi said.

“My ultimate goal is to increase farmers’ decision space so that they make choices from an informed position,” he said.

Rusinamhodzi also trains farmers, national governments, non-profit organizations, seed companies and graduate students on the concepts and application of sustainable intensification including advanced analysis to understand system productivity, soil quality, water and nutrient use efficiency and crop pest and disease dynamics.

 

Leonard Rusinamhodzi works with the SIMLESA project funded by the Australian Centre for International Agricultural Research and the CGIAR MAIZE program.

 

 

Establishing a soil borne pathogen research center in Turkey

Participants of the workshop. Photo: Directorate of Plant Protection Central Research Institute of Turkey.
Participants of the workshop. Photo: Directorate of Plant Protection Central Research Institute of Turkey.

ANKARA, Turkey (CIMMYT) – In a world of rapidly changing climates and related threats to agriculture and food production, including the emergence and spread of deadly crop pathogens and pests, Turkey’s Ministry of Food, Agriculture and Livestock (MFAL) has for the first time allocated funding to establish a world-class center for research on soil borne pathogens.

The announcement was made at an international workshop on soil borne pathogens (SBP) organized at MFAL in Ankara in October by the Directorate of Turkey’s Plant Protection Central Research Institute, Ankara (PPCRI). The new SBP research center will be located at that PPCRI, according to Dr. Nevzat BİRİƞİK, Director General, MFAL General Directorate of Agricultural Research and Policies.

“Among other things, the new center will focus on controlling the expansion of soil borne pathogens to new cropping areas, as well as linking to international research and experts on the pathogens, which cause massive damage each year to agriculture in Turkey,” BİRİƞİK said.

More than 147 delegates from across the ministry of agriculture and representatives of private companies gathered at this workshop, bringing together senior government officials and high-level experts to review and discuss scientific and technical activities in the management of soil borne pathogens in cereals.

The Turkish Ministry of Agriculture has given ongoing support to the International Maize and Wheat Improvement Center (CIMMYT)-led SBP program in Turkey to fight against diseases affecting cereal crops, which occupy 65 percent of Turkey’s farmland.

 

Presenters received with the director of PPCRI, Dr. Sait ErtĂŒrk. Photo Directorate of Plant Protection Central Research Institute of Turkey.
Presenters received with the director of PPCRI, Dr. Sait ErtĂŒrk. Photo Directorate of Plant Protection Central Research Institute of Turkey.

Soil borne pathogens cause significant damage in cereals, with global yield potential losses in wheat of up to 20 percent. Changing climates that are reducing growing conditions in tropical areas are also enabling the spread of SBPs into northern regions at increasing rates. This spread presents the risk of areas previously unaffected by SBPs having serious issues. Climate change may also affect the resistance of crops to specific soil pathogens through impacts of warming or drought and through the increased pathogenicity of organisms by mutation induced by environmental stress.

 

The SBP program is also involved with the use of chemical control on soil pathogens, with regard to the outlook and future expectations of pioneering pesticide producers in the world. The SBP program at CIMMYT-Turkey is using seed treatment to investigate whether or not it can synergistically reduce diseases populations. Seed treatment is absolutely required where diseases are present or where farmers do not accept changing their local, highly susceptible varieties with the resistant and modern ones.

CIMMYTNEWSlayer1

New publications: How climate-smart is conservation agriculture?

Wheat surrounds the border of the Volcanoes National Park in Rwanda. Photo: F. Baudron/CIMMYT
Wheat surrounds the border of the Volcanoes National Park in Rwanda. Photo: F. Baudron/CIMMYT

Africa is facing increasing complications in farming as climate change makes weather more unpredictable and leads to mass desertification of previously farmable land. Conservation agriculture (CA) has been touted for decades as the solution, not only to farming in climate change, but as a way to sequester Carbon in soil and actively combat climate change through agriculture.

A new study shows that while CA is well suited to helping farmers adapt to, and even increase profits in changing climates, there is considerable uncertainty about how much CA contributes to the mitigation aspect.

Overall the authors emphasized that the main benefit of CA is the adaptation potential, which helps farmers markedly improve productivity, achieve stable yields and decrease labor inputs, but further research is needed to determine effects on climate change.

Read the full study “How climate-smart is conservation agriculture (CA)?  Its potential to deliver on adaptation mitigation and productivity on smallholder farms in southern Africa” and check out other recent publications by CIMMYT staff below:

How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. 2017. Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T.S., Lamanna, C., Eyre, J.X. In: Food Security, vol 9, p 537–560.

Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms. 2016. Plett, D., Holtham, L., Baumann, U., Kalashyan, E., Francis, K., Enju, A., Toubia, J., Roessner, U., Bacic, A., Rafalski, A., Tester, M., Garnett, T., Kaiser, B.N., Dhugga, K. In: Plant Molecular Biology, vol. 92, p. 293-312.

Nitrogen management under conservation agriculture in Cereal-based Systems. 2016. Jat, H.S., Jat, R.K., Parihar, C.M., Jat, S.L., Tetarwal, J.P., Sidhu, H.S., Jat, M.L. In: Indian Journal of Fertilizers, vol.15, no.4, p.76-91.

Novel structural and functional motifs in cellulose synthase (CesA) genes of bread wheat (Triticum aestivum, L.). 2016. Kaur, S., Gill, K.S., Singh, J., Dhugga, K. In: PLoS One, vol.11, no.1, 1-18 p.

Ocurrence and identification of cereal cyst nematode, heterodera filipjevi (nemata: heteroderidae), in Bolu province of Turkey. 2016. Imren, M., Toktay, H., Kutuk, H., Dababat, A.A. In: Nematropica, vol. 44, no. 2, p. 154-161.

On-farm evaluation of hermetic technology against maize storage pests in Kenya. 2016. Likhayo, P., Bruce, A.Y., Mutambuki, K., Tadele Tefera Mueke, J. In: Journal of Economic Entomology, vol.109, no.4, p. 1-8.

Stay-green and associated vegetative indices to breed maize adapted to heat and combined Heat-Drought Stresses. 2017. Cerrudo, D., Gonzalez-Perez, L., Mendoza, A., Trachsel, S. In: Remote sensing, vol. 9, no. 3, p. 1-13.

The research and implementation continuum of biofortified sweet potato and maize in Africa. 2017. Tanumihardjo, S.A., Ball, A.M., Kaliwile, C., Pixley, K.V. In: Annals of the New York Academy of Sciences, v. 1390, p. 88-103.

Transgenic strategies for enhancement of nematode resistance in plants. 2017. Muhammad Amjad Ali, Azeem, F., Amjab Abbas Joyia, F.A., Hongjie Li, Dababat, A.A. In: Frontiers in Plant Science, v. 8, no. 750.

Understanding the determinants of alternate energy options for cooking in the Himalayas: Empirical evidence from the Himalayan region of Pakistan. 2017. Dil Bahadur Rahut, Ali, A. Mottaleb, K.A. In: Journal of Cleaner Production v. 149, p. 528-539.

Utilizing high-throughput phenotypic data for improved phenotypic selection of stress-adaptive traits in wheat. 2017. Cairns, J.L., Reynolds, M.P., Poland, J. In: Crop Science, v. 57, p. 648-659.

Investigating Conservation Agriculture (CA) Systems in Zambia and Zimbabwe to Mitigate Future Effects of Climate Change.  2010. Thierfelder, C., Wall, P. C. In: Journal of Crop Improvement, v.24(2), p. 113-121.

Climate disasters are closing in. Why have we forgotten farmers?

A maize field is inundated by a flash flood in southern Bangladesh. (Photo: M. Yusuf Ali/CIMMYT)
A maize field is inundated by a flash flood in southern Bangladesh. (Photo: M. Yusuf Ali/CIMMYT)

Do you ever contemplate climate change over your morning cup of coffee?

Probably not. But perhaps it is time that you did.

The tropical storms that recently hit the U.S. and Caribbean in quick and brutal succession have brought the impacts of climate change closer to home for many of us in the developed world. Hurricane Maria decimated Puerto Rico, wiping out nearly 80 percent of the value of the country’s crops. One of these major exports is coffee. A major industry, a lifeline for farmers, and the breakfast staple you may take for granted, swept away.

Storms like Maria, which seem to be fuelled by climate change, and are an indication of the kind of extreme weather events the world will have to contend with in the future. They won’t only devastate homes and cripple countries’ infrastructure, they will have a serious and long term effect on our global food supply.

Many parts of the developing world have been experiencing the brunt of these climate change impacts for decades. With fragile food systems at the mercy of the increasingly erratic weather – they stand to lose a lot more than those of us with the resilience to bounce back. They have fewer options to recover and need urgent help.

In East and Southern Africa for example, consecutive seasons of drought  have ravaged crops and livestock, causing food prices and hunger levels to soar. Climate-induced pest outbreaks like the fall armyworm in sub-Saharan Africa may cause up to $3 billion worth of damage to maize crops, and cost hundreds of millions more to address.

A predicted 150 million to two billion people are migrating to escape conflict, poverty, hunger, and extreme weather events.  To make matters worse, food production continues to emit greenhouse gases, contributing to the overall change in climate and perpetuating this vicious cycle.

World leaders must surely have seen this coming.

The Paris Climate Agreement in 2015 recognized agriculture as a sector where action is needed, to protect food and farming from the worst climate impacts. A vast majority of countries have formulated ambitious plans to tackle these issues on the ground. Yet two years on the price tag for inaction is climbing into the hundreds of millions.

Only by backing climate action in agriculture can our global food system have a fighting chance. This week’s climate change conference in Bonn – that several US governors will attend in the absence of the Trump administration – will be the ideal time to step this action up. The solutions are out there – farmers, governments, scientists and the private sector are putting them into practice around the world every day.

Soybeans damaged by a flash flood. (Photo: Shah-Al-Emran/CIMMYT)
Soybeans damaged by a flash flood. (Photo: Shah-Al-Emran/CIMMYT)

Climate-proof crops

In Zimbabwe, where farmers pin their hopes on reliable rainfall, droughts pose a constant threat to crops and livelihoods. Hunger looms large for the poorest farmers. In this setting, drought-tolerant maize varieties are a lifesaver. Farmers who planted drought-tolerant varieties have substantially increased their output and incomes; researchers estimate that this is equivalent to more than nine months of food at no additional cost. Scientists are also breeding varieties that can contend with hotter climates – these maize seeds are increasingly in demand by farmers.

Fighting pests

Changing climates create favourable conditions for new pests and diseases. Now affecting more than 30 African countries, the fall armyworm is wrecking staple crops and compromising the food and nutritional security of millions of people. Recently, a coalition has initiated an emergency response to this looming threat, building on decades of experience managing pests and diseases. The strategy centers around the needs of smallholder farmers, who often cannot afford costly chemical insecticides. Potential responses include low-cost and environmentally safer pesticides, simple and effective on-farm practices like intercropping maize with beans, biological control (which deploys other organisms or plants to attack the pest), and improving resistance of vulnerable crops. Better monitoring and surveillance will help countries mobilize responses well ahead of time.

Insurance when disaster strikes

Even the most drought-tolerant and pest-resistant crops and livestock are vulnerable to prolonged droughts, erratic rainfall and extreme weather events. New insurance products geared towards smallholder farmers can help them recover their losses, and even encourage farmers to invest in climate-resilient innovations. In the most flood-prone state of Bihar in India, a new insurance scheme based on satellite data is set to pay out to up 60 percent of farmers that purchased policies, offering some hope to rebuild livelihoods washed away during the monsoon season.

Fall Armyworm on maize in Nigeria. (Photo: G. Goergen/IITA)
Fall Armyworm on maize in Nigeria. (Photo: G. Goergen/IITA)

Sustaining food security while reducing emissions

It is imperative to reduce agriculture’s contribution to global emissions if we are to meet the global target of 1.5 degrees set out in the Paris Climate Agreement. But this has been one of the sticking points for UN climate negotiations on agriculture; some countries fear that mitigation actions could compromise food production. However, research undertaken by CGIAR and its partners has found that a middle ground is possible, where farmers adopt practices that improve productivity and resilience while also reducing emissions. In Vietnam and the Philippines, farmers are using water-saving approaches to growing rice, which happen to reduce harmful methane emissions by around 50%. It’s an easy win for farmers and also for the planet.

It is time that our global food and farming systems – so vital to our survival – get the attention they deserve. It shouldn’t take these disasters happening close to home (or the threat of an interruption in our coffee supply) for our leaders to take action.

The hard-won gains in global food security are already sliding into reverse, with farmers at the front lines of future climate change. The UN climate talks offer the opportunity for global policy and financing to catch up to the needs already expressed by countries. Anything less would be a catastrophe for farmers and for our collective future.

Elwyn Grainger-Jones is the Executive Director of CGIAR System Organization and Martin Kropff is the Director General of the International Maize and Wheat Improvement Center (CIMMYT).

Find the original article published by Reuters here.

Better farmer access to machinery eases crop residue burning in India

uper SMS fitted combine harvester and Happy Seeder” for simultaneously harvesting of rice and seeding of wheat. Photo: HS Sidhu /CIMMYT
“Super SMS” fitted combine harvester and “Happy Seeder” can be used for simultaneously harvesting rice and seeding wheat. Photo: H.S. Sidhu/CIMMYT

EL BATAN, Mexico (CIMMYT) — In conjunction with recent state regulations outlawing the use of fire to destroy field crop waste in northwest India, some farmers are benefitting from technological innovations that can help prevent damaging smog levels in the capital Delhi and other areas, according to scientists.

Currently, the majority of farmers in northwest India burn leftover vegetation residue to prepare fields for planting in cyclical rice-wheat crop rotations, leading to negative consequences for soil quality, the environment, animal and human health. Rice-wheat crop rotations make up 84 percent of burned crops, a key source of atmospheric pollution.

“Farmers need access to appropriate machinery and training to implement change to discourage burning,” said M.L. Jat, a systems agronomist who works in New Delhi with the International Maize and Wheat Improvement Center (CIMMYT). “Using crop residue in a sustainable and eco-friendly manner could benefit all stakeholders.”

Many farmers keep costs low by burning residue on the farm, rather than paying for its removal for other uses, which could include animal feed, biofuel,  incorporating it into the soil or retaining it in the field as mulch, according to a research paper titled “Burning issues of paddy residue management in northwest fields of India.” Fire is also used to eliminate weeds, pests, disease and remaining field stubble after harvest.

Ash left on the fields after residue burning increases the availability of some nutrients, while depleting others and negatively affecting soil health in the long term. During burning, soil temperature increases, bacteria and fungi are killed off, regenerating in a matter of days. Residue burning can damage plants and trees on field edges with negative implications for the overall ecosystem.

Residues can be used as a renewable energy source to improve air, soil quality, climate change and reduce global warming, provided these are economically viable options for farmers. Incentives could also help encourage farmers to leave residues on their fields for use as fertilizer.

If residue is mulched into the soil, nutrient levels improve and carbon sequestration capacity increases, lowering the release of greenhouse gases into the environment. Additionally, residue retention reduces evaporation and increases soil moisture by as much as 10 percent during the wheat-growing season.

Farmers can benefit from the Happy Seeder, a machine that can plant wheat seed directly into the soil by boring through crop residue. The Straw Management System (SMS) machine spreads straw residue thinly on the soil surface allowing seeding.

“Residues are also of great economic value as livestock feed, fuel and industrial raw materials, but of the total rice residues produced in northwestern India, only around 15 percent can potentially be used for these purposes and the rest must be managed with in-situ (on site) management technologies,” said Jat, who conducted the research in collaboration with the CGIAR research programs on maize (CRP Maize), wheat (CRP Wheat) and climate change, agriculture and food security (CCAFS).

“Although farmers are aware of the adverse affects of crop burning, they rely on it due to the lack of economically viable and acceptable machinery and alternatives to dispose of residue.”

However, deploying advanced technology, including the concurrent use of straw management systems, fitted combine harvesters and Happy Seeders for direct drilling is a viable solution to eliminate burning, he added.

With these advancements and aggressive campaigns, within a period of a couple of months in Punjab state alone, over 1,000 combine owners have launched a “Super SMS.”

Additionally, nearly 2,000 happy seeders are being manufactured, which will lead to large-scale adoption of conservation agriculture techniques in the upcoming wheat season, Jat said.

Related articles:

The Evergreen Revolution: Six ways to empower India’s no-burn agricultural future

New study uncovers climate footprint of India’s favorite foods

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

New Dehli air pollution causes United Airlines flight cancellations

World leaders: Back climate change action in agriculture to give our food system a fighting chance

Global climate change negotiators meet this week to tackle myriad issues, including how to reduce greenhouse gas emissions from agriculture and protect food and farming from worsening climate impacts.

But unheralded and behind COP23 headlines, governments, private companies, and scientists led by CGIAR are already developing and sharing life-saving innovations for farmers, particularly smallholders, who fight daily at the climate change frontlines.

Technology such as drought- and heat-tolerant maize, resistant crops and control practices to combat newly-emerging pests, insurance to recover from extreme or erratic weather, and more targeted use of nitrogen fertilizers are already being adopted in Africa and Asia to reduce agriculture’s footprint while improving farm resilience and productivity.

Click here to read a message by Elwyn Grainger-Jones, Executive Director, CGIAR System Organization, and Martin Kropff, Director General, CIMMYT (the International Maize and Wheat Improvement Center) describing these efforts and issuing a wake-up call for world leaders.

Helping farming families thrive while fighting climate change in Mexico

Farmers walk through a field that has been cleared by slash and burn agriculture in the Yucatan peninsula. Photo: Maria Alvarado/ CIMMYT
Farmers walk through a field that has been cleared by slash and burn agriculture in the Yucatan peninsula. Photo: Maria Boa/ CIMMYT

MEXICO CITY (CIMMYT) — The Yucatan Peninsula in Mexico has been hard hit by drought and extreme weather events related to climate change in recent years, exacerbating local poverty and food insecurity. In addition, slash-and-burn agriculture techniques have led to environmental degradation and contribute to climate change. The International Maize and Wheat Improvement Center (CIMMYT) is working to help indigenous Mayan farming families in the Yucatan peninsula adapt to and mitigate climate change, increasing maize yields and food security while minimizing negative environmental impact. This comes as world leaders mull a crucial decision on agriculture at the UN Climate talks in Bonn, a decision that could support farmers everywhere to take similar actions.

Maize is the backbone of diets in the Yucatan Peninsula, and has sustained indigenous Mayan families for millennia. It is grown as part of the “milpa,” a pre-hispanic intercropping system that revolves around the symbiotic relationship of maize, beans and squash.

Traditionally, the milpa system has involved clearing new land for farming using the slash and burn method. However, after two to three years, the soils begin to deteriorate and new land must be cleared. These practices have contributed to deforestation, increased CO2 emissions, and loss of invaluable local biodiversity.

In the Yucatan Peninsula, climate change has begun to threaten milpa agriculture. The rains have been later and shorter every year, reducing maize yields. As it has become more difficult to make a living from agriculture, young people have been forced to migrate to find work. Farmers have also lost seeds of their traditional maize varieties when they have been unable to harvest after severe drought.

A new CIMMYT project, Milpa Sustentable Yucatan Peninsula, is helping farming families increase their maize yields through sustainable, inclusive solutions. The Project, which means “sustainable milpa” in Spanish, is working to help farming families identify the best soils in their communal land and incorporate sustainable intensification and conservation agriculture (CA) practices to improve soils in order to prevent deforestation and mitigate climate change.

The project has a strong social inclusion component and works to make sure that women and youth are included and prioritized in capacity development opportunities and decision-making processes. “As milpa is a family system, women and youth must be included in order to attain impact,” said Carolina Camacho, principal researcher on social inclusion at CIMMYT. “Complex challenges such as climate change require social change and inclusion of traditionally marginalized groups such women and youth in order for mitigation to be successful.”

Farming families are taught CA techniques such as zero tillage that help prevent erosion and water runoff. This increases soil health and uses water more efficiently, which helps maize better survive drought and allows farmers to farm the same land for many years without resorting to deforestation or burning.

Native maize diversity in the Yucatan peninsula. Photo: Maria Alvarado/ CIMMYT
Native maize diversity in the Yucatan peninsula. Photo: Maria Boa/ CIMMYT

“Farmers used to harvest 500 kilograms of maize per hectare. Now, with techniques they have learned from CIMMYT, they are harvesting up to 2 tons per hectare,” said Vladimir May, technical leader of the Milpa Sustentable Yucatan Peninsula project. The project has also helped farmers increase yields by identifying natural inputs that can be integrated into an integrated pest and fertility management strategy This allows farming families to sustainably increase their maize yields despite limited inputs and resources.

The native maize grown by farmers in the Yucatan Peninsula adapted to its local environment over centuries of selection by farmers to perform well despite poor soils and other challenges. However, climate change has threatened the survival of this maize genetic diversity. Some farmers lost all of the seed of their traditional maize varieties when they were unable to harvest anything after extreme drought. Others have found that their traditional varieties do not perform as well as they had due to environmental stress related to climate change.

CIMMYT is working to help farmers replace stores of traditional maize seed they have lost due to drought and climate change. The CIMMYT maize seed bank safeguards over 28,000 maize varieties for the benefit of humanity, including seeds that are native to the Yucatan Peninsula. Milpa Sustentable Yucatan Peninsula has worked with the seed bank to find farmers original varieties, restoring a priceless component of many families’ food security, culture and biodiversity.

The project has also helped farmers increase their yields through participatory variety selection. By crossing farmers’ native varieties with other native maize varieties that are more resistant to drought or climate change, farmers can sustainably increase maize yields without losing the qualities they love about their traditional varieties. Women have played a key role in this participatory variety selection, because as they process and prepare all of the food grown by the family, they have intimate knowledge of the characteristics the maize must have to perform well and feed the family.

Farmers working with the CIMMYT project in Yucatan Peninsula. Photo: Maria Boa
Farmers working with the CIMMYT project in Yucatan Peninsula. Photo: Maria Boa/ CIMMYT

Poverty and food insecurity in the region have meant that migration has been a necessity for many. With new technologies and support from CIMMYT, women and youth are beginning to see that they may have a future in farming, despite the challenge of climate change. “Now that they see how much maize and other cash crops can be produced with sustainable technologies, young people are deciding to stay,” said Maria Boa, a consultant working with the project. “As youth are sometimes more accepting of new technologies, young farmers in the Yucatan play a crucial role in climate change mitigation and adaptation. Inclusion of women and youth is necessary to make a positive change in these communities.”

These and other farmers around the world will play an important role in fighting climate change, by reducing emissions from farming. While a majority of countries, including Mexico, have committed to reducing the climate footprint of agriculture, world leaders must now decide how to best support and finance these actions.

The Milpa Sustentable Yucatan Peninsula project is operated and supported by the International Maize and Wheat Improvement Center (CIMMYT), the government of Mexico through the SAGARPA program Sustainable Modernization of Traditional Agriculture (MasAgro) CitiBanamex, Fundación Haciendas del Mundo Maya and the  CGIAR Research Program on Maize (MAIZE). The project is operated with the support of local partners, non-governmental organizations and the different levels of the Mexican government. 

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Click here to read more stories in this series and follow @CIMMYT on Facebook and Twitter for the latest updates.

New Publications: Conservation agriculture increases the adaptive capacity of cropping systems

Spreading seed. Photo: CIMMYT/P. Lowe
Spreading seed. Photo: CIMMYT/P. Lowe

Conservation agriculture (CA) is widely promoted in sub-Saharan Africa as an adaptable and sustainable way to farm in changing climates. CA has three major principles: the minimal disturbance of soil via zero till planting, crop diversification and soil cover by either residues or cover crops.

A new study examined over 700 independent studies to find out if CA works in a variety of environmental conditions in tropical areas.

The authors found that in drought and high-temperature conditions, maize yields under CA improved relative to conventional farming. This relative improvement, they said, is because CA helps water infiltrate better into the soil than conventional farming.

These same moisture-retaining attributes that make CA effective in drought-like conditions can worsen the impact of flooding. However, droughts are expected to worsen in coming years, making these water-retaining qualities likely more advantageous in the long term.

Overall, the study found that CA systems have more stable yields across different stress levels, outperform their conventional counterpart in many cases even without the addition of nitrogen fertilizers and increase the adaptive capacity of maize-based cropping systems.

 

Read the full study “The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields” and check out other recent publications by CIMMYT staff below:

Markers linked to wheat stem rust resistance gene Sr11 effective to puccinia graminis f. sp. tritici Race TKTTF. 2016. Nirmala, J., Shiaoman Chao, Olivera, P., Babiker, E.M., Abeyo Bekele Geleta, Tadesse, Z., Imtiaz, M., Talbert, L., Blake, N.K., Akhunov, E., Pumphrey, M., Yue Jin, Rouse, M.N. In: Phytopathology, v. 106, no. 11, p. 1352-1358.

Modeling the risk of invasion and spread of Tuta absoluta in Africa. 2016. Guimapi, R.Y.A., Mohamed, S.F., Okeyo, G.O., Ndjomatchoua, F.T., Ekesi, S., Tonnang, H. In: Ecological complexity, vol. 28, p. 77-93.

Modelling and genetic dissection of staygreen under heat stress. 2016. Suzuky Pinto, R., Lopes, M.S., Collins, N.C., Reynolds, M.P. In: Theoretical and Applied Genetics, vol. 129, p. 2055-2074.

Multidimensional impact assessment of zero tillage technology on wheat productivity in Haryana. 2016. Kumar, A. , Singh, R., Shahnawaz Rasool Dar, Singh, S.,  Gathala, M.K., Kanchan Pathania In: Journal of Food, Agriculture and Environment. 2016, vol. 14, no. 2, p. 85-90.

Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. 2016. Bajgain, P., Rouse, M.N., Tsilo, T.J., Macharia, G., Bhavani, S., Yue Jin, Anderson, J.A. In: PLoS One, vol. 11, no. 5: e0155760.

Occurrence, identification and phylogenetic analyses of cereal cyst nematodes (Heterodera spp.) in Turkey. 2017. Jiang-Kuan Cui, Huan Peng, Shi-ming Liu, Erginbas-Orakci, G., Imren, M., Dababat, A.A., De-Liang Peng In: Journal of integrative agriculture, vol. 16, no. 0, p. 1-10.

On-farm yield gains with Stress-Tolerant Maize in Eastern and Southern Africa. 2017. Setimela, P.S., Magorokosho, C., Lunduka, R., Gasura, E., Makumbi, D., Amsal Tesfaye Tarekegne, Cairns, J.E., Thokozile Ndhlela, Erenstein, O., Mwangi, W.M. In: Agronomy Journal, v. 109, no. 2, p. 406-417.

Pedigree-based prediction models with genotype × environment interaction in multi-environment trials of CIMMYT wheat. 2017. Sukumaran, S., Crossa, J., Jarquín, D., Reynolds, M.P. In: Crop Science, vol. 57, p. 1-16.

Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data. 2017. Montesinos-Lopez, O.A., Montesinos-López, A., Crossa, J., De los Campos, G., Alvarado, G., Mondal, S., Rutkoski, J., Gonzalez-Perez, L., Burgueño, J. In: Plant methods, v. 13, no.4.

Soil organic carbon changes after seven years of conservation agriculture in a rice–wheat system of the eastern Indo-Gangetic Plains. 2017. Sapkota, T.B., Jat, R.K., Ravi Gopal Singh, Jat, M.L., Stirling, C., Jat, M.K., Bijarniya, D., Kumar, M., Singh, Y., Saharawat, Y.S., Gupta, R.K. In: Soil Use and Management, v. 33, p. 81-89.

The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. 2018. Steward, P.R., Dougill, A.J., Thierfelder, C. Pittelkow, C.M., Stringer, L.C., Kudzala, M., Shackelford, G.E. In: Agriculture, Ecosystems & Environment, v. 251, p. 194-202.

Climate insurance for farmers: a shield that boosts innovation

Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT
Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT

What stands between a smallholder farmer and a bag of climate-adapted seeds? In many cases, it’s the hesitation to take a risk. Farmers may want to use improved varieties, invest in new tools, or diversify what they grow, but they need reassurance that their investments and hard work will not be squandered.

Climate change already threatens crops and livestock; one unfortunately-timed dry spell or flash flood can mean losing everything. Today, innovative insurance products are tipping the balance in farmers’ favor. That’s why insurance is featured as one of 10 innovations for climate action in agriculture, in a new report released ahead of next week’s UN Climate Talks. These innovations are drawn from decades of agricultural research for development by CGIAR and its partners and showcase an array of integrated solutions that can transform the food system.

Index insurance is making a difference to farmers at the frontlines of climate change. It is an essential building block for adapting our global food system and helping farmers thrive in a changing climate. Taken together with other innovations like stress-tolerant crop varieties, climate-informed advisories for farmers, and creative business and financial models, index insurance shows tremendous promise.

The concept is simple. To start with, farmers who are covered can recoup their losses if (for example) rainfall or average yield falls above or below a pre-specified threshold or ‘index’. This is a leap forward compared to the costly and slow process of manually verifying the damage and loss in each farmer’s field. In India, scientists from the International Water Management Institute (IWMI) and the Indian Council of Agricultural Research (ICAR), have worked out the water level thresholds that could spell disaster for rice farmers if exceeded. Combining 35 years of observed rainfall and other data, with high-resolution satellite images of actual flooding, scientists and insurers can accurately gauge the extent of flooding and crop loss to quickly determine who gets payouts.

The core feature of index insurance is to offer a lifeline to farmers, so they can shield themselves from the very worst effects of climate change. But that’s not all. Together with my team, we’re investigating how insurance can help farmers adopt new and improved varieties. Scientists are very good at developing technologies but farmers are not always willing to make the leap. This is one of the most important challenges that we grapple with. What we’ve found has amazed us: buying insurance can help farmers overcome uncertainty and give them the confidence to invest in new innovations and approaches. This is critical for climate change adaptation. We’re also finding that creditors are more willing to lend to insured farmers and that insurance can stimulate entrepreneurship and innovation. Ultimately, insurance can help break poverty traps, by encouraging a transformation in farming.

Insurers at the cutting edge are making it easy for farmers to get coverage. In Kenya, insurance is being bundled into bags of maize seeds, in a scheme led by ACRE Africa. Farmers pay a small premium when buying the seeds and each bag contains a scratch card with a code, which farmers text to ACRE at the time of planting. This initiates coverage against drought for the next 21 days; participating farms are monitored using satellite imagery. If there are enough days without rain, a farmer gets paid instantly via their mobile phone.

ACRE makes it easy for Kenyan farmers to get insurance. Source
ACRE makes it easy for Kenyan farmers to get insurance. Source

Farmers everywhere are businesspeople who seek to increase yields and profits while minimizing risk and losses. As such, insurance has widespread appeal. We’ve seen successful initiatives grow rapidly in India, China, Zambia, Kenya and Mexico, which points to significant potential in other countries and contexts. The farmers most likely to benefit from index insurance are emergent and commercial farmers, as they are more likely than subsistence smallholder farmers to purchase insurance on a continual basis.

It’s time for more investment in index insurance and other innovations that can help farmers adapt to climate change. Countries have overwhelmingly prioritized climate actions in the agriculture sector, and sustained support is now needed to help them meet the goals set out in the Paris Climate Agreement.

Jon Hellin leads the project on weather index-based agricultural insurance as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). This work is done in collaboration with the International Research Institute for Climate and Society (IRI) at Columbia University, and the CGIAR Research Programs on MAIZE and WHEAT.

Find out more 

Report: 10 innovations for climate action in agriculture

Video: Jon Hellin on crop-index insurance for smallholder farmers

Info note: Prospects for scaling up the contribution of index insurance to smallholder adaptation to climate risk

Report: Scaling up index insurance for smallholder farmers: Recent evidence and insights.

Website: Weather-related agricultural insurance products and programs – CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

New crop varieties that counter climate change: a best bet for farmers

 

Stress-tolerant maize varieties are helping farmers produce more food despite climate change. Photo: Johnson Siamachira/CIMMYT.
Stress-tolerant maize varieties are helping farmers produce more food despite climate change. Photo: Johnson Siamachira/CIMMYT.

MEXICO CITY (CIMMYT) – As the world’s changing climate makes it more difficult to feed a growing population, smallholder farmers need sustainable solutions to improve food security and livelihoods while adapting to the impacts of climate change. Stress tolerant crop varieties offer much-needed answers, as one of the “10 best bet innovations for adaptation in agriculture” according to a new working paper from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

The paper taps into decades of agricultural research for development conducted by CGIAR research centers to identify the top innovations for climate adaption in agriculture. As world leaders convene for the UN Climate talks in Bonn this week and make a potential decision on agriculture, countries are being encouraged to adopt and advance best practices in their National Adaptation Plans.

Climate change has led to increased incidences of drought, heat and extreme weather events as well as crop pests and diseases, all of which can severely limit the growth of staple crops such as maize, wheat, rice and potato. As the demand for staple crops such as maize is expected to increase by 60 percent by 2050, this poses a grave danger for global food production.

CGIAR Research Centers and Programs have long worked to develop stress tolerant crop varieties that allow smallholder farmers to sustainably increase food security despite climate change. One key example of this work is the Drought Tolerant Maize for Africa project, implemented through the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize (MAIZE) with support from the Bill and Melinda Gates Foundation. From 2010-2016, the project released over 200 stress tolerant maize varieties for smallholder farmers in 13 countries in Africa, which has the potential to generate between $362 million to $590 million over a 7 year period through both yield gains and reduced yield variability.

On-farm trials have found that climate resilient maize varieties yielded up to 20 percent more maize under stress prone conditions, and double in severe stress environments, such as the El Niño event of 2015/16. This can significantly increase household income and food security. A recent study on drought-tolerant maize varieties in Zimbabwe found that climate resilient maize could provide farming families with an additional 9 months of food, or $240 per hectare, in drought-prone regions. Based on these results, drought-resilient crops have been dubbed a Tesla-like innovation for agriculture by Dr. Bruce Campbell, Director of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

The benefits are not limited to Africa alone—in South Asia, 18 pre-commercial heat tolerant maize hybrids from the Heat Tolerant Maize for Asia (HTMA) have been licensed. Of these, 6 have broad adaptation across agro-ecological zones in South Asia (suggesting they likely possess both heat and drought tolerance) and 12 hybrids had good adaptation to specific mega-environments in Bangladesh, Bhutan, India, Nepal and Pakistan.

To be successful, crop breeding needs to stay several steps ahead of climate change. The paper argues that strengthened breeding systems, using the latest technologies, together with more open international exchange of germplasm, and rapid change in varieties are fundamental components of this adaptation strategy. In addition, strengthened breeding pipelines for climate resilient maize also offer the co-benefit of faster development of maize with pest and disease resistance or enhanced nutrition in addition to tolerance to other stresses. In Malawi, Zambia and Zimbabwe maize varieties are now on the market with both drought tolerance and high pro-vitamin A content, which can prevent blindness in children. Research is currently underway to develop drought and heat tolerant, nutritionally enhanced maize rich in pro-vitamin A and zinc.

CIMMYT, MAIZE and other CGIAR research centers and programs are dedicated to supporting smallholder farmers in climate change adaptation by delivering stress tolerant crop varieties through strengthened breeding systems, cutting-edge technologies and the open exchange of international germplasm. The adaption innovations outlined in this working paper must be considered and supported in the search for a food secure, climate resilient future for all.

For more information on the 10 innovations highlighted in this paper, please click here.

At this year’s UN Climate Talks at COP23 in Bonn, Germany, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Click here to read more stories in this series and follow @CIMMYT on Facebook and Twitter for the latest updates.

CIMMYTNEWSlayer1