Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

New crop varieties that counter climate change: a best bet for farmers

 

Stress-tolerant maize varieties are helping farmers produce more food despite climate change. Photo: Johnson Siamachira/CIMMYT.
Stress-tolerant maize varieties are helping farmers produce more food despite climate change. Photo: Johnson Siamachira/CIMMYT.

MEXICO CITY (CIMMYT) – As the world’s changing climate makes it more difficult to feed a growing population, smallholder farmers need sustainable solutions to improve food security and livelihoods while adapting to the impacts of climate change. Stress tolerant crop varieties offer much-needed answers, as one of the “10 best bet innovations for adaptation in agriculture” according to a new working paper from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

The paper taps into decades of agricultural research for development conducted by CGIAR research centers to identify the top innovations for climate adaption in agriculture. As world leaders convene for the UN Climate talks in Bonn this week and make a potential decision on agriculture, countries are being encouraged to adopt and advance best practices in their National Adaptation Plans.

Climate change has led to increased incidences of drought, heat and extreme weather events as well as crop pests and diseases, all of which can severely limit the growth of staple crops such as maize, wheat, rice and potato. As the demand for staple crops such as maize is expected to increase by 60 percent by 2050, this poses a grave danger for global food production.

CGIAR Research Centers and Programs have long worked to develop stress tolerant crop varieties that allow smallholder farmers to sustainably increase food security despite climate change. One key example of this work is the Drought Tolerant Maize for Africa project, implemented through the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize (MAIZE) with support from the Bill and Melinda Gates Foundation. From 2010-2016, the project released over 200 stress tolerant maize varieties for smallholder farmers in 13 countries in Africa, which has the potential to generate between $362 million to $590 million over a 7 year period through both yield gains and reduced yield variability.

On-farm trials have found that climate resilient maize varieties yielded up to 20 percent more maize under stress prone conditions, and double in severe stress environments, such as the El Niño event of 2015/16. This can significantly increase household income and food security. A recent study on drought-tolerant maize varieties in Zimbabwe found that climate resilient maize could provide farming families with an additional 9 months of food, or $240 per hectare, in drought-prone regions. Based on these results, drought-resilient crops have been dubbed a Tesla-like innovation for agriculture by Dr. Bruce Campbell, Director of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

The benefits are not limited to Africa alone—in South Asia, 18 pre-commercial heat tolerant maize hybrids from the Heat Tolerant Maize for Asia (HTMA) have been licensed. Of these, 6 have broad adaptation across agro-ecological zones in South Asia (suggesting they likely possess both heat and drought tolerance) and 12 hybrids had good adaptation to specific mega-environments in Bangladesh, Bhutan, India, Nepal and Pakistan.

To be successful, crop breeding needs to stay several steps ahead of climate change. The paper argues that strengthened breeding systems, using the latest technologies, together with more open international exchange of germplasm, and rapid change in varieties are fundamental components of this adaptation strategy. In addition, strengthened breeding pipelines for climate resilient maize also offer the co-benefit of faster development of maize with pest and disease resistance or enhanced nutrition in addition to tolerance to other stresses. In Malawi, Zambia and Zimbabwe maize varieties are now on the market with both drought tolerance and high pro-vitamin A content, which can prevent blindness in children. Research is currently underway to develop drought and heat tolerant, nutritionally enhanced maize rich in pro-vitamin A and zinc.

CIMMYT, MAIZE and other CGIAR research centers and programs are dedicated to supporting smallholder farmers in climate change adaptation by delivering stress tolerant crop varieties through strengthened breeding systems, cutting-edge technologies and the open exchange of international germplasm. The adaption innovations outlined in this working paper must be considered and supported in the search for a food secure, climate resilient future for all.

For more information on the 10 innovations highlighted in this paper, please click here.

At this year’s UN Climate Talks at COP23 in Bonn, Germany, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Click here to read more stories in this series and follow @CIMMYT on Facebook and Twitter for the latest updates.

CIMMYTNEWSlayer1

New study uncovers climate footprint of India’s favorite foods

Farmer weeding maize field in Bihar, India. Photo: M. DeFreese/CIMMYT.
Farmer weeding maize field in Bihar, India. Photo: M. DeFreese/CIMMYT.

India needs to tackle greenhouse gas emissions from its rice and livestock sectors according to a study by CIMMYT and partners. Researchers say this can and must be done in ways that improve yields, and sustain food and nutrition security.

India faces serious challenges when it comes to feeding its growing population. Hunger is prevalent, with over 190 million undernourished people – almost a quarter of the global hunger burden, affecting 4 out of 10 children. Although the productivity of major crops is increasing after the green revolution, yield increases have slowed down recently, and many of the country’s poorest and most vulnerable people have been left behind. Feeding an ever-growing population is a mammoth task, further complicated as climate change unleashes its effects, bringing droughts, pests, extreme heat and floods.

Paradoxically, India is also the world’s second largest food producer, and agriculture is a vital part of the country’s economy. Indian agriculture also accounts for about 18% of the country’s greenhouse gas emissions, making agriculture a key sector for climate action. In fact, India’s government has already indicated willingness to reduce emissions from agriculture as part the Paris Climate Agreement, in an effort to keep global warming below the 2-degree target. To take action, the country’s leaders need to know where to focus their efforts, and find ways to reduce emissions without compromising food and nutrition security.

Indian agriculture’s climate ‘hotspots’

A new study uncovers some answers to this question, and offers insights into how dietary shifts might influence future emissions. The study, Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation, was done by researchers from the International Maize and Wheat Improvement Center (CIMMYT) and partners at the University of Aberdeen and the London School of Hygiene & Tropical Medicine. Using the empirical model Cool Farm Tool, researchers analyzed the farm-level greenhouse gas emissions of 20 major food commodities in India, and two types of food products emerged as the worst culprits: rice and animal products such as meat, milk and eggs.

When looking at the level of emission per unit of area and unit of product, rice was the top source of emissions in agriculture. Continuously flooded paddies release huge amounts of methane, especially compared to intermittently flooded or irrigated rice land. The scientists found that the total global warming potential of rice on a per hectare basis was even higher than what was being reported in existing literature and at the national level.

Meat, eggs and milk were also found to have high emissions per unit of production. The authors warn that animal products will contribute an increasing share to overall emissions as India’s middle class grows, traditions evolve, and diets shift towards consumption of more animal products. That said, it will probably not match the rapid trajectory towards meat consumption of other large countries like China, due to India’s cultural preference for a lacto-ovo-vegetarian diet.

No tradeoff between mitigation and food security

The revelation of India’s agricultural emission ‘hotspots’ are a crucial step towards action. “These findings can help farmers, researchers and policy makers to understand and manage these emissions, and identify mitigation responses that are consistent with India’s food security and economic development priorities,” according to CIMMYT scientist Tek Sapkota, who co-authored the paper. “Agriculture is an important sector of the economy,” he said. “If India is to reduce its total emissions then agriculture has to play its part,” he explained, mentioning that emissions from agriculture must decline worldwide in order to meet the 2°C warming target.

In the UN climate discussions on agriculture, there has been ongoing resistance among some countries about promoting mitigation in agriculture, due to fears that this could compromise food security and nutrition. This is a “misconception” according to Dr. Sapkota. “Many agricultural practices advocated to increase production and increase the capacity of a system to cope with climate change also happen to reduce emissions,” he explained. The paper’s authors emphasize that mitigation must be a co-benefit of improved and more efficient agronomic practices, and interventions will need to consider the nutritional and health implications. Negotiators at the upcoming UN climate talks in Bonn should take note as they mull a decision on agriculture.

Sustainable solutions

There are many approaches and technologies in agriculture that can contribute to food and nutrition security and at the same time deliver climate change adaptation and mitigation services. Dr. Sapkota is part of a team undertaking a detailed analysis of mitigation options, their national level mitigation potential and associated cost of their adoption to come up with total technical mitigation potential sector of Indian agriculture. This study is coming out very soon, and will help build a more complete picture of the solutions available.

A new study finds sustainable agriculture can cut emissions in India. Photo: M. DeFreese/CIMMYT.
A new study finds sustainable agriculture can cut emissions in India. Photo: M. DeFreese/CIMMYT.

As an example, Dr. Sapkota points to conservation agriculture, which is based on the principles of minimum soil disturbance, continuous soil cover and diversified crop rotation. Conservation agriculture techniques can increase production in a sustainable way, by improving water use efficiency, reducing fertilizer consumption and reducing machinery use and fuel consumption. Through this approach, “you can reduce production costs, without compromising yield. In some instances you can increase yields. It’s a win-win from every perspective,” he says. Farmers are already getting more precise at managing nutrients, using several tools like the GreenSeeker and the , and techniques such as drilling fertilizer into the soil instead of broadcasting it. They are also using decision support systems like Nutrient expert and the Crop Manager, to help them determine how much fertilizer to apply, at the right time and in the right place. These approaches have been shown to reduce the amount of fertilizer needed while maintaining and even increasing yields.

In a similar vein, Alternative Wetting and Drying of rice fields, which otherwise remain continuously flooded, can reduce methane emissions substantially. In Vietnam and the Philippines, farmers have successfully used this method and reduced methane emissions by 48% without reducing yield.


In the livestock sector, there several ways to address emissions, including improved manure management, changing feed rations, growing feed crops in a more sustainable way, and feeding animals crop residues that would otherwise be burned.

Although the study points out food products with a particularly high climate footprint, it’s important not to think about solutions on a commodity-by-commodity or crop-by-crop basis, according to Dr. Sapkota. “Farmers grow crops in a system and we need system-based solutions,” he says. “For example, in the rice-wheat system in Indo-Gangetic Plains, if you want to go for conservation agriculture you cannot just focus on one crop. The way you manage water, energy,nutrients and other resources for one crop will have repercussions on other crops,” he explains.

The results of this study are an important starting point. “India is moving in the right direction,” says Dr. Sapkota. “Now there needs to be more research to show the effectiveness of technical mitigation options which can reduce emissions without compromising yield and profit,” he says. The government must also work closely with people on the ground: “There must be more awareness among extension workers and farming communities that they are part of this movement to tackle climate change,” he adds.

At this year’s UN Climate Talks, CIMMYT is highlighting innovations that can help farmers overcome climate change. Read more stories in this series and follow @CIMMYT for the latest updates.

Download the paper:

Vetter SH, Sapkota TB, Hillier J, Stirling CM, Macdiarmid JI, Aleksandrowicz L, Green R, Joy EJM, Dangour PD, Smith P. 2017. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment 237: 234–241.

Acknowledgments

The study is part of the Sustainable and Healthy Diets in India (SAHDI) project funded by the Wellcome Trust under the ‘Our Planet, Our Health’ programme (Grant number 103932) and the India Greenhouse Gas Mitigation Study led by the International Maize and Wheat Improvement Center (CIMMYT) and part of the CGIAR Research Program on Climate Change, Agricultural and Food Security (CCAFS).

 CIMMYTNEWSlayer1

Breaking Ground: Clare Stirling sees no silver bullets to control agriculture’s emissions

ClareStirling_Postcard

There are no easy fixes nor can business as usual continue, if humankind is to reduce the climate footprint of global agriculture while intensifying farming to meet rising food demands, according to an international scientist who has studied agriculture and climate interactions for nearly three decades.

“Climate change is a threat multiplier, intensifying the challenges of population growth, food insecurity, poverty, and malnutrition,” said Clare Stirling, a scientist in the sustainable intensification program of the International Maize and Wheat Improvement Center (CIMMYT). “With almost 60% of global food production coming from rainfed agriculture and more than 650 million people dependent on rainfed farming in Africa alone, our food system is already highly vulnerable to changing climates.”

Stirling, who is CIMMYT’s liaison with the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), believes that agriculture—including smallholder agriculture—can play a key role in meeting greenhouse gas emission targets, but only with combined and coordinated efforts that cross institutional and disciplinary boundaries.

CIMMYT contributes through a systems approach to developing and promoting climate smart technologies—including drought tolerant maize and wheat varieties, conservation agriculture, and precision nutrient and water management—as well as research on climate services, index-based insurance for farmers whose crops are damaged by bad weather, and data and models for greenhouse gas emissions in India and Mexico.

“Take the case of India, the world’s second-largest food producer,” Stirling explained. “Mitigation options for crops, of which rice-wheat systems are a major component, include improved water management in rice, more precise use of nitrogen fertilizer, preventing the burning of crop residues and promoting zero or reduced tillage, depending on local conditions and practices. With the right policies and training for farmers, these options could spread quickly to reduce emissions by as much as 130 Megatons of CO2e per year from the crop sector alone. The big challenge is achieving large-scale adoption for significant mitigation to occur.”

Science needed for local mitigation targets

Born in Malawi and having spent her early childhood in Zimbabwe, young Stirling also lived a year with her parents and siblings in a house trailer on a farm in Devon, United Kingdom. “Most of my childhood and teen years were spent living in villages, riding horses, and working on farms during school holidays. Out of this came a desire to work in agriculture and overseas.”

Stirling obtained a bachelor’s degree in plant science and a doctor’s degree in environmental crop physiology at Sutton Bonnington, University of Nottingham, U.K., performing fieldwork for the latter at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Hyderbad, India.

As a Ph.D. student at Nottingham, she also joined a research group under the late Professor John Monteith that was quantifying relationships among crop growth, radiation, and water use. The resulting equations underpin many of today’s crop simulation models. “My research since has focused on environmental interactions and crop growth, so climate change became an important part of this, starting with an M.Sc. course on the topic that I set up in Essex University in the 1990s.”

Among the intractable challenges Stirling sees is soil degradation. “Unless this is addressed, it will be impossible to sustainably intensify or build climate resilience into food systems,” she explained. “We must manage limited organic matter and fertilisers better and more efficiently, to achieve healthier soils.”

She is also concerned that the climate science to support national and local climate change adaptation planning is much less certain than that which informs long-term global scale targets. “CIMMYT has an invaluable role with its global and strategic research mandate to develop technologies that will raise productivity and resource use efficiency in future, warmer climates,” Stirling asserted.

“Local climate predictions are likely to remain uncertain and adapting to current climate variability may not be enough for long-term adaptation in many places, with the surprises that may be in store,” Stirling added.

“International organizations such as CIMMYT need to offer stress-tolerant, high-yielding germplasm and sustainable management systems, as well as harnessing big data and digitization, to transform adaptation to deal with future, more extreme climates. Finally, future farmers will need to get the most out of good conditions and good years because, the way things are headed, there may be little hope for coping in bad years.”

Read about research by Stirling and colleagues:

Click here to read “Tek B. Sapkota, Jeetendra P. Aryal, Arun Khatri-Chhetri, Paresh B. Shirsath, Ponraj Arumugam, and Clare M. Stirling. 2017. Identifying high-yield low-emission pathways for the cereal production in South Asia. Mitig Adapt Strateg Glob Change DOI 10.1007/s11027-017-9752-1.

Campaign against residue burning seeks to make India’s “food bowl” sustainable

Progressive farmer sharing experience of using CSAPs and yielding higher gains. Photo: CIMMYT.
Progressive farmer sharing experience of using CSAPs and yielding higher gains. Photo: CIMMYT.

SAMBALI, India (CIMMYT) – In the 1960s, India became the center of the Green Revolution by adopting high-yielding crop varieties and new technologies and practices that staved off famine for millions.

Today, India needs a new Green Revolution.

The country’s combination of high greenhouse gas emissions, vulnerability to climate change and pressure to feed nearly 2 billion people by 2050 is driving farmers to find ways to grow more food in harsher environments.

Climate-smart agriculture is a new approach to farming that combines adaptation options that sustainably increase productivity, enhance resilience to climatic stresses and reduce greenhouse gas emissions. This option is becoming increasingly popular among smallholder farmers, who make up nearly 80 percent of India’s farmers and produce more than 40 percent of its food.

Harynana is a north-western state in India, and part of the Indo-Gangetic Plain, which covers an area of over 2.5 million square kilometers and feeds 500 million people. The village of Sambali, in Haryana, is one of the first communities in India to officially become “climate-smart” as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security project (CCAFS), which is helping smallholder farmers globally find practical adaptation options to improve food security and resilience to climate change effects like drought, flooding and other extreme weather events.

In Sambali, more than 60 percent of the population depends on agriculture for their livelihoods. For over 50 years, farmers from the village have worked with Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), this long-term knowledge exchange and exposure has resulted in 45 percent of the farming community practicing climate smart farming.

However, residue burning – the burning of excess residue on fields after a crop is harvested, as a means to clear the area to plant the next crop – remains a common practice in highly cultivated regions in India. Sambali becoming a residue-burning free village is setting an example of a model village contributing towards a healthier environment.

Besides triggering costly respiratory ailments in humans and animals in farm regions and urban centers, burning rice residues has negative agricultural implications. For example, residue burning depletes soil nutrients, with estimated yearly losses in Punjab alone of 3.9 million tons of organic carbon, 59,000 tons of nitrogen, 20,000 tons of phosphorus and 34,000 tons of potassium, according to M.L. Jat, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT), who leads CIMMYT’s contributions to CCAFS’ climate-smart villages in South Asia.

In response, a CIMMYT-CCAFS campaign was recently organized in Sambali to eliminate residue burning and combat its harmful effects to the environment, soil and human health.

It is advisable to have one percent organic matter in soil to assist conservation and increase productivity. According to Sunil Mann, the State Development Officer of the Department of Agriculture in Haryana, there has been a decline in organic matter in this region due to burning from one percent to less than half of one percent, highlighting a significant threat to soil health and productivity. The challenges of burning are exacerbated by the risk of areas turning into ‘dark zones,’ areas where groundwater has been over-exploited, due to the declining water table.

Hanuman Sahay Jat, a Scientist at CIMMYT, expressed concerns about the amount of chemicals released while burning crop residue and emphasized the need to stop this practice and adopt residue and nutrient management strategies. One way to achieve this is by using technologies like the GreenSeeker, a compact sensor that quickly assesses crop vigor and calculates optimal fertilizer dosages, to reduce dependency on chemical fertilizers and improve soil health.

Climate Smart Van launched to widespread knowledge and adoption. Photo: CIMMYT.
Climate Smart Van launched to widespread knowledge and adoption. Photo: CIMMYT.

M.L. Jat also highlighted the need for all stakeholders to do cost-benefit analyses before adopting new technologies. Farmers should ensure that profits will be worth investments in new technologies and researchers should ensure the efficiency and environmental impact of new technologies. For example in Basmati rice growing areas, zero-till machines, which help farmers plant new seeds directly in the residue of their previous crop’s harvest, are half the cost of the traditionally used “turbo happy seeder,” saving farmers money.

A positive result from Sambali will gain political attention and is likely to contribute to the development of new policies favoring climate-smart agriculture and their efficient utilization.

A “Climate Smart Van” was also launched during the campaign, which will drive through villages to spread knowledge, garner support and clarify the aspects of climate smart agriculture.

Sambali and other villages are taking steps towards integrated farming, with stakeholders’ engagement focusing sustainable development and scaling climate-smart agriculture practices while including women in decision making and engaging youth with profit-making opportunities.

Project helps African farmers identify regional best practices

MEXICO CITY (CIMMYT) – Traditional farming systems in Africa must be updated for today’s climate and market challenges, according to a new report by the University of Queensland.  

Hoeing the field. Photo: CIMMYT.
Hoeing the field. Photo: CIMMYT.

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) is an international research-for-development project working directly with farmers to solve some of the challenges they face.

For example, the project has greatly improved food production in Mozambique since 2010. It is also promoting rotational cropping systems with legumes in Tanzania to improve soil fertility as well as dietary diversity, and in Malawi, rainfall erosion has been reduced by 80 percent as farmers leave plant residues on fields to improve stability.

The exact details of best practice change everywhere you go in Africa,” said Caspar Roxburgh, a research officer at the University of Queensland who works with SIMLESA. “A lot of this research just hasn’t been done yet in Africa.”

SIMLESA seeks to have an open dialogue between farmers and scientists to identify what works best in individual areas and define best practices for the region.

“We find out who’s doing the best, learn from them, and then we do the science to back it all up,” explained Roxburgh.

Over the past seven years, SIMLESA has helped more than 200,000 farmers adopt sustainable technologies and practices, improving yields and income.

SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by the International Maize and Wheat Improvement Center (CIMMYT), the University of Queensland along with the governments of Ethiopia, Kenya, Tanzania, Malawi and Mozambique.

Read more about how SIMLESA is changing how food is grown in Africa here.

receive newsletter

Scaling sustainable agriculture in South Asia

DAHKA, Bangladesh (CIMMYT) – A two-day regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia was held in Dhaka, Bangladesh from September 8-9, 2017.

Delegates and participants of the regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia in Dhaka, Bangladesh. Photo: Das, S./CIMMYT Bangladesh.
Delegates and participants of the regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia in Dhaka, Bangladesh. Photo: Das, S./CIMMYT Bangladesh.

The event was a supported by the Australian Center for International Agricultural Research (ACIAR), and was organized jointly by the Trust for Advancement of Agricultural Sciences (TAAS) and the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with national agricultural research systems from across South Asia, CGIAR institutes and Australian Organizations. Government officials, researchers, and policymakers actively participated and deliberated challenges and ways forward to scale up sustainable agriculture in South Asia.

High input costs, depleted and degraded natural resources, indiscriminate and imbalanced use of chemical fertilizers and adverse effects from climate change make South Asia – home to about 1.766 billion people (one fourth of the world’s population) – one of the most food insecure regions in the world.

A region-wide shift from conventional agriculture to more sustainable technologies and practices, such as no-till farming or precision land leveling, is critical towards combating these challenges.

Raj Paroda, TAAS chairman, highlighted this need during the dialogue by calling for increased agricultural development assistance from international donors that focuses on mainstreaming sustainable agriculture, a key element in achieving the Sustainable Development Goals (SDGs), a set of 17 global goals spearheaded by the United Nations to end poverty, protect the planet, and ensure prosperity for all.

“The adaptation of conservation agriculture in South Asia, specifically in the Eastern Gangetic Plains, has shown impressive results in terms of saving costs and resources, and boosting income,” said John Dixon, Principal Advisor of ACIAR. “However, the widespread adaptation of conservation agriculture is held back by policy barriers. Institutions and policies have yet to be optimized in a way that facilitates and encourage [its] spread.”

According to Dixon, the regional policy dialogue allowed delegates to share experiences from their own countries and identify which policy changes, institutions and regulations can be adapted in a way that accelerates the widespread adoption of sustainable practices like conservation agriculture.

Paroda closed the dialogue by suggesting that delegates work towards enabling policies to increase funding, coordination and convergence of international private and public funder interest. He suggested the development of an active regional platform that would suggest a roadmap based on the current status, would help share knowledge, initiatives and advocate for policies relating to opportunities for capacity building and regional partnerships. He also identified that the promotion of new innovations through a network of young entrepreneurs and service providers and strong public-private partnerships as key elements to mainstreaming the adoption of sustainable agriculture across the region.

View the regional policy dialogue on scaling conservation agriculture for sustainable intensification here.

receive newsletter

Researchers set new climate services strategy in Bangladesh

CSRD workshop participants. Photo: M. Asaduzzaman/CIMMYT
CSRD workshop participants. Photo: M. Asaduzzaman/CIMMYT

DHAKA, Bangladesh (CIMMYT) – Scientists from across South and Southeast Asia launched a new agenda earlier this week to boost community involvement in developing climate information and extension messaging services across the region.

“Key to climate services is emphasis on the service,” said Timothy Krupnik, a systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and South Asia project leader for Climate Services for Resilient Development (CSRD).

Researchers know how the region’s farmers will be affected by climate change thanks to the development of climate models and other analyses, but there still is a lack of a strong support system that allows farmers to practically use this information.

“We must be able to rapidly extend information to farmers and others who require climate information to inform their decision making, and to assure that research outputs are translated in an easy to understand way that communicates to farmers, extension workers and policy makers,” said Krupnik. “Equally important is feedback from farmers on the quality of climate services so they can be adapted and improved over time.”

The researchers, who gathered in Dhaka, Bangladesh for a three-day workshop from September 17-19, 2017, evaluated how climate and agricultural extension advisories are currently produced and conveyed, and identified opportunities on how to improve these services for farming communities across Bangladesh, India, Indonesia, Myanmar, Nepal, Philippines, Sri Lanka and Vietnam.

“CSRD’s activities are relevant to the U.S. government’s commitment to building resilience of smallholder farmers and to ensure increased production, as well bolster country resilience,” said David Westerling, acting economic growth office director and Feed the Future team leader for the United States Agency for International Development’s mission in Bangladesh. “That is why we are behind this effort.”

During the workshop, delegates assessed different ways to incorporate seasonal climate forecasts into farmer decision making, using several African countries as examples.  For example, participants learned how to simply but effectively depict probabilistic forecasts in graphs to farmers during a group work discussion.

There were also experience sharing sessions on information and communication technology (ICT) in agricultural climate services. Giriraj Amarnath, researcher at the International Water Management Institute, Ishwor Malla, service director for ICT at Agri Private Limited and Md. Nadirruzzaman, assistant professor at the Independent University, Bangladesh indicated that ICT can be a cost-effective approach to transfer information to farmers who can, in turn, improve crop productivity using climate information shared their observation and experiences.

While ICT can serve as an important tool, participants emphasized the need for more face-to-face extension and interaction with farming communities to build trust in forecasts that would otherwise not be fully understood by downloading a mobile application or receiving an SMS message.

An analysis to identify strengths, weaknesses, opportunities and threats for climate services in each country and across countries was completed to examine how participants can collaborate in south-south exchanges to support ongoing work in agricultural climate services.

On the last day of the workshop, climate index-based agricultural insurance was also discussed, after which participants proposed new institutional arrangements to improve agricultural climate information flow to farmers in each of their countries.

Elisabeth Simelton, climate change scientist at the World Agroforestry Centre in Vietnam and project manager at the Consortium Research Program on Climate Change, Agriculture, and Food Security (CCAFS), said the workshop provided an interesting platform where scientists and climate service providers from different countries were able to meet and exchange their experiences and ideas through interactive formats, so that everybody can take something new and useful back to their respective countries.

The Climate Services for Resilient Development (CSRD) is a global partnership that connects climate science, data streams, decision support tools, and training to decision-makers in developing countries.The workshop was sponsored by the United States Agency for International Development on behalf of CSRD and is collaboratively organized by CIMMYT and CSRD through the SERVIR Support Team. This work was also implemented as part of the CGIAR Research Program on CCAFS. Read more about the workshop, participants and sponsors here. 

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Follow @CIMMYT on Twitter and Facebook for the latest updates.

High-level meeting to set climate services agenda for South and Southeast Asia

Delegates from across South and South East Asia will gather in Dhaka, Bangladesh next week to ensure farmers across the region have the resources they need to better respond to climate change. Above, woman in Faridpur, Bangladesh winnowing wheat grain after harvest. Photo: Saikat Mojumder.
Delegates from across South and Southeast Asia will gather in Dhaka, Bangladesh next week to ensure farmers across the region have the resources they need to better respond to climate change. Above, woman in Faridpur, Bangladesh winnowing wheat grain after harvest. Photo: Saikat Mojumder.

DHAKA, Bangladesh (CIMMYT) — Leaders from across South and Southeast Asia will gather from September 17-19 to exchange ideas and strategies on how to support the growth of farmer-focused and relevant agricultural climate services in the region.

Ensuring that farmers have access to real-time climate services, such as early warning systems for drought or crop index insurance, is critical to support rural livelihoods and mitigate crop production loss in the event of a climatic shock.

The three-day workshop will evaluate how climate and agricultural extension advisories are produced and conveyed, emphasizing farming community involvement in the development of climate information and extension messaging.

By the conclusion of the workshop, participants will have a broad overview of South and Southeast regional agricultural climate services programs, become familiar with participatory approaches and methods in agricultural climate services and able to enact or improve them in their own country contexts. They’ll also develop an increased understanding of how to identify and leverage “decision points” in the agricultural calendar during which climate information and advisories can most benefit farmers. Finally, participants will understand the need for appropriate institutional arrangements to facilitate the flow of relevant climate information and advisories to farmers, and to supply feedback to meteorological, extension, development and policy oriented organizations.

Workshop participants will also develop an outline for a scientific review paper on the subject of participatory climate services for agricultural decision making in South and Southeast Asia, which will be submitted to a peer-reviewed journal.

This workshop is sponsored by the United States Agency for International Development on behalf of the Climate Services for Resilient Development (CSRD) and is organized by the International Maize and Wheat Improvement Center alongside South Asian CSRD partners.

Click here to see the full list of participating organization and read the full workshop program.

Learn more about agricultural climate services:  

Role of Mobile Phone-enabled Climate Information Services in Gender-inclusive Agriculture

Scaling up climate services for farmers

Managing Climatic Risks in Agriculture in South Asia: Climate Services

New initiative strengthens drought monitoring in Bangladesh

Index insurance to safeguard farmers from climate change

New initiative strengthens agricultural drought monitoring in Bangladesh

A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh. Photo: Santosh Raj Pathak/ICIMOD.
A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh. Photo: Santosh Raj Pathak/ICIMOD.

DHAKA, Bangladesh (CIMMYT) – A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh, as well as provide information on local cropping systems in South Asia to boost farmer resilience to climate change.

Regionally specific winter season drought and dry spells during the monsoon are a reoccurring concern in Bangladesh. Drought leads to reduced farming productivity, and climate change predictions suggest further decreases in precipitation in coming years. Additionally, there are uncertainties about where monsoons will flood in the rainy season, limiting groundwater recharge. If farmers are unable to adapt to these changes, bottlenecks in crop productivity and increased food insecurity are likely to result.

The effort will be led by Climate Services for Resilient Development (CSRD) and SERVIR-Hindu Kush Himalaya – a project funded by the United States Agency for International Development (USAID) – using Earth observation data.

A workshop jointly hosted by a number of organizations was recently held at the Bangladesh Agriculture Research Council (BARC) campus in Dhaka, Bangladesh to discuss the development of these agricultural monitoring services. The workshop brought together key partners to discuss anticipated methods, work plans and the user engagement process for effective development and long-term sustainability of the agricultural drought monitoring service.

Under this partnership, BARC is working to strengthen capacity of national research and agricultural extension institutes to use geographic information systems and remote sensing approaches for drought risk management.

(L-R) Birendra Bajracharya, regional program manager at the International Centre for Integrated Mountain Development, Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, Muhammad Jalal Uddin, executive chairman the Bangladesh Agriculture Research Council and Timothy J. Krupnik, CIMMYT systems agronomist. Photo: Santosh Raj Pathak/ICIMOD
(L-R) Birendra Bajracharya, regional program manager at the International Centre for Integrated Mountain Development, Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, Muhammad Jalal Uddin, executive chairman the Bangladesh Agriculture Research Council and Timothy J. Krupnik, CIMMYT systems agronomist. Photo: Santosh Raj Pathak/ICIMOD

Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, noted that groundwater accessibility is a growing concern due to continued drought. The government has posed restrictions on deep well extraction, except for drinking water, to conserve crucial groundwater resources. He added that access to good quality drought monitoring and early warning information could help develop climate services to help farmers adapt to these challenges.

Muhammad Jalal Uddin, executive chairman of BARC, emphasized the need to adopt new technologies including remote sensing applications to improve predictability of climate hazards like floods and droughts. He added that with the adoption of improved agricultural practices, Bangladesh has become self-sufficient in rice, but that further work is needed to attain overall nutrition sufficiency.

Promoting and enabling climate services that increase farmer resilience to the impacts of climate variability can positively change behaviors and affect policy in developing countries. To do this, collaborators are working together to establish information communication technology platforms to provide user-oriented, easily accessible, timely and decision-relevant scientific information in the form of climate services.

Birendra Bajracharya, regional program manager of the Mountain Environment Regional Information System program at the International Centre for Integrated Mountain Development (ICIMOD), highlighted opportunities of using Earth observation data products for addressing societal challenges. He emphasized the user-centric “services” used by ICIMOD increase the sustainable use of Earth observation information and geospatial technologies for environmental management and improve resilience to climate change in the region.

Read the full workshop summary from ICIMOD here.

CSRD is a a public-private partnership supported by USAID, Department for International Development (DFID), the Met Office, Asian Development Bank, the Inter-American Development Bank, ESRI, Google, the American Red Cross and the Skoll Global Threats Fund.

Study reveals new opportunities to cut greenhouse gas emissions in India

India is one of the world’s largest contributors to global warming, but simple changes in farm management can drastically cut emissions while meeting food demand.
India is one of the world’s largest contributors to global warming, but simple changes in farm management can drastically cut emissions while meeting food demand.

More than 122 million people could be thrown into extreme poverty by 2030 from climate change induced by global warming, mostly in Africa and Asia.

Agriculture is one of the largest contributors to global warming, with greenhouse gas emissions predicted to rise 30 percent over the next three decades due to rising populations and changing consumer preferences to high-emission foods like dairy and meat in these two regions.

India alone is the third largest emitter of greenhouse gasses in the world, with agriculture contributing the most greenhouse gas emissions in the country after electricity. With a population of more than 1.3 billion and increasing, ensuring sustainable agricultural development is critical to achieve the country’s 2015 climate plan to reduce emissions intensity 35 percent by 2030 and food security for the region.

In a recent study, we analyzed how cereal farmers in India’s Indo-Gangetic Plain – an area that feeds 40 percent of the country’s population – manage their crops and the impact different practices have on yield and emissions.

Reducing nitrogen fertilizer can cut emissions without compromising yield

Nitrogen fertilizer is a huge greenhouse gas emitter. Creating it involves burning a lot of fossil fuel, and is produced primarily using natural gas. When farmers apply it to their fields, rain washes much of it into surrounding bodies of water, while bacteria in the soil feed on what’s left, releasing a powerful greenhouse gas called nitrous oxide.

16 million tons of nitrogen fertilizer are currently being applied by Indian farmers to their fields. Our research shows that farmers in India can reduce emissions and increase yields through better nitrogen management. 

Culture and economics have a huge impact on emissions and yields

We also found various cultural, economic, household and other social factors significantly determined whether farmers adopted low-emission technologies.

For example, households with high levels of education, large land holdings and access to agricultural advisory, as well as farmers who received training on climate change, were likely to adopt zero tillage, a practice that retains soil moisture, builds up nutrients and decreases greenhouse gas emissions.

Other farmers who received training on climate change along with crop, soil, water and seed management, and those having access to agricultural credit tend to adopt low-emission technologies such as split application of nitrogen and use of farm yard manure.

Overall, capacity building that increases farmers’ awareness and skills in agriculture and climate change contributes to increased production and reduced emission intensity for all households. Farmers’ societies, farm cooperatives and local non-governmental organizations can therefore play a vital role in encouraging farmers to adopt appropriate low-emissions practices and technologies.

Government action needed for low-emission agriculture in India

Knowing the impact of various social drivers and low-emission strategies, particularly the decrease of nitrogen fertilizer use, on agricultural development can help increase production and reduce emissions nationwide.

State and local governments must integrate policies and technology that enhance farmer access to new innovations like zero tillage and irrigation, and provide more information on efficient residue, farm manure and nitrogen fertilizer management. The government must also adopt multiple approaches that include targeted subsidies for sustainable technologies like zero tillage machinery and precision land levelers, mobilize local civil society organizations to increase knowledge about low-emission practices and use information communication technology to increase awareness and access to information about sustainable agricultural practices.

Most importantly, all mitigation-related interventions require investment decisions at the household level. Family and farm size, the gender of household head and many other factors rare critical to take into account in each intervention to successfully scale out low-emission practices and technologies.

Read the full study “Identifying high-yield low-emission pathways for the cereal production in South Asia” here.

Read the CCAFS blog “Report identifies high-yield, low-emission options for cereal systems in South Asia”

Read the 2016 CIMMYT Annual Report story “India farmers put aside the plow, save straw and fight pollution”

New Publications: New environmental analysis method improves crop adaptation to climate change

EL BATAN, Mexico (CIMMYT) – A new paper proposes researchers analyze environmental impacts through “envirotyping,” a new typing method which allows scientists to dissect complex environmental interactions to pinpoint climate change effects on crops. When used with genotyping and phenotyping – typing methods that assess the genetic and in-field performance of crops – researchers can more effectively adapt crops to future climates.

Climate change has significantly shifted weather patterns, which affects a number of farming conditions such as less reliable weather, extreme temperatures and declining soil and water quality. These extreme conditions bring a number of unexpected stresses to plants such as drought and new pests.

How a crop performs is largely dependent on the environment where it grows, making it crucial for breeders to analyze crops in growing areas. However, many breeding tools such as genetic mapping are based on the environment where phenotyping is performed, and phenotyping is often conducted under managed environmental conditions.

Envirotyping allows researchers to apply real-world conditions when assessing the performance of crops. It has a wide range of applications including the development of a four-dimensional profile for crop science, which would include a genotype, phenotype, envirotype and time.

Currently, envirotyping requires environmental factors to be collected over the course of multiple trials for use in contributing to crop modeling and phenotypic predictions. Widespread acceptance of this new typing method could help establish high-precision envirotyping, as well as create highly efficient precision breeding and sustainable crop production systems based on deciphered environmental impacts.

Read the full study “Envirotyping for deciphering environmental impacts on crop plants.” and check out other recent publications from CIMMYT staff below.

 

  • Effects of nitrogen fertilizer and manure application on storage of carbon and nitrogen under continuous maize cropping in Arenosols and Luvisols of Zimbabwe. Mujuru, L., Rusinamhodzi, L., Nyamangara, J., Hoosbeek, M.R. In: Journal of Agricultural Science, v. 154, p. 242-257.

 

  • Empirical evaluation of sustainability of divergent farms in the dryland farming systems of India. Amare Haileslassie, Craufurd, P., Thiagarajah, R., Shalander Kumar, Whitbread, A., Rathor, A., Blummel, M., Ericsson, P., Krishna Reddy Kakumanu In: Ecological indicators, v. 60, p. 710-723.

 

  • Evaluation of tillage and crop establishment methods integrated with relay seeding of wheat and mungbean for sustainable intensification of cotton-wheat system in South Asia. Choudhary, R., Singh, P., Sidhu, H.S., Nandal, D.P., Jat, H.S., Singh, Y., Jat, M.L. In: Field Crops Research, v. 199, p. 31-41.

 

  • Fertilizers, hybrids, and the sustainable intensification of maize systems in the rainfed mid-hills of Nepal. Devkota, K.P., McDonald, A., Khadka, L., Khadka, A., Paudel, G., Devkota, M. In: European Journal of Agronomy, v. 80, p. 154-167.

 

  • Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches. Pasam, R.K., Bansal, U., Daetwyler, H.D., Forrest, K.L., Wong, D., Petkowski, J., Willey, N., Randhawa, M.S., Chhetri, M., Miah, H., Tibbits, J., Bariana, H.S., Hayden, M. In: Theoretical and Applied Genetics, v. 130, no. 4, p. 777-793.

 

  • Diallel analysis of acid soil tolerant and susceptible maize inbred lines for grain yield under acid and non-acid soil conditions. Mutimaamba, C., MacRobert, J.F., Cairns, J.E., Magorokosho, C., Thokozile Ndhlela, Mukungurutse, C., Minnaar-Ontong, A., Labuschagne, M. In: Euphytica, v. 213, no. 88, p.1-10.

 

  • Direct Nitrous Oxide emissions from Tropical And Sub-Tropical Agricultural Systems: a review and modelling of emission factors. Albanito, F., Lebender, U., Cornulier, T., Sapkota, T.B., Brentrup, F., Stirling, C., Hillier, J. In: Nature Scientific reports, v. 7, no. 44235.

 

  • Dissection of a major QTL qhir1 conferring maternal haploidinduction ability in maize. Nair, S.K., Molenaar, W., Melchinger, A.E., Prasanna, B.M., Martinez, L., Lopez, L.A., Chaikam, V. In: Theoretical and Applied Genetics, v. 130, p. 1113-1122.

 

  • Effect of the few-branched-1 (Fbr1) tassel mutation on performance of maize inbred lines and hybrids evaluated under stress and optimum environments. Shorai Dari, MacRobert, J.F., Minnaar-Ontong, A., Labuschagne, M. In: Maydica, vol. 62, p. 1-10.

 

Breaking Ground: Mainassara Zaman-Allah uses remote sensing to expedite phenotyping

TwitterBGMZMEXICO CITY (CIMMYT) – Remote sensing technology is on track to make crop breeding faster and more efficient, ensuring smallholder farmers get the improved maize varieties they need.

Field phenotyping – the comprehensive physical assessment of plants for desired traits – is an integral part of the crop breeding process but can create a costly and time-consuming bottleneck, according to Mainassara Zaman-Allah, abiotic stress phenotyping specialist at the International Maize and Wheat Improvement Center (CIMMYT).

Now, technological advances such as proximal or aerial sensing allow scientists to quickly collect information from plants to develop improved varieties.

“Previously, we used to measure maize height with a stick, and manually capture the data” he said. “Now we use proximal sensing—a laser distance meter connected to your phone or tablet that automatically captures data —to measure plant height 2 to 3 times faster for half of the labor. We also use digital ear imaging to analyze maize ear and kernel attributes including grain yields  without having to shell the cobs, saving time and money on labor. This will be helpful particularly to most of our partners who do not own the machinery required for shelling after harvest”

Zaman-Allah also works with aerial sensing, using unmanned aerial vehicles equipped with sensors to fly over crop fields and collect images that are later processed to extract crop phenotypic data. “Aerial phenotyping platforms enable us to collect data from 1,000 plots in 10 minutes or less, a task that might take eight hours to do manually,” he said.

This means that developing improved maize varieties with tolerance to heat and drought, as well as devastating diseases such as maize lethal necrosis (MLN), could become faster and more cost-effective than ever before. Application of aerial and proximal sensing technology for high-throughput phenotyping, in which large amounts of data are processed simultaneously, provides high-resolution measurements for research plots that can enable the rapid identification of stress tolerant varieties, speeding up the breeding process.

The time and money saved by using these technologies allow researchers to develop and deploy improved varieties more quickly to the smallholder farmers that need them most, which is especially important as climate change begins to change growing environments faster than traditional varieties can adapt.

For Zaman-Allah, this interest in improving agriculture for all is “in the blood,” he said. While growing up in Niger, his family had to move to a different city every three years due to his father’s job. “Everywhere we moved; my father made sure that we rented or bought a small farm, where I would be involved in crop production every year during the long vacations over the rainy season. That was a wonderful experience as I learned a lot regarding crop production, drought and soil fertility management.”

He would take this first-hand experience in agriculture to the next level while earning undergraduate and postgraduate degrees at the University of Carthage in Tunisia and conducting research for his Ph.D. in plant eco-physiology at the French National Institute for Agricultural Research (INRA) through a grant from the French Agency for International Cooperation.

Zaman-Allah joined CIMMYT in late 2012 as a scientist with a specialization in heat and stress resilient maize, based in Harare, Zimbabwe. He has been working as an abiotic stress phenotyping specialist since late 2015, and is considered a pioneer in remote sensing work in CIMMYT maize breeding. In addition to his work as a scientist, he also writes codes for the programs used in proximal sensing.

“As part of my current job, I develop, test and validate low-cost and high-throughput field-based phenotyping tools and methods for different desired traits in crops, including drought, heat and low-nitrogen stress,” he said.

“My team is working to provide opportunities toward next-generation phenotyping that is more compatible with maize breeders needs and that will significantly minimize selection cost while maximizing selection efficiency, accelerating the process to deliver maize varieties with better genetic traits to farmers.”

Zaman-Allah’s commitment to food security extends beyond his job. On his own time, he shares knowledge gained at CIMMYT to inform his contacts at universities and national agricultural research centers in Niger and help increase his home country’s capacity to produce healthy crops.

“Maize and wheat are not usually grown in Niger due to heat, drought and low soil fertility, but due to recent advances in CIMMYT technologies and improved varieties, they are now a possibility,” he said. “People were doubtful at first, but when improved varieties from CIMMYT Mexico and CIMMYT-Zimbabwe were planted side by side with locally released varieties, there was no comparison—the CIMMYT varieties performed far better.”

Working at CIMMYT has given Zaman-Allah a unique opportunity to help farmers while also working with a top-notch international team.

“I really enjoy the teamwork, the innovation and the challenge to make a difference,” he said. “It’s immensely satisfying to be able to contribute in helping smallholder farmers through my work. Whenever I take vacation, I always go back to the village in Niger where my family is from, and I love to talk with local farmers about the latest agricultural technologies that could help them.”

New sustainable agriculture initiative targets India’s second most populous state

A new project will train one-thousand villages in Maharashtra, India on sustainable technologies and practices. Photo: P. Vishwanathan/CCAFS
A new project will train one-thousand villages in Maharashtra, India on sustainable technologies and practices. Photo: P. Vishwanathan/CCAFS

JAWHAR, India (CIMMYT) – A new project is bringing sustainable technologies and practices to one-thousand villages in Maharashtra, India, the second most populous state in the country and an area that is particularly vulnerable to climate change effects like erratic rainfall, heat waves, sea water intrusion and other climatic risks.

Agriculture provides income for over half of Maharashtra’s population, yet productivity is severely affected by climate change and unsustainable agricultural practices that degrade soil quality. In 2015 alone 60 percent of villages in the state suffered drought affecting nearly nine million farmers.

New “climate smart” practices are critical if farmers in Maharashtra are to survive future climatic shocks, improve productivity and maintain a healthy ecosystem. The state has the second largest tribal population in the country, with most of these communities inhabiting fringe forest settlements and degraded lands which have low productivity and high vulnerability to erosion, making it even more vital farmers adopt sustainable practices.

A Climate Smart Village Programme for the Tribal Regions of Maharashtra was launched  to promote these practices – such as zero-till farming, integrated nutrient and water management and proper harvesting and storage – targeting farmers across Maharashtra’s tribal belt.

The three-year project, launched in 2016, is being implemented across over 1,000 villages in the state. Last year, 100 primary villages were identified as most likely to adopt climate smart practices in Maharashtra’s three districts and chosen to implement sustainable agriculture practices. Farmers groups from each primary village will link for the last two years of the project with nine skilled-up villages – villages where at least one climate smart practice has been adopted – to share and help implement climate smart farming practices and techniques.

Large quantities of improved seed that are resilient to drought, heat and other stresses are also being provided to use alongside these practices, ensuring maximum yield.

A key aspect of the program is ensuring that the climate smart technologies being promoted are adapted to local conditions – it’s critical that these new tools can be used by small and marginal farmers at an affordable cost. The International Maize and Wheat Improvement Center through the Borlaug Institute for South Asia (BISA) are currently distributing different small scale farm machineries like fertilizer drills and threshers that are catered to farmer preferences, including women farmers in the 100 primary villages.

Information and Communication Technology (ICT) advisories will also be provided to farmers to ensure they have access to real-time information on weather forecasts, pest and disease outbreaks, market intelligence and more. BISA in collaboration with IFFCO Kishan Sanchar Limited, a telecommunications company in New Delhi, will release a mobile based ICT service in 2017 to provide advisories to enrolled farmers. 4,000 farmers have been selected for the service this year. The service will be constantly monitored and upgraded as required to meet the needs of more than 50,000 farmers over the course of the project.

The final component of the project ensures that farmers are enrolled in crop insurance schemes, which is essential to protecting and reimbursing farmers should their crops fail under poor climate conditions. BISA enrolled 500 farmers for insurance from November 2016-March 2017 and in the process to enroll more farmers in the coming monsoon season during July-October of this year.

In early June, Shri Vishnu Savara, Minister of Maharashtra’s Tribal Development Office, chaired an event that brought delegates from across India to review the current progress of the project in Jawhar, Palghar District. The event was facilitated by BISA representatives including Senior Consultant Prakash Naik, Hub Coordinators Abhilash Gupta and Mahesh Maske, Executive Assistant Anu Raswant and Administrative Officer Manish Rai. The event was co-chaired by Shri R. G. Kulkarni, Commissioner of Maharashtra’s Tribal Development Office and Arun Joshi, CIMMYT Asia Regional Representative.

Savara emphasized the important impact climate smart agriculture coupled with improved seed can have on farm productivity across Maharashtra’s tribal areas, and new ability to adapt to future climatic shocks and extreme weather events.

New Publications: Climate change adaptation practices decrease poverty, boost food security

A day laborer in Islamabad, Pakistan pauses from his work of harvesting wheat by hand. Photo: A. Yaqub/CIMMYT
A day laborer in Islamabad, Pakistan pauses from his work of harvesting wheat by hand. Photo: A. Yaqub/CIMMYT

MEXICO CITY (CIMMYT) — Farmers in Pakistan that practice climate change adaptation strategies like adjusting sowing time, adopting new crops and planting drought tolerant varieties have higher food security levels and are less likely to live in poverty than those that don’t, according to a new study.

South Asia is likely to be one of the most affected regions by climate change due to the region’s vast agrarian population and large number of poor, unfavorable geography, limited assets and a greater dependence on climate-sensitive sources of income.

In Pakistan, climate change has had a direct impact on rain patterns and increased the frequency of extreme weather events such as flash floods. Adaptation measures at the farm level can help lessen the impact of these negative effects on food security.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) recently surveyed 950 farmers across Pakistan to see what adaptation measures to climate change they use, if any.

The study found that farmers in Pakistan are using a variety of adaptation practices to counter the adverse impacts of climate change, primarily adjusting sowing time, adopting new crops and planting drought tolerant varieties. The results also highlighted the importance of awareness and knowledge about the local context, climate change, adaptation and its benefits. Younger farmers and farmers with higher levels of education are also more likely to use these adaptation practices, as do farmers that are wealthier, farm more land and have joint families.

The authors of the study conclude that adaptation policies should focus on increasing the awareness of climate change and climate risk coping strategies and its benefits, as well as increasing the affordability of climate risk coping capacity by augmenting the farm household assets and lowering the cost of adaptation.

Read the full study “Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan” and check out other recent publications from CIMMYT staff below.

  • Development of multiplex-PCR systems for genes related to flour colour in Chinese autumn-sown wheat cultivars. 2016. Zhang, Y., Wang, X., Jiang, L., Liu, F., Xinyao He, Liu, S., Zhang, X. In: Quality Assurance and Safety of Crops & Foods, vol. 8, no. 2, p. 231-241.
  • DNA fingerprinting of open-pollinated maize seed lots to establish genetic purity using simple sequence repeat markers. 2016. Setimela, P.S., Warburton, M.L., Erasmus, T. In: South African Journal of Plant and Soil, vol. 33, no. 2, p. 1-8.
  • Do forest resources help increase rural household income and alleviate rural poverty? Empirical evidence from Bhutan. 2016. Dil Bahadur Rahut, Behera, B., Ali, A. In: Forests, Trees and Livelihoods, vol. 23, no. 3, p. 1-11.
  • Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility and low anther extrusion in two bread wheat populations. 2016. Xinyao He, Singh, P.K., Dreisigacker, S., Sukhwinder-Singh, Lillemo, M., Duveiller, E. In: PLoS One, vol. 11, no. 9 : e0162499.
  • A Bayesian Poisson-lognormal Model for count data for Multiple-Trait Multiple-Environment Genomic-Enabled prediction. 2017. Montesinos-Lopez, O.A., Montesinos-López, A., Crossa, J., Toledo, F.H., Montesinos-López, J.C., Singh, P.K., Juliana, P., Salinas-Ruiz, J. In: G3, vol. 7, no. 5, p. 1595-1606.
  • A comparative political economic analysis of maize sector policies in eastern and southern Africa. 2017. Sitko, N.J., Chamberlin, J., Cunguara, B., Muyanga, M., Mangisonib, J. In: Food Policy, v. 69, p. 243-255.
  • Agriculture and crop science in China: Innovation and sustainability. 2017. Yunbi Xu, Jiayang Li, Jianmin Wan. In: The Crop Journal v. 5, p. 95-99.
  • Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. 2017. Ali, A., Erenstein, O. In: Climate Risk Management, vol. 16, p. 183-194.
  • Bayesian Genomic Prediction with Genotype x Environment Interaction Kernel Models. 2017. Cuevas, J., Cuevas, J., Crossa, J., Montesinos-Lopez, O.A., Burgueño, J., Pérez-Rodríguez, P., De los Campos, G. In: G3, vol. 7, no. 1, p. 41-53.

Sustainable agriculture for healthy forests

Farmers are beginning to transform agriculture in Mexico’s Yucatán peninsula through techniques that allow them to grow more on less land, reducing deforestation and greenhouse gas emissions. Photo: J. Van Loon/CIMMYT
Farmers are beginning to transform agriculture in Mexico’s Yucatán peninsula through techniques that allow them to grow more on less land, reducing deforestation and greenhouse gas emissions. Above, slash and burn agriculture (right) compared to a non-burn strategy in a milpa system. Photo: J. Van Loon/CIMMYT

TEXCOCO, Mexico (CIMMYT) –  Farmers in Mexico’s ecologically-fragile Yucatán Peninsula are beginning to adopt innovative practices to manage traditional mixed-cropping systems called “milpas” that can slow or even stop deforestation and soil degradation.

Agriculture is the second largest emitter of global greenhouse gas emissions and largest driver of deforestation, making the sector one of the top contributors to climate change and biodiversity loss.

Fifteen percent of global emissions is due mostly to agricultural expansion into tropical forests. Rising populations and changes in dietary preferences for more energy intense foods, like beef and soy bean, are expected to boost agricultural emissions a further 15 percent by 2030.

Agricultural expansion and resulting deforestation of tropical areas also threatens more than half of all the world’s plant and animal species, contributing significantly to what many scientists say is Earth’s sixth mass extinction.

“Sustainable agriculture can bring large benefits to tropical areas by optimizing land use while improving farm management and techniques for farmers,” said Jelle Van Loon, a mechanization expert at the International Maize and Wheat Improvement Center (CIMMYT) who is working with farming communities in Mexico’s Yucatán Peninsula – an area compromising much of the largest remaining tropical rainforest in the Americas after the Amazon.

Nearly 80 percent of vegetation has been deforested or degraded in the peninsula, with more than 80,000 hectares being cut down annually.

“Agriculture in the Yucatán Peninsula is extremely diverse – there’s everything from industrial farms that operate around forest areas to small community farmers practicing the traditional milpa system in the interior,” said Van Loon.

Milpa farming – a traditional mixed-cropping system in which maize, beans and squash are grown – contributes to about 16 percent of deforestation in the region, and is typically practiced by subsistence farmers through slash and burn agriculture.

Milpa systems vary across communities in the region,” said Van Loon. “Sometimes plots are burned, farmed and left within two to three years for a new plot, and others are more permanent.”

A technician learns how to operate a two-wheeled tractor. Technicians working with CIMMYT will perform field trials evaluating the efficiency of equipment like this in their work areas. Photo: J. Van Loon/CIMMYT
A technician learns how to operate a two-wheeled tractor. Technicians working with CIMMYT will perform field trials evaluating the efficiency of equipment like this in their work areas. Photo: J. Van Loon/CIMMYT

Van Loon is working with a team of CIMMYT scientists and other partners in the region to see how farmers can apply sustainable technologies and practices across the peninsula’s milpa systems, as well as larger-scale mechanized farms that operate in the area.

“It’s extremely important that the unique circumstances of each community are taken into account when new technologies are being promoted,” said Van Loon, citing that many programs exist to support local communities, but is often challenging to organize support in an integrated fashion that’s adjusted to local conditions.

Milpa provides more than crops for food – the slash and burn system also provides game and timber for these communities, so there are many factors that need to be taken into account when we try and promote sustainable practices.”

Two years ago CIMMYT successfully trialed a sustainable agriculture initiative with farmers in Hopelchén, a small community in Campeche where indigenous and Mennonite farmers grow maize following traditional farming practices.

Decades of soil degradation had forced farmers to convert rainforest areas into growing fields to continue farming, but when the farmers adopted sustainable intensification methods such as minimal soil movement, surface cover of crop residues and crop rotations, they were able to achieve higher yields even after two months of drought.

The Hopelchén farmers prove the dual benefits of sustainable agriculture in forest areas – forests that would otherwise have been cut down for farmland are preserved, acting as a ‘carbon sink’ by absorbing carbon dioxide that would have been free in the atmosphere, further contributing to climate change. These practices also help farmers adapt to the effects of climate change, like drought and erratic rainfall.

“In order to get adoption right, we are really taking a system-wide approach,” said Van Loon. “We want to integrate mechanization, soil quality, planting density and other approaches like inter-planting with trees to improve biodiversity to get the most efficient system possible.” Van Loon will specifically work with communities to explore mechanization opportunities, from improved hand tools to light weight motorized equipment like two-wheel tractors.

“The goal is to optimize the benefits from the land that farmers are working, find ways to reduce pressure on opening new land and as such slow the rate of deforestation, preserve biodiversity and provide farmers with techniques for improved and more sustainable practices,” said Van Loon. “Ultimately, we’d like to see these practices adopted across the peninsula.”

CIMMYT is leading sustainable intensification efforts in the Yucatan through the Sustainable Modernization of Traditional Agriculture (MasAgro) program, along with CitiBanamex, Fundación Haciendas del Mundo Maya, local partners, non-governmental organizations and the Mexican government.