Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

Climate, nutrition and security challenges require global food system transformation

“Can we sustainably feed the nine to ten billion people in our planet in 30 years?” asked Kenneth M. Quinn, president of the World Food Prize Foundation. “This question becomes even more challenging with two current game changers: conflict and climate change.”

Food and agriculture experts met in Des Moines, Iowa, to discuss these issues at the Borlaug Dialogue and awarding of the 2019 World Food Prize.

The focus has shifted over the last few years from food to food systems, now including health and nutrition. “We need an integrated agri-food systems approach for food security, nutrition, nature conservation and human security,” said Bram Govaerts, director of the Integrated Development program at the International Maize and Wheat Improvement Center (CIMMYT).

Speakers agreed that to meet the current challenges of nutrition and climate change, we need a transformation of the global food system. “We have something very positive — this narrative of food system transformation,” said Ruben Echeverría, Director General of the International Center for Tropical Agriculture (CIAT).

In the discussions, speakers highlighted several areas that must be taken into consideration in this transformation.

Hale Ann Tufan, recipient of the 2019 Norman E. Borlaug Award for Field Research and Application, speaks at the award ceremony. (Photo: Mary Donovan/CIMMYT)
Hale Ann Tufan, recipient of the 2019 Norman E. Borlaug Award for Field Research and Application, speaks at the award ceremony. (Photo: Mary Donovan/CIMMYT)

Food security for peace and development

The theme of this year’s Borlaug Dialogue was “Pax Agricultura: Peace through agriculture.” Panels addressed the interconnected issues of food security, conflict and development.

In the keynote address, USAID Administrator Mark Green issued a call to action and challenged participants “to take on the food and economic insecurity issues that are emerging from this era’s unprecedented levels of displacement and forced migration.” Ambassadors, ministers and development experts gave examples of the interdependence of agriculture and peace, how droughts and floods could create conflict in a country, and how peace can be rebuilt through agriculture.

“Agriculture could root out the insurgency better than anything we did,” said Quinn about the Khmer Rouge surrender in Cambodia, where he served as an ambassador.

In the 1994 genocide in Rwanda, more than 1 million people died in 100 days. Geraldine Mukeshimana, Rwanda’s minister of Agriculture and Animal Resources, explained that in the country’s rebuilding process, all policies centered on agriculture.

“Almost no country has come out of poverty without an agricultural transformation,” said Rodger Voorhies, president of Global Growth and Opportunity at the Bill & Melinda Gates Foundation, in a fireside chat with 2009 World Food Prize Laureate Gebisa Ejera.

Agriculture is vital because without food, we cannot build institutions, processes or economies. “You cannot talk about human rights if you don’t have any food in your stomach,” said Chanthol Sun, Cambodia’s minister of Public Works and Transportation.

Josette Sheeran, president and CEO of Asia Society, echoed this thought, “Nothing is more important to human stability than access to food.”

In a luncheon keynote, Víctor M. Villalobos, Mexico’s Secretary of Agriculture and Rural Development, spoke about CIMMYT, the MasAgro project, and the need to improve food systems and agriculture to fight violence and forced migration. “Agriculture, prosperity and peace are inextricably linked together.”

CGIAR had a booth at the 2019 World Food Prize and Borlaug Dialogue, and participated in several events and panels. (Photo: World Food Prize)
CGIAR had a booth at the 2019 World Food Prize and Borlaug Dialogue, and participated in several events and panels. (Photo: World Food Prize)

How to make technological innovations work

Innovations and technology can support a global food system transformation and help to achieve the Sustainable Development Goals.

In a panel on food security in the next decade, speakers shared the agricultural technologies they are excited about: data, gene editing, synthetic biology, data science and precision farming.

Josephine Okot, managing director of Victoria Seeds Ltd said, “We must have mechanization.” She described the fact that Ugandan women farmers still rely on hand tools as a “disgrace to humanity.”

The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) organized a session where panelists discussed how to realize a transformation in food systems through next generation technologies, highlighting the role regulatory frameworks and policies play in the adoption of new technologies.

Making innovations work is about more than developing the product. “It takes a lot more than just a good seed to get a farmer to use it,” said 2019 World Food Prize Laureate Simon Groot. “It includes good distribution, good marketing, good training, etcetera.”

Technology adoption requires a human emphasis and cultural element in addition to technology development.

The Executive Director of CGIAR, Elwyn Grainger-Jones (left), 2019 World Food Prize Laureate, Simon Groot (second from left) and other speakers present CGIAR's Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)
The Executive Director of CGIAR, Elwyn Grainger-Jones (left), 2019 World Food Prize Laureate, Simon Groot (second from left) and other speakers present CGIAR’s Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)

Breeding demand-driven crops for all

“The real enemy of farmers is lousy seeds,” said Simon Groot in his speech after receiving the World Food Prize.

CGIAR took the occasion of the World Food Prize to launch a new initiative, Crops to End Hunger. “We are looking for big solutions at CGIAR. Crops to End Hunger is one of them,” said CIMMYT Director General Martin Kropff. This program aims to meet the food, nutrition and income needs of producers and consumers, respond to market demands and increase resilience to challenges of the climate crisis.

“CGIAR released 417 new varieties last year. However, we can do more. Crops to End Hunger will rapidly excel breeding cycles,” said Elwyn Grainger-Jones, CGIAR Executive Director.

Felister Makini, deputy director general for Crops at Kenya Agricultural & Livestock Research Organization (KALRO), explained that focusing on the end users is what will have real impact. “It is important to develop technologies that are demand-driven so that farmers want to grow them and consumers want to buy and eat them.”

In a session to unpack the Crops to End Hunger initiative hosted by Corteva Agriscience and CGIAR, Marco Ferroni, Chair of the CGIAR System Management Board, said that CGIAR is shifting toward a more demand-driven agenda for plant breeding, where markets dictate what the research priorities should be.

“We must consider the human aspect in breeding,” said Michael Quinn, Director of the CGIAR Excellence in Breeding Platform (EiB). “This is where success will really come.”

Panelists discussed gender-conscious breeding, or taking both women and men’s desired traits into account.

The theme of gender was also emphasized by 2019 Norman Borlaug Field Award winner Hale Ann Tufan. She asked the Dialogue attendees to question gender biases and “not only to ‘take it to the farmer’ but take it to all farmers.”

CIMMYT's Director General, Martin Kropff (right), speaks at a session to share the details of CGIAR's Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)
CIMMYT’s Director General, Martin Kropff (right), speaks at a session to share the details of CGIAR’s Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)

Cover photo: Plenary session of the 2019 Borlaug Dialogue. (Photo: World Food Prize)

Mexico’s agriculture secretary calls for an integrated approach to reach the Sustainable Development Goals

“CIMMYT is the center with the most effective maize and wheat breeding programs in the world,” said Víctor Villalobos, Mexico’s Agriculture and Rural Development secretary, during his keynote address at the Borlaug Dialogue. (Photo: Mary Donovan/CIMMYT)
“CIMMYT is the center with the most effective maize and wheat breeding programs in the world,” said Víctor Villalobos, Mexico’s Agriculture and Rural Development secretary, during his keynote address at the Borlaug Dialogue. (Photo: Mary Donovan/CIMMYT)

Víctor Villalobos, Mexico’s Agriculture and Rural Development secretary, delivered a keynote speech about the inextricable links between agriculture, forced migration and peace at the Borlaug Dialogue hosted in Des Moines, Iowa, by the World Food Prize Foundation.

Villalobos argued for adopting an integrated development approach to improve food production systems in the developing world, particularly in the Northern Triangle of Central America, with an aim to offer development opportunities to subsistence farmers and help halt forced migration.

“Any lasting answer to environmental degradation, violence, famine and forced migration demands our best collective effort, which is not the fight of one generation but the lasting legacy of Norman Borlaug, and of anybody who has ever engaged in this Borlaug Dialogue,” he said.

According to Villalobos, who is also honorary chair of the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT), Mexico is committed to investing in innovation, science and research to make whole grains farming more sustainable and profitable. Among other initiatives, Mexico is scaling out a sustainable research and development project between Mexico and CIMMYT called MasAgro.

“We believe that MasAgro’s innovation hubs, integrated crop production systems and design thinking approach to sustainably increasing the productivity of traditional farming methods can really help to deliver the Sustainable Development Goals that all countries are committed to achieve by 2030,” said Villalobos.

In 2014, the World Food Prize Foundation acknowledged the achievements of the MasAgro project by granting Bram Govaerts — currently CIMMYT’s Integrated Development Program director and representative for the Americas — the Norman Borlaug Award for Field Research and Application, endowed by the Rockefeller Foundation.

MasAgro’s model has since earned recognition from several international development organizations, funding agencies and governments, including the Food and Agriculture Organization of the United Nations, the World Economic Forum, the G20, and the Bill & Melinda Gates Foundation.

The theme of the 2019 Borlaug Dialogue was “Peace through Agriculture,” and the winner of the 2019 World Food Prize was Simon Groot, founder of the East-West Seed Company, which commercializes improved vegetable seeds in more than 60 countries of Asia, Africa and Latin America at affordable prices for the benefit of subsistence and small farmers.

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.

Highlighting innovation in Latin American maize agri-food systems

CIMMYT colleagues pose for a photo at the 23rd Latin American Maize Reunion. (Photo: Carlos Alfonso Cortes Arredondo/CIMMYT.)

Latin America is the birthplace of maize and home to much of its genetic diversity. Maize is a main staple food across the continent and plays an important role in local culture and gastronomy. However, maize faces many challenges, from climate change related stresses such as drought and heat to emerging pests and diseases. Maize experts, as well as scientists from other key crops, from around the world came together to discuss these challenges and how to solve them at the 23rd Latin American Maize Reunion and 4th Seed Congress, held October 7-10 in Monteria, Colombia.

The reunion began with a welcome address from Luis Narro, a senior maize scientist with the International Maize and Wheat Improvement Center (CIMMYT). Narro thanked participants for coming from throughout the region and discussed the history of the event. “Why are we here today? Because maize is one of the most important crops of this century. This should be both a challenge and incentive for us to continue our work with maize, as it is a crop with huge demand,” he said.

In the inaugural session, Deyanira Barrero, general manager of the Colombian Agricultural Institute (ICA) and Jorge E. Bedoya, president of the Society of Colombian Farmers, highlighted the importance of seeds and strategies to ensure the quality and future of Colombia and Latin America’s agri-food systems.

The event was organized by the Colombian Corporation for Agricultural Research (Agrosavia), the Colombian Seed and Biotechnology Association (Acosemillas), the National Federation of Cereal and Legume Growers (Fenalce), the Latin American maize network, and the International Maize and Wheat Improvement Center (CIMMYT). Four CIMMYT scientists presented at the reunion, sharing their experience with and perspectives on agronomy, seed systems, native maize and strategies to increase resilience to climate change.

Nele Verhulst, senior scientist at CIMMYT, presented on the development of management practices for conservation agriculture as well as post-harvest technologies in Latin America, particularly Mexico and Central America. She emphasized the importance of crop management in maize so that improved seeds can reach their maximum potential in terms of yield and profitability. The seed systems lead for Africa and Latin America with CIMMYT’s Global Maize Program, Arturo Silva, shared his experience in these regions strengthening maize seed systems and working to accelerate variety replacement with newer, better seeds. Terry Molnar, maize breeder at the Center, studies native maize varieties to identify characteristics such as disease resistance that can be used to develop improved maize varieties for smallholder farmers. Kai Sonder, head of CIMMYT’s Geographic Information System (GIS) unit, presented on the potential impact of climate change on global and regional maize production.

The reunion closed with the award session for the winners of the MAIZE Youth Innovators Awards 2019 – Latin America. The awards, an initiative of the CGIAR Research Program on Maize (MAIZE), seek to recognize the contributions of young women and men who are implementing innovations in Latin American maize-based agri-food systems.

Winners of the MAIZE Youth Innovators Awards 2019 – Latin America pose for a photo with their awards. (Photo: Carlos Alfonso Cortes Arredondo/CIMMYT.)

Eduardo Cruz Rojo, Mexico, won in the “Farmer” category for his work using biological control agents to protect maize from fall armyworm. Carlos BarragĂĄn and JosĂ© Esteban Sotelo Mariche, both from Mexico, won in the category of “Change Agent” for their work helping farmers increase their maize yields through inter-cropping and for helping farmers better commercialize their native maize, respectively. In the “Researcher” category, YĂ©sica Chazarreta, from Argentina, won for her research on the effect of maize planting dates on grain filling and drying. Omar Garcilazo Rahme of Mexico was recognized for his work helping farmers grow high-value edible maize fungus in traditional maize production systems. Viviana LĂłpez RamĂ­rez of Colombia won for her work on bacteriosis in maize, and Lucio Reinoso of Argentina for his contribution to the development of a maize seeder that helps farmers adopt conservation agriculture techniques. In a video message, B.M. Prasanna, director of the CIMMYT global maize program and the CGIAR Research Program on Maize (MAIZE), congratulated the young winners and expressed his hopes that they would inspire other young people to get involved in maize based systems. This was the first time the awards were held in Latin America, following Asia in 2018 and Africa in spring of 2019.

Two additional awards were given at the close of the reunion, one to Alberto Chassiagne, maize seeds systems specialist for Latin America at CIMMYT, who received first place in the scientific poster competition at the reunion for his work “Proposed model to generate seed production technology for maize hybrids”. Another award went to Luis Narro for his contributions to maize in Latin America throughout his career.

The conference was followed by a field day held October 10 at the Agrosavia TuripanĂĄ Research Center in CeretĂ©, Colombia. The field day began with a speech by Colombia’s Minister of Agriculture and Rural Development, AndrĂ©s Valencia, who discussed the importance of agriculture to his country’s economy as well as plans to increase maize production to decrease reliance on imports. This announcement follows the launch of Maize for Colombia, a strategic plan to help improve maize production in the country while increasing sustainability.

Pulses, cobs and a healthy soil prove the success of a rural innovator

Mary Twaya is an exemplary farmer in Lemu, a rural drought-prone community in southern Malawi, near Lake Malombe. On her one-hectare farm she grows cotton, maize, and legumes like groundnut and cowpea, which she just picked from her fields. Since agriculture is Twaya’s sole livelihood, it is important for her to get good harvests, so she can support her three children and her elderly mother. She is the only breadwinner since her husband left to sell coffee in the city and never returned.

Agriculture is critically important to the economy and social fabric of Malawi, one of the poorest countries in the World. Up to 84% of Malawian households own or cultivate land. Yet, gender disparities mean that farmland managed by women are on average 25% less productive than men. Constraints include limited access to inputs and opportunities for capacity building in farming.

Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)
Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)

Climate change may worsen this gender gap. Research from the International Maize and Wheat Improvement Center (CIMMYT) shows that there are multidimensional benefits for women farmers to switch to climate-smart agriculture practices, such as planting drought-tolerant maize varieties and conservation agriculture with no tillage, soil cover and crop diversification.

Twaya was part of a CIMMYT project that brought climate-smart agriculture practices to smallholder farmers in Malawi, Zambia and Zimbabwe.

She was enthusiastic about adopting climate-smart agriculture practices and conservation agriculture strategies in her plot. “I have always considered myself an active farmer, and when my husband left, I continued in the project around 2007 as part of the six lead ‘mother farmers’ with about 30 more ‘baby farmers’ learning through our field trials,” Twaya explained.

“We worked in Lemu since 2007 with Patrick Stanford, a very active and dedicated extension officer who introduced conservation agriculture to the village,” said CIMMYT agronomist Christian Thierfelder. “Farmers highlighted declining yields. The Lemu community was keen to transform their farming system, from conventional ridge tillage to more sustainable and climate-adapted cropping systems.” This was an ideal breeding ground for new ideas and the development of climate-smart solutions, according to Thierfelder.

Mulching, spacing and legume diversification

Showing her demonstration plot, which covers a third of her farm, Twaya highlights some of the climate-smart practices she adopted.

“Mulching was an entirely new concept to me. I noticed that it helps with moisture retention allowing my crops to survive for longer during the periods of dry spells. Compared to the crops without mulching, one could easily tell the difference in the health of the crop.”

“Thanks to mulching and no tillage, a beneficial soil structure is developed over time that enables more sustained water infiltration into the soil’’, explained Thierfelder. “Another advantage of mulching is that it controls the presence of weeds because the mulch smothers weeds unlike in conventional systems where the soil is bare.”

Research shows that conservation agriculture practices like mulching, combined with direct seeding and improved weed control practices, can reduce an average of 25-45 labor days per hectare for women and children in manual farming systems in eastern Zambia and Malawi. This time could be used more productively at the market, at home or in other income-generating activities.

A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)
A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)

After 12 years of practicing conservation agriculture, Twaya confirms that she does not spend too much time in the field because she just uproots the weeds with no need for using a hoe. This makes the weeding task less laborious and allows her to spend her time on other chores such as fetching water, washing laundry or cleaning her homestead. “I have time to also go to the village banking and loan savings club to meet with others”.

Adopting optimum plant density, instead of throwing in three seeds in each planting hole was another transformational change. The “Sasakawa spacing” — where maize seeds are planted 25 centimeters apart in rows spaced every 75 centimeters — saves seed and boosts yields, as each plant receives adequate fertilizer, light and water without competing with the other seeds. This practice was introduced in Malawi in the year 2000 by Sasakawa Global.

Twaya pays more attention to the benefits of planting nitrogen-fixing crops alongside her maize, as she learned that “through crop rotation, legumes like pigeon pea improve the nutrition of my soil.” In the past she threw pigeon pea seeds loosely over her maize field and let it grow without any order, but now she practices a “double-up legume system,” where groundnut and pigeon pea are cropped at the same time. Pigeon peas develop slowly, so they can grow for three months without competition after groundnut is harvested. This system was introduced by the Africa RISING project, funded by USAID.

Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)
Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)

A mother farmer shows the way

Switching to climate-smart agriculture requires a long-term commitment and knowledge. Some farmers may resist to the changes because they initially find it new and tedious but, like Twaya observed, “it may be because they have not given themselves enough time to see the long-term benefits of some of these practices.”

With all these innovations — introduced in her farm over the years with the support of CIMMYT and the Ministry of Agriculture, Irrigation and Water Development of Malawi — Twaya reaped important economic and social benefits.

When Twaya rotates maize and pigeon pea, the maize stalks are healthy and the cobs are big, giving her higher yields. Passing-by neighbors will often exclaim ‘‘Is this your maize?’’ because they can tell it looks much more vigorous and healthier than what they see in other fields.

For the last season, Twaya harvested 15 bags of 50kg of maize from her demo plot, the equivalent of five tons per hectare. In addition to her pigeon pea and groundnut crops, she was able to feed her family well and earned enough to renovate her family home this year.

This new way of managing her fields has gained Twaya more respect and has improved her status in the community.

Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)
Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)

Mexico City to host Interdrought 2020

Droughts affect crop production across the world. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production under this particular environmental stress.

Interdrought 2020 aims to facilitate the development of concepts, methods and technologies associated with plant production in water-limited environments.

The congress will take place from March 9 to 13, 2020, in Mexico City. Early-bird registration is open until October 31, 2019 and abstract submissions will be accepted until November 15, 2019.

The conference will focus on:

  • Optimizing dryland crop production – crop design
  • Water capture, transpiration, transpiration efficiency
  • Vegetative and reproductive growth
  • Breeding for water-limited environments
  • Managing cropping systems for adaptation to water-limited environments

This will be the 6th edition of Interdrought, which builds on the successful series of conferences in Montpellier (1995), Rome (2005), Shanghai (2009), Perth (2013) and Hyderabad (2017).

It will continue the philosophy of presenting, discussing and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.

To register, and for more information, visit www.interdrought2020.com.

If you encounter any difficulties in registration, or are interested in sponsoring the conference, please send an email to cimmyt-interdrought2020@cgiar.org.

Microsatellite data can help double impact of agricultural interventions

A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)
A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)

Data from microsatellites can be used to detect and double the impact of sustainable interventions in agriculture at large scales, according to a new study led by the University of Michigan (U-M).

By being able to detect the impact and target interventions to locations where they will lead to the greatest increase of yield gains, satellite data can help increase food production in a low-cost and sustainable way.

According to the team of researchers from U-M, the International Maize and Wheat Improvement Center (CIMMYT), and Stanford and Cornell universities, finding low-cost ways to increase food production is critical, given that feeding a growing population and increasing the yields of crops in a changing climate are some of the greatest challenges of the coming decades.

“Being able to use microsatellite data, to precisely target an intervention to the fields that would benefit the most at large scales will help us increase the efficacy of agricultural interventions,” said lead author Meha Jain, assistant professor at the U-M School for Environment and Sustainability.

Microsatellites are small, inexpensive, low-orbiting satellites that typically weigh 100 kilograms or less.

“About 60-70% of total world food production comes from smallholders, and they have the largest field-level yield gaps,” said Balwinder Singh, senior researcher at the International Maize and Wheat Improvement Center (CIMMYT).

To show that the low-cost microsatellite imagery can quantify and enhance yield gains, the researchers conducted their study in smallholder wheat fields in the Eastern Indo-Gangetic Plains in India.

They ran an experiment on 127 farms using a split-plot design over multiple years. In one half of the field, the farmers applied nitrogen fertilizer using hand broadcasting, the typical fertilizer spreading method in this region. In the other half of the field, the farmers applied fertilizer using a new and low-cost fertilizer spreader.

To measure the impact of the intervention, the researchers then collected the crop-cut measures of yield, where the crop is harvested and weighed in field, often considered the gold standard for measuring crop yields. They also mapped field and regional yields using microsatellite and Landsat satellite data.

They found that without any increase in input, the spreader resulted in 4.5% yield gain across all fields, sites and years, closing about one-third of the existing yield gap. They also found that if they used microsatellite data to target the lowest yielding fields, they were able to double yield gains for the same intervention cost and effort.

“Being able to bring solutions to the farmers that will benefit most from them can greatly increase uptake and impact,” said David Lobell, professor of earth system science at Stanford University. “Too often, we’ve relied on blanket recommendations that only make sense for a small fraction of farmers. Hopefully, this study will generate more interest and investment in matching farmers to technologies that best suit their needs.”

The study also shows that the average profit from the gains was more than the amount of the spreader and 100% of the farmers were willing to pay for the technology again.

Jain said that many researchers are working on finding ways to close yield gaps and increase the production of low-yielding regions.

“A tool like satellite data that is scalable and low-cost and can be applied across regions to map and increase yields of crops at large scale,” she said.

Read the full study:
The impact of agricultural interventions can be doubled by using satellite data

The study is published in the October issue of Nature Sustainability. Other researchers include Amit Srivastava and Shishpal Poonia of the International Maize and Wheat Improvement Center in New Delhi; Preeti Rao and Jennifer Blesh of the U-M School of Environment and Sustainability; Andrew McDonald of Cornell; and George Azzari and David Lobell of Stanford. 


For more information, or to arrange interviews, please contact CIMMYT’s media team.

Scientists propose a low-cost, reliable system to measure soil organic carbon

A multi-crop, multi-use zero-tillage seeder at work on a conservation agriculture trial plot, left, at CIMMYT's headquarters in Texcoco, Mexico. The residues retained on the soil surface and the permanent raised beds are in clear contrast with the conventional plot on the right. (Photo: CIMMYT)
A multi-crop, multi-use zero-tillage seeder at work on a conservation agriculture trial plot, left, at CIMMYT’s headquarters in Texcoco, Mexico. The residues retained on the soil surface and the permanent raised beds are in clear contrast with the conventional plot on the right. (Photo: CIMMYT)

New research by an international team of scientists, including International Maize and Wheat Improvement Center (CIMMYT) Director for the Integrated Development Program, Bram Govaerts, outlines a proposed accounting system for organic carbon in soils that could encourage farmers to adopt better land management practices and increase levels of organic carbon in their soil.

Reported this month in the journal Carbon Management, the study highlights how increasing soil organic carbon (SOC) would build agricultural resilience and fertility and reduce greenhouse gas emissions — but we need to be able to measure it.

Soil is a huge carbon reservoir — in fact, soils contain one of the largest organic carbon stocks on the planet. With proper land management, soils have the potential to store even more. Improved SOC levels have also been connected with improved soil quality, reduced susceptibility to erosion and greater agricultural yields and yield stability, particularly under drought. This makes them a crucial player in climate change mitigation and agricultural resilience.

Policy makers and environmental groups are becoming increasingly interested in soil health and its effect on climate change. The 4 per 1000 initiative, launched at the COP 21 climate talks in Paris in 2015, argues that an annual growth rate of 0.4% in soil carbon stocks would significantly reduce human activity-related CO2 concentrations in the atmosphere. The most recent Intergovernmental Panel on Climate Change (IPCC) assessment highlights carbon sequestration as one of the options, alongside massive fossil fuel reduction, to keep warming below 2 degrees Celsius, in accordance with the Paris Climate Agreement.

Increasing organic carbon content in soils also has another very important function: crop nutrition. Last year, researchers from CIMMYT and the Nature Conservancy found that wheat grown on soils rich in organic matter had more essential nutrients like zinc and protein.

However, increasing levels of organic carbon in the soil can be costly in the short term, so farmers need to see improvements in the performance of their soils as a result of their efforts.

Quantifying soil carbon

That’s where a global soil information system comes in. By integrating empirical models, expanded measurement and monitoring networks, remote sensing and crowdsourced management data, SOC stocks can be assessed efficiently and reliably. Farmers and policy makers would get a clear picture of how much soil organic carbon is increasing and at what rate.

The global soil information system would work by pulling different sources of existing information together to provide a comprehensive account of soil organic carbon stocks worldwide.

As SOC content can vary over time, an important component of the system would involve using monitoring networks at precise locations which can then be resampled regularly. Alongside this information, empirical models would be used to predict SOC changes based on already observed results from lab- and field-based experiments, and to predict the impacts of different soil and climate conditions. Remote sensing data can provide information on land cover, crop species and land management practices at a very low cost, to supplement and verify management activity data reported by land users.

The international team of scientists pointed out that greater coordination and transparency among scientists, remote sensing specialists and land managers is crucial to the success of a global soil information system.

Incentivizing carbon sequestration among land managers is no mean task. The authors argue that existing approaches like direct compensation to farmers for CO2 removal and storage, government subsidies such as the European Union’s Common Agricultural Policy (CAP) and the option of earning a premium price for producing sustainable agricultural products, need a reliable carbon accounting system to ensure their success. A global soil information system might just hold the key.

Read the full article:
“Quantifying carbon for agricultural soil management: from the current status toward a global soil information system” in Carbon Management, DOI: 10.1080/17583004.2019.1633231

This study was made possible through the support provided by the TomKat Foundation. Additional support was provided by the NASA Harvest Consortium (www.nasaharvest.org), a multi-disciplinary program that empowers informed agricultural decisions through the use of Earth observations.

Breaking Ground: P.H. Zaidi helps Asian farmers get healthy harvests despite climate variability

Growing up on a rainfed farm in India, P.H. Zaidi learned how smallholder family farmers adapted their farming practices to meet weather challenges, such as dry spells or excessive rain. For the most part, small changes to their crop selection and timing of field operations maintained a wholesome harvest.

As time passed Zaidi witnessed farmers in his hometown and beyond struggling against increasingly extreme and erratic weather events. The Asian tropics have now become hotspots for climate change effects and associated variabilities, said the maize physiologist who works with the Global Maize Program of the International Maize and Wheat Improvement Center (CIMMYT), based in Hyderabad.

“Rainfed farmers produce most of the food for people in Asia, but without sufficient supplemental irrigation systems they are heavily dependent on monsoon rains,” Zaidi said. “Climate variability can be devastating for family farmers who are unable to foresee erratic changes in weather patterns.”

“An extreme weather event can negatively affect household food security and income, which in turn results in a deterioration of capacity to deal with future shocks,” he explained.

Nearly half a billion people in Asia lack access to nourishing food. The Food and Agriculture Organization of the United Nations (FAO) finds climate change-related disasters and a lack of clean water are the main causes of persistent hunger in the region.

Zaidi believes farmers are born innovators and, with the right tools and know-how, they can ensure a healthy harvest despite year-to-year climate variability. He has dedicated his lifework to researching new agricultural technologies that help resource-poor farmers to protect their food and income security.

Stable harvests despite climate change

After getting an undergraduate degree in agricultural science, Zaidi obtained his doctorate at the University of Agriculture Science & Technology in Faizabad, India. He studied how maize physiology interacts with physical stresses, such as severe heat, drought, and excessive moisture. Maize has become an important part of Asian cropping systems, with several countries recording impressive growth rates in maize production and productivity. However, increasing demands — food, feed, and industry — and climate challenges highlight the need for international agricultural research.

In 2002, Zaidi worked as a post-doctoral fellow at CIMMYT in Mexico, where he was mentored by maize abiotic stress experts. He took those research approaches and strategies for breeding stress-resilient maize varieties back home. Working with the Indian government’s maize program, he contributed to developing high-yielding stress-resilient maize for resource-poor maize farmers living in vulnerable agro-ecologies.

With a wealth of knowledge and experience in agricultural systems in Asia, he was employed by CIMMYT as maize physiologist and breeder in 2007. He worked to develop, deploy and scale-out hardy maize varieties that increase yield potential and reduce risk, ensuring a stable harvest despite climate variability. He also developed and standardized screening phenotyping techniques and selection criteria to identify maize germplasm tolerant to stresses including heat, drought and water-logging.

“Through effective collaboration and training, national governments, private seed companies and NGOs are using the varieties with resilient traits in their breeding programs to ensure hardy varieties reach farmers throughout the region,” Zaidi noted.

From 2015 to 2018, a total of 68 such high-yielding stress-resilient maize hybrids were licensed to seed partners in the region, he explained. These partners took them forward for large-scale farmer participatory testing in their respective target ecologies. After extensive testing through the national system, nine stress-resilient maize hybrids have already been released and are being deployed in various countries in Asia. Others will be released soon.

Zaidi has received several awards for his contributions to maize research, including CIMMYT’s Outstanding Scientist Award in 2009.

Toolkits to deal with Asian droughts

In July 2019 ICIMOD, along with its partners and the International Maize and Wheat Improvement Centre in Mexico, launched a web-based Regional Drought Monitoring and Outlook System for South Asia – an integrated information platform linking weather and climate data with agriculture practices in South Asia. The system provides multiple indices for droughts and seasonal weather outlooks, besides maps and baseline. Read more here.

Climate-smart agriculture: A winning strategy for farming families in El Niño seasons

Approaching the homestead of Joseph Maravire and his wife, Reason, on a warm late August afternoon in Bvukururu, Zaka district, Zimbabwe, heaps of dry straw in their farmyard are prominent. ‘’This is for mulching for the forthcoming cropping season,’’ explains Reason. Maize stalk residues from last harvest are also stored to feed their livestock and to mix into the manure or for bedding the herd of cattle. These practices have become the norm for the Maravire family as they prepare for the next maize planting season in Zaka, one of the hottest areas of southern Zimbabwe.

“We never knew of mulching until we interacted with CIMMYT scientists in 2009. Now I cannot imagine working in my field without applying mulch,” says Reason. As one of five families selected in their village to participate in the scaling out of climate-smart agricultural technologies since 2009, the Maravire family demonstrates the evident transformative power of climate-smart agriculture.

Joseph and Reason by their heap of dry straw which is collected in preparation for mulching in the forthcoming 2019-20 season. In this drought-prone region, the Maravire learned the benefits of mulching to protect crops from recurrent dry spells. (Photo: Shiela Chikulo/CIMMYT)

Climate-smart agriculture involves farming practices that improve farm productivity and profitability, help farmers adapt to the negative effects of climate change and mitigate climate change effects, e.g. by soil carbon sequestration or reductions in greenhouse gas emissions. Climate-smart practices, such as the locally practiced conservation agriculture, aim at conserving soil moisture, retaining crop residues for soil fertility, disturbing the soil as minimally as possible and diversifying through rotation or intercropping.

As CIMMYT research shows, these practices can boost production and make farmers more food secure.  This is good news for Zimbabwean farmers such as the Maravires. During an episode of El Niño in the 2015-16 and 2018-19 cropping seasons, large parts of southern Africa experienced prolonged dry spells, erratic rainfall and high temperatures initially with floods towards the end of the cropping season. A recent humanitarian appeal indicated that at least 2.9 million people in Zimbabwe were severely food insecure due to poor or no harvests that year.

Under the “Out-scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe’’ project — funded by the German development agency GIZ and the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), and implemented under the leadership of the Zambian Agriculture Research Institute (ZARI) with technical oversight by CIMMYT and other collaborating partners from Malawi and Zimbabwe —  farmers from 19 rural communities in the three target countries received training and guidance on climate-smart agriculture practices and technologies, such as mulching, rotation and the use of direct seeders and ripper tines to practice no tillage.

Mastering climate-smart techniques, season by season

On their 0.4-hectare plot dedicated to the project activities, Joseph and Reason practiced four different planting techniques: direct seeding (sowing directly into crop residue), ripline seeding (sowing in lines created by animal draft-powered rippers), basin planting (sowing manually into planting basins created by hand hoes), and the traditional ox drawn plowing and seeding. They then planted one traditional and three drought-tolerant maize varieties.

“It soon became clear to us that using a direct seeder or ripper tine, combined with mulching, was the best option, as these sections of the field retained more moisture and produced more maize than the conventional system,” explained Joseph Maravire. Beginning in 2013, the family also started rotating maize and cowpeas and observed a significant increase in their yields. They decided to apply climate-smart agriculture practices on the rest of their 2.5-hectare farm.

“We learned that cowpeas leave nitrogen in the soil and by the time of harvesting, the leaves from the cowpeas also fall to the ground as residue and add to the mulch for the soil. The shade of cowpea also reduces weed pressure and manual weeding,” said Maravire.

Yields and food security

With these practices, the family has harvested remarkably, even during the dry seasons. In 2015-16, the worst El Niño on record, they harvested 2 tons of maize, despite the severe drought, while other households barely got anything from their fields. In good years, like the last cropping season, the family harvests 3.5 to 4 tons of maize from their entire field, three times more than their annual family food needs of approximately 1.3 tons. The additional cowpea yields of both grain and leaves provide protein-rich complementary food, which improves the family’s nutrition. To share some of these benefits with their community, the Maravire family donates up to 10% of their produce to poor elderly households in their village.

Overcoming challenges and building resilience

However, the new farming practices did not come without challenges.

“In the early days of the project, the ripper tine was not simple to use because we could not get the right depth to put manure and the maize seeds,” said Joseph Maravire.

They found a solution by making rip lines around October or November, applying manure at the onset of the rains, ripping again and placing the seed to mix with the manure.

Fall armyworm was another devastating challenge for their plot, as was the case around Zimbabwe. Like other farmers in Zimbabwe, the Maravires had access to pesticides, but the caterpillar showed some resistance to one type of pesticide. Maravire expressed interest in learning biological control options to reduce the pest’s spread.

Scaling climate smart technologies beyond the Maravire homestead

After several years of consistently good harvests with climate-smart agriculture options, the Maravire family has become a model within their community. Working closely with their agricultural extension officer, they formed a CSA farmer support group of 20 families. Joseph Maravire provides services for direct seeding and ripping to the CSA group and ensures that all of their land is prepared using no-tillage planting techniques. The couple regularly demonstrates climate-smart practices to peers during field days, where an average of 300 villagers attend. They also share their knowledge about green manure cover crops — crops such as lablab, jackbean, sunhemp, and velvet bean which, retained on the soil surface, serve as organic fertilizer — a practice they learned from project activities.

For Reason and Joseph Maravire, the rewards for adopting climate-smart agriculture benefit the family beyond food security. The income earned from maize grain sales and cowpea marketing has helped them acquire assets and rebuild one of their homes that was destroyed by Cyclone Idai in March 2019.

Joseph is confident that his family will always produce well on the replenished soil and the technologies they have learned through the project will continue to define their farming practices.

The house of Maravire homestead was damaged by Cyclone Idai in March. Joseph is nearing completion of rebuilding the house using proceeds from recent cowpea sales. (Photo: Shiela Chikulo/CIMMYT)

More photos of the Maravire family can be seen here.

Kenyan maize farmers set to benefit from development of improved varieties

Anne Wambui has been growing maize in her farm located in the upper eastern Kenyan county of Embu for three decades to cater for domestic consumption and sale in the nearby market.

During this period, she has relied on buying varieties from seed stockists that are either recommended by the agricultural extension officials or not necessarily varieties that she prefers to plant.

However, scientists at the International Maize and Wheat Improvement Center (CIMMYT) emphasized that farmers should be availed varieties that meet their varied needs.

Read more here.

Climate Services for Resilient Development in South Asia (CSRD)

Climate Services for Resilient Development (CSRD) is a global partnership that connects climate and environmental science with data streams to generate decision support tools and training for decision-makers in developing countries. Translating complex climate information into easy to understand actionable formats to spread awareness in the form of climate services is core to CSRD’s mission. CSRD works across South Asia (with emphasis on Bangladesh), the Horn of Africa (Ethiopia), and in South America (Colombia) to generate and provide timely and useful climate information, decision tools and services. In South Asia, CSRD focusses the development, supply and adaptation of agricultural climate services to reduce vulnerability by increasing resiliency in smallholder farming systems. These goals are strategically aligned with the Global Framework for Climate Services.

Project description

CSRD in South Asia aims to have the impact by increasing climate resilient farm management, indicated by increased use of climate services and climate information to inform farmers on how to better manage their production systems.  CSRD also aims to develop and validate models for agricultural climate services that can be replicated in other regions with similar farming systems and climate risks, while also fine-tuning weather and climate advisories to be most useful to farmers’ decision-making. A series of sustained contributions to CSRD’s Action and Learning Framework Pillars 1-4, detailed below, are envisioned as major project outcomes:

  • Pillar 1: Create the solution space:
    CSRD works to establish a problem-focus, to engage key stakeholders, to create a platform for sustained communication and collaboration, and to build synergies among relevant programs.
  • Pillar 2: Utilize quality data, products, and tools
    CSRD provides access to useful and available information and technology, and to develop tailored products and services responsive to problem-specific needs.
  • Pillar 3: Build capacities and platforms
    CSRD supports the use of targeted products and services, and to promote sustainability, scalability, and replicability.
  • Pillar 4: Build knowledge
    A key goal of CSRD’s work is to identify and promote good practices among the global climate services community and to support research efforts and innovation that increase the effectiveness of climate services.

Outputs

CSRD in South Asia will ultimately generate the following broad outputs and services:

Download the report summarizing CSRD activities, achievements, and challenges during the first year (from November 2016 through December 2017).

The CSRD consortium in South Asia is led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the Bangladesh Meteorological Department (BMD), Bangladesh Department of Agricultural Extension (DAE), Bangladesh Agricultural Research Council (BARC), Bangladesh Agricultural Research Institute (BARI), International Center for Integrated Mountain Development (ICIMOD), International Institute for Climate and Society (IRI), University de Passo Fundo (UPF), and the University of Rhode Island (URI). This consortium provides strength and technical expertise to develop relevant climate products that can assist farmers and other stakeholders with relevant information to improve decision making, with the ultimate goal of increasing resilience to climate-related risks. The CSRD consortium also works to assure that climate information can be conveyed in ways that are decision-relevant to farmers and other agricultural stakeholders.

As a public-private partnership, CSRD is supported by the United States Agency for International Development (USAID), UK AID, the UK Met Office, the Asian Development Bank (ADB), the Inter-American Development Bank (IDB), ESRI, Google, the American Red Cross, and the Skoll Global Threats Fund.

New drought monitoring system will reduce climate risks for South Asian farmers

Farmers harvest squash in Uttarakhand, India. (Photo: Jitendra Raj Bajracharya/ICIMOD)
Farmers harvest squash in Uttarakhand, India. (Photo: Jitendra Raj Bajracharya/ICIMOD)

To mitigate the food security and economic risks of South Asia’s frequent and intense droughts, scientists and policymakers from the South Asian Association for Regional Cooperation (SAARC), the International Centre for Integrated Mountain Development (ICIMOD) and the International Maize and Wheat Improvement Center (CIMMYT) recently joined forces to launch an innovative decision support and agricultural planning system that combines remote sensing and  climate data analysis for drought monitoring and early warning.

The Regional Drought Monitoring and Outlook System application was unveiled during a workshop to train experts and policymakers in its use at relevant regional and national institutes in Islamabad, Pakistan, from July 29 to August 1, 2019. The Regional Drought Monitoring and Outlook System is the product of an ICIMOD-CIMMYT partnership through the United States Agency for International Development (USAID) and the National Aeronautics and Space Administration (NASA) supported SERVIR Hindu Kush Himalaya (HKH) programme, in collaboration with Climate Service for Resilient Development (CSRD), led by ICIMOD and CIMMYT, respectively.

“Commonly associated with epic flooding, particularly in the enormous breadbasket region known as the Indo-Gangetic Plains that extends across Pakistan, India, southern Nepal, and Bangladesh, the region also faces droughts driven by rising temperatures and erratic rainfall and which threaten crops, food security, and livelihoods,” said Faisal Mueen Qamer, Remote Sensing Specialist of ICIMOD, which helped develop the system and organize the workshop.

“We expect the system to foster resilience in South Asian agriculture, while supporting future institutional frameworks and policies for farm compensation and adaptation, through decision makers’ access to timely and action-oriented information,” Qamar explained.

With a growing population of 1.6 billion people, South Asia hosts 40% of the world’s poor and malnourished on just 2.4% of its land. A 2010 study found a linear drop of 7.5% in rainfall in South Asia from 1900 to 2005.

“Shrinking glaciers, water scarcity, rising sea levels, shifting monsoon patterns, and heat waves place considerable stress on South Asian countries, whose primary employment sector remains agriculture,” said Mohammad Faisal, Director General for South Asia at Pakistan’s Ministry of Foreign Affairs, during the workshop opening.

Media reports in early 2019 documented displacement and hunger from Pakistan’s worst drought in years.

Participants at the regional workshop on earth observation and climate data analysis for agriculture drought monitoring in South Asia. (Photo: ICIMOD)
Participants at the regional workshop on earth observation and climate data analysis for agriculture drought monitoring in South Asia. (Photo: ICIMOD)

Raising awareness about drought and its mitigation

Twenty-three participants from six South Asia countries plus five expert instructors attended the workshop, which offered presentations and hands-on training on a suite of applications and associated data analysis tools, including the South Asian Land Data Assimilation System (SALDAS), the Regional Drought Explorer, and the National Drought Early Warning System.

Muhammad Azeem Khan, Member of the Food Security & Climate Change at the Planning Commission of Pakistan, said the scale of present and future climate challenges is clearly evident.

“In Pakistan, we regularly see parts of the country in the grip of severe drought, while others have flash floods,” Khan commented during the workshop closing, while commending its organizers. “Frequent drought diminishes agricultural production and food security, especially for people in rural areas. Effectively managing the impacts of climate change requires a response that builds and sustains South Asia’s social, economic, and environmental resilience, as well as our emergency response capacity.”

Through CSRD, a global partnership that connects climate and environmental science with data streams to generate decision support tools and training for decision-makers in developing countries, CIMMYT helped extend the Regional Drought Monitoring and Outlook System to Bangladesh, from its original coverage of Afghanistan, Nepal, and Pakistan.

“Translating complex climate information into easy-to-understand and actionable formats is core to CSRD’s mission and helps spread awareness about climate challenges,” said Tim Krupnik, CIMMYT cropping systems agronomist based in Bangladesh. “This consortium provides strength and technical expertise to develop relevant climate products, including decision-support information for farmers and other stakeholders, thus fostering resilience to climate-related risks.”