Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

New project to recharge aquifers and cut water use in agriculture by 30 percent

Irrigated fields under conservation agriculture practices at CIMMYT's experiment station near Ciudad Obregón, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)
Irrigated fields under conservation agriculture practices at CIMMYT’s experiment station near Ciudad Obregón, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) announced a new three-year public–private partnership with the German development agency GIZ and the beverage company Grupo Modelo (AB InBev) to recharge aquifers and encourage water-conserving farming practices in key Mexican states.

The partnership, launched today, aims to contribute to a more sustainable use of water in agriculture. The project will promote sustainable farming and financing for efficient irrigation systems in the states of Hidalgo and Zacatecas, where Grupo Modelo operates. CIMMYT’s goal is to facilitate the adoption of sustainable intensification practices on more than 4,000 hectares over the next three years, to reduce the water footprint of participant farmers.

Mexico is at a high risk of facing a water crisis in the next few years, according to the World Resources Institute. The country needs to urgently begin reducing its use of available surface and ground water supplies if it is to avert the looming crisis.

Farming accounts for nearly 76% of Mexico’s annual water consumption, as estimated by Mexico’s Water Commission (CONAGUA). Farmers, therefore, have a key role to play in a more sustainable use of this valuable natural resource.

“We need to take care of the ecosystem and mitigate agriculture’s impact on the environment to address climate change by achieving more sustainable agri-food systems,” said Bram Govaerts, chief operating officer, deputy director general of research a.i. and director of the Integrated Development program at CIMMYT.

The project, called Aguas Firmes (Spanish for “Firm Waters”), also seeks to recharge two of Mexico’s most exploited aquifers, by restoring forests and building green infrastructure.

“Our priority is water, which is the basis of our business but, above all, the substance of life,” said Cassiano De Stefano, chair of Grupo Modelo, one of the Mexico’s leading beer companies. “We’ve decided to lead by example by investing considerably in restoring two aquifers that are essential to Zacatecas and Hidalgo’s development.”

The German development agency GIZ, one of CIMMYT’s top funders, is also investing in this alliance that will benefit 46,000 farmers in Hidalgo and 700,000 farmers in Zacatecas.

“We are very proud of this alliance for sustainable development that addresses a substantial problem in the region and strengthens our work on biodiversity conservation and sustainable use of natural resources in Mexico,” said Paulina Campos, Biodiversity director at GIZ Mexico.

CIMMYT undertakes participatory agricultural research activities with local farmers to collaboratively develop and implement sustainable farming practices and technologies that help reduce water consumption in grain production by up to 30%.


 

INTERVIEW OPPORTUNITIES:

Bram Govaerts – Chief Operating Officer, Deputy Director General of Research a.i. and Director of the Integrated Development program, CIMMYT

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Ricardo Curiel, Senior Communications Specialist for Mexico, CIMMYT. r.curiel@cgiar.org, +52 (55) 5804 2004 ext. 1144

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

On-farm nitrogen management practices have global reverberations

Smallholder farmer Sita Kumari holds fertilizer in her hands. (Photo: C. de Bode/CGIAR)
Smallholder farmer Sita Kumari holds fertilizer in her hands. (Photo: C. de Bode/CGIAR)

An international team of scientists has strengthened our understanding of how better fertilizer management could help minimize nitrous oxide (N2O) emissions while still achieving high crop yields in the new publication: Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. This research was conducted through a meta-analysis, where the results of multiple scientific studies were statistically combined.

To meet the world’s growing demand for food, farmers need fertile soil. Nitrogen, an essential element in plant fertilizer, can have extremely deleterious effects on the environment when not managed effectively. Numerous studies have confirmed that improving nitrogen use in agriculture is key to securing a food secure future and environmental sustainability.

“Society needs nuanced strategies based upon tailored nutrient management approaches that keep nitrogen balances within safe limits,” said Tai M Maaz, researcher at University of Hawaii at Manoa and lead author of the study.

When farmers apply nitrogen fertilizer to their crop, typically only 30-40% of it is taken up by the plant and the rest is lost the the environment. One byproduct is  nitrous oxide (N2O), one of the most potent greenhouse gases in the atmosphere. Global agriculture is a major contributor of greenhouse gas emissions, especially those derived from nitrous oxide emissions.

Although farmers are now commonly told to practice fertilizer rate reduction, or simply put, to apply less fertilizer, there are cases where that strategy is either not possible or not advisable.

Alternative predictors of emissions

The study found that output indicators such as partial nitrogen balance (PNB), an indicator for the amount of nitrogen prone to loss, and partial factor productivity (PFP), a measure of input-use efficiency, predicted nitrous oxide emissions as well as or better than the application rate alone. This means that in some cases, where nitrogen rate reduction is not possible, nitrous oxide emission can still be reduced by increasing yield through implementation of improved fertilizer management practices, such as the “4Rs:” right source, right timing, right placement and right application rate.

Tek B Sapkota, climate scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the study, emphasized that “rate reduction is still important in the cropping systems where the current level of nitrogen application is excessively high. But, when comparing the systems at the same nitrogen application rates, nitrous oxide emission can be reduced by increasing yield.”

“The 4R nutrient management practices must be tailored to specific regions to help close yield gaps and maintain environmental sustainability: the win-win scenario. The future will require public and private institutions working together to disseminate such nutrient management information for specific cropping systems in specific geographies,” said Sapkota, who is also a review editor of the Intergovernmental Panel on Climate Change (IPCC) sixth assessment report.

The article was a collaborative effort from the International Maize and Wheat Improvement Center (CIMMYT), the University of Hawaii, the Environmental Defense Fund, Plant Nutrition Canada and the African Plant Nutrition Institute. It was funded by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

Read the full study:
Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture


 

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT. m.macneil@cgiar.org

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org

World Health Day 2021

Health has certainly been in the spotlight over the past year. And how could it not be?

The ongoing COVID-19 pandemic has thrown into sharp relief the fact that many groups across the world struggle to make ends meet with little daily income, have poorer housing conditions and education, fewer employment opportunities, and have little or no access to safe environments, clean water and air, food security and health services.

In light of this, the World Health Organization (WHO) is calling on leaders worldwide to ensure that everyone has living and working conditions that are conducive to good health. For many the focus will, understandably, be on access to quality health care services. But there are myriad other factors that influence our ability to lead healthy lives — from how we care for our soil, to what we eat and the air we breathe.

Joining this year’s World Health Day campaign, the International Maize and Wheat Improvement Center (CIMMYT) is highlighting five areas where it pays to think about health, and the solutions we can use to help build a healthier world for everyone.

It starts with soil

Crop yields fall dramatically when soil conditions aren’t right, but digital nutrient management tools providing tailored fertilizer recommendations can boost farmers’ profits and productivity while reducing emissions.

Douglas Mungai holds up soil on his farm in Murang’a county, Kenya. (Photo: Robert Neptune/TNC)
Douglas Mungai holds up soil on his farm in Murang’a county, Kenya. (Photo: Robert Neptune/TNC)

Robust germplasm

How do we ensure that germplasm reserves are not potential vectors of pest and disease transmission? The second instalment in the CGIAR International Year of Plant Health Webinar Series tackles the often-overlooked issue of germplasm health.

A CIMMYT gene bank worker photographs maize accessions for the database for future reference. (Photo: Alfonso Cortés/CIMMYT)

Quality feed

By growing maize simultaneously for both human consumption and quality animal feed, farmers can get the most out of their crops and conserve natural resources like land and water.

A Bangladeshi farmer scoops up maize flour, produced from his own maize crop, as he prepares feed for his livestock. (Photo: S. Mojumder/CIMMYT)

Feeding communities

The traditional milpa intercrop — in which maize is grown together with beans, squash or other vegetable crops — can furnish a vital supply of food and nutrients for marginalized, resource-poor communities in the Americas.

A farmer holds a maize ear. (Photo: Cristian Reyna)
A farmer holds a maize ear. (Photo: Cristian Reyna)

A healthy planet

Compared to conventional tillage practices, sowing wheat directly into just-harvested rice fields without burning or removing straw or other residues can reduce severe air pollution while lessening irrigation needs.

Air pollution related to crop residue burning imposes enormous public health and economic burdens in northwestern India. (Photo: CIMMYT)
Burning crop residue pollutes the air in northeastern India. (Photo: CIMMYT)

Interested in learning more about CIMMYT’s health-related work? Check out our archive of health and nutrition content.

Featured image: A farmer inspects a drought-tolerant bean plant on a trial site in Malawi. (Photo: Neil Palmer/CIAT)

Crop nutrient management using digital tool improves yield, reduces greenhouse gas emissions: Study

The use of field-specific fertiliser in the Indo-Gangetic Plains (IGP) can increase grain yield, reduce greenhouse gas emissions compared to traditional farmer fertilization practices (FFP), and lead to reduced costs and increased incomes for farmers.

These were the findings of a study conducted between 2013 and 2017 by the International Maize and Wheat Improvement Centre (CIMMYT) and published in Nature Scientific Report in January 2021.

Read more: https://www.downtoearth.org.in/news/agriculture/crop-nutrient-management-using-digital-tool-improves-yield-reduces-greenhouse-gas-emissions-study-75793

Bill Gates highlights CIMMYT’s innovation in latest climate book

Global thought leader, philanthropist and one of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR’s most vocal and generous supporters, Bill Gates, wrote a book about climate change and is now taking it around the world on a virtual book tour to share a message of urgency and hope.

With How to Avoid a Climate Disaster, Gates sets out a holistic and well-researched plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Part of this plan is to green everything from how we make things, move around, keep cool and stay warm, while also considering how we grow things and what can be done to innovate agriculture to lower its environmental impact.

Interviewed by actor and producer Rashida Jones, Gates explained his passion for action against climate change: “Avoiding a climate disaster will be one of the greatest challenges us humans have taken on. Greater than landing on the moon, greater than eradicating smallpox, even greater than putting a computer on every desk.”

“The world needs many breakthroughs. We need to get from 51 billion tons [of greenhouse gases] to zero while still meeting the planet’s basic needs. That means we need to transform the way we do almost everything.”

Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.
Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.

Innovations in agriculture

When a book tour event attendee asked about the role of agriculture research in improving farmers’ livelihoods, Gates linked today’s challenge to that of the Green Revolution more than half a century ago. “There’s nothing more impactful to reduce the impacts of climate change than working on help for farmers. What we can do this time is even bigger than that. […] The most unfunded thing in this whole area is the seed research that has so much potential,” he said.

One such innovation and one of Gates’ favorite examples of CGIAR’s work is featured in Chapter 9 of his climate book – “Adapting to a warmer world” – and has been the source of generous funding from the Bill & Melinda Gates Foundation: drought-tolerant maize. “[…] as weather patterns have become more erratic, farmers are at greater risk of having smaller maize harvests, and sometimes no harvest at all. So, experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them,” writes Gates.

We at CIMMYT are very proud and humbled by this mention as in collaboration with countless partners, CIMMYT and the International Institute of Tropical Agriculture (IITA) developed and promoted these varieties across 13 countries in sub-Saharan Africa and contributed to lifting millions of people above the poverty line across the continent.

For example, in Zimbabwe, farmers who used drought-tolerant maize varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — enough for nine months for an average family of six — than farmers who sowed conventional varieties.

The world as we know it is over and, finally, humanity’s fight against climate change is becoming more and more mainstream. CIMMYT and its scientists, staff, partners and farmers across the globe are working hard to contribute to a transformation that responds to the climate challenge. We have a unique opportunity to make a difference. It is in this context that CGIAR has launched an ambitious new 10-year strategy that echoes Gates’s hopes for a better environment and food security for the generations to come. Let’s make sure that it ticks the boxes of smallholder farmers’ checklists.

Groundwater depletion in India could reduce winter cropped acreage significantly in years ahead

Water pumped from a deep irrigation well, called a tube well, at a wheat farm in west India's Gujarat state. (Photo: Meha Jain)
Water pumped from a deep irrigation well, called a tube well, at a wheat farm in west India’s Gujarat state. (Photo: Meha Jain)

India is the world’s second-largest producer of wheat and rice and is home to more than 600 million farmers. The country has achieved impressive food-production gains since the 1960s, due in part to an increased reliance on irrigation wells, which allowed Indian farmers to expand production into the mostly dry winter and summer seasons.

But those gains have come at a cost: The country that produces 10% of the world’s crops is now the world’s largest consumer of groundwater, and aquifers are rapidly becoming depleted across much of India. Indian government officials have suggested that switching from groundwater-depleting wells to irrigation canals, which divert surface water from lakes and rivers, is one way to overcome projected shortfalls.

In a study published in the journal Science Advances, scientists conclude that a switch to canal irrigation will not fully compensate for the expected loss of groundwater in Indian agriculture.

The authors estimate that if Indian farmers lose all access to groundwater in overexploited regions, and if that irrigation water is not replaced with water from other sources, then winter cropped acreage could be reduced by up to 20% nationwide. However, that scenario seems highly unlikely and was included in the study only as an upper-bound estimate.

It seems more likely that any future groundwater shortfalls would be at least partially offset by increases in canal irrigation. But even if all Indian regions currently using depleted groundwater switch to canal irrigation, winter cropped acreage could still decline by 7% nationwide and by 24% in the most severely affected locations, according to the researchers.

Water alternatives needed

“Our results highlight the critical importance of groundwater for Indian agriculture and rural livelihoods, and we were able to show that simply providing canal irrigation as a substitute irrigation source will likely not be enough to maintain current production levels in the face of groundwater depletion,” said study lead author Meha Jain, an assistant professor at the University of Michigan’s School for Environment and Sustainability.

“We need coordinated efforts to solve this water availability and food security issue, which should be supported by science-led policy decisions on what strategies and technology solutions to scale out to improve irrigation efficiency,” said co-author Balwinder Singh, a Cropping Systems Simulation Modeler at the International Maize and Wheat Improvement Center (CIMMYT).

The study analyzed high-resolution satellite imagery and village-level census data and focused on winter cropped acreage. While nearly all Indian farmers plant crops during the monsoon to take advantage of seasonal rains, winter agriculture is mainly reliant on groundwater irrigation and now accounts for 44% of the country’s annual cropped acreage for food grains.

“These findings suggest that other adaptation strategies, in addition to canal expansion, are needed to cope with ongoing groundwater losses,” Jain said.

The possibilities include switching from winter rice to less water-intensive cereals, increased adoption of sprinklers and drip irrigation to conserve water in the fields, and policies to increase the efficiency of irrigation canals.

While groundwater depletion is becoming a global threat to food security, and the extent of current and projected groundwater depletion are well documented, the potential impacts on food production remain poorly quantified. The study is the first to use high-resolution empirical data, including census data about the irrigation methods used in more than 500,000 Indian villages, to estimate the crop production losses that may occur when overexploited groundwater is lost.

“Understanding the complex relationship between food security and water availability is crucial as we prepare for future rainfall variability due to global climate change,” said co-author Gillian Galford of the University of Vermont.

The proliferation of deep (>30 meters) irrigation wells called tube wells since the 1960s has enabled Indian farmers to increase the number of seasons when crops are planted in a given year. This increase in “cropping intensity” is credited for much of the country’s food-production gains.

Maps showing state-by-state Indian winter cropped area loss estimates due to groundwater depletion in coming decades, with and without replacement by canals. Darker shades of pink and red indicate greater projected losses. The map on the left (A) shows projected winter cropped acreage losses if all critically depleted groundwater is lost, with no replacement. The map on the right (B) shows projected winter cropped acreage losses if groundwater irrigation is replaced with canals, using national-level regression coefficients. (Graph: Jain et al. in Science Advances 2021)
Maps showing state-by-state Indian winter cropped area loss estimates due to groundwater depletion in coming decades, with and without replacement by canals. Darker shades of pink and red indicate greater projected losses. The map on the left (A) shows projected winter cropped acreage losses if all critically depleted groundwater is lost, with no replacement. The map on the right (B) shows projected winter cropped acreage losses if groundwater irrigation is replaced with canals, using national-level regression coefficients. (Graph: Jain et al. in Science Advances 2021)

Big data for food security

The researchers used satellite data to measure Indian winter cropped area, a key determinant of cropping intensity. They then linked the satellite data to census information about the three main types of irrigation infrastructure in India: shallow “dug wells,” deeper tube wells and canals that divert surface water.

Linking the two datasets allowed them to determine the relative efficacy of each irrigation method. That, in turn, enabled them to estimate potential future acreage losses and the ability of canal expansion to fill the gap.

The study’s worst-case scenario found that winter cropped area could decrease by up to 20% nationwide and by 68% in the most severely affected regions, if farmers lose all access to groundwater and if that irrigation water is not replaced from another source. The expected losses would largely occur in northwest and central India, according to the study.

The researchers also found that increased distance from existing irrigation canals is strongly associated with decreased acreage planted with winter crops. In the future, a greater reliance on canals could increase inequities related to irrigation access, according to the authors.

“This suggests that while canals may be a viable form of irrigation for those who live near canals, they may lead to more unequal access to irrigation across villages compared to wells, with negative impacts for those who live farther from canals,” the authors wrote.

In addition, the lakes and rivers that feed irrigation canals rise and fall in response to rainfall variability, unlike deep groundwater wells. So, a greater reliance on canal irrigation in the future would result in increased sensitivity to year-to-year precipitation fluctuations, as well as any long-term trends due to human-caused climate change.

The authors of the Science Advances study, in addition to Jain and Galford, are Ram Fishman of Tel Aviv University; Pinki Mondal of the University of Delaware; Nishan Bhattarai of the U-M School for Environment and Sustainability; Shahid Naeem, Upmanu Lall and Ruth DeFries of Columbia University; and Balwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT).

The work was funded by a NASA New Investigator Award to Jain and two NASA Land Cover and Land Use Change grants, one awarded to R.S. DeFries and one to Jain.

——

RELATED RESEARCH PUBLICATIONS:

Groundwater depletion will reduce cropping intensity in India

INTERVIEW OPPORTUNITIES:

Balwinder Singh – Cropping Systems Simulation Modeler, CIMMYT

Meha Jain – Assistant Professor, University of Michigan

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Rodrigo Ordóñez – Communications Manager, CIMMYT. r.ordonez@cgiar.org

Jim Erickson – Lead Public Relations Representative, University of Michigan. ericksn@umich.edu

Drought-tolerant maize project pioneers a winning strategy for a world facing climate change

Nancy Wawira stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)

Since the 1980s, the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) have spearheaded the development and deployment of climate-smart maize in Africa.

This game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. It also offers a blueprint for CGIAR’s new 2030 Research and Innovation Strategy, which proposes a systems transformation approach for food, land and water systems that puts climate change at the center of its mission.

Over the course of the 10-year run of the first iteration of this collaborative work on climate-adaptive maize, the Drought Tolerant Maize for Africa (DTMA) project, CIMMYT and IITA partnered with dozens of national, regional, and private sector partners throughout sub-Saharan Africa to release around 160 affordable maize varieties. This month, CGIAR recognizes climate-smart maize as one of the standout 50 innovations to have emerged from the institution’s first half-century of work.

Game changer

Maize’s importance as a food crop in sub-Saharan Africa is hard to overstate. So are the climate change-driven challenges it faces.

It accounts for almost one third of the region’s caloric intake. It is grown on over 38 million hectares, primarily under rainfed conditions. Around 40% of this area faces occasional drought stress. Another 25% suffers frequent drought and crop losses reaching 50%.

Drought-tolerant maize stabilized production under drought-stress conditions. Recent studies show that farmers growing drought-tolerant maize varieties in dry years produced over a half ton more maize per hectare than those growing conventional varieties — enough maize to support a family of six for nine months.

Such drastic results fed increased demand for improved, climate-adaptive maize seed in sub-Saharan Africa, thus strengthening local commercial seed markets and helping drought-tolerant maize varieties reach an increasing share of climate-vulnerable farmers.

Today, approximately 8.6 million farmers have benefitted from CIMMYT- and IITA-derived climate-adaptive maize varieties in sub-Saharan Africa. Millions have risen above the poverty line.

In addition to drought-tolerance, CIMMYT- and IITA-derived climate-adaptive maize varieties have been developed to tolerate multiple climate-driven stresses and to provide improved nutritional outcomes through biofortification with essential nutrients such as provitamin A and zinc.

The task ahead

In his recently published book, How to Avoid a Climate Catastrophe, Bill Gates says “no other organization has done more than CGIAR to ensure that families — especially the poorest — have nutritious food to eat. And no other organization is in a better position to create the innovations that will help poor farmers adapt to climate change in the years ahead.”

CGIAR’s new strategic orientation is an important step towards making good on that potential. CIMMYT and IITA’s longstanding work on climate-smart maize offers an important blueprint for the kinds of bold, comprehensive, and collaborative research for development initiatives such a strategy could empower.

As CIMMYT and IITA directors general Martin Kropff and Nteranya Sanginga note in a recent op-ed, “The global battle against climate change and all its interconnected impacts requires a multisectoral approach to formulate comprehensive responses.”

Remembering the Legacy of Distinguished Wheat Breeder Sanjaya Rajaram

A leader of wheat breeding and later director of CIMMYT’s Global Wheat Program, Sanjaya Rajaram passed away at the age of 78.

Recognized with the World Food Prize in 2014, he personally oversaw the development of more than 480 high-yielding, disease-resistant varieties sown on 58 million hectares in 51 countries, increasing global wheat production by more than 200 million tons during his lifetime in diverse regions across the globe.

Read more: https://www.agribusinessglobal.com/agrochemicals/seeds-traits/remembering-the-legacy-of-distinguished-wheat-breeder-sanjaya-rajaram/

Five big steps toward wheat self-sufficiency in Pakistan

A seed vendor near Islamabad, Pakistan. For improved crop varieties to reach the farmers who need them, they usually must first reach local vendors, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)
A seed vendor near Islamabad, Pakistan. For improved crop varieties to reach the farmers who need them, they usually must first reach local vendors, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)

Wheat is not just an essential part of the Pakistani diet, but also absolutely critical to the country’s economy and to the farmers who cultivate it. The government of Pakistan’s goal to achieve self-sufficiency in wheat production just became more attainable with the release of five new wheat varieties. These new seeds could help the country’s 8.8 million hectares of wheat-farmed area become more productive, climate-resilient and disease-resistant — a welcome development in a region where new climate change scenarios threaten sustained wheat production.

With multiple years of on-station and on-farm testing, the Wheat Research Institute (WRI) in Faisalabad, the Arid Zone Research Institute (AZRI) in Bhakhar, and the Barani Agricultural Research Institute in Chakwal released five varieties: Subhani 2021, MH-2021, Dilkash-2021, Bhakkar-20 and MA-2020.

The varieties, drawn from germplasm from the International Maize and Wheat Improvement Center (CIMMYT), were developed for different production environments in the Punjab province of Pakistan.

Dilkash-2021 was developed by WRI from a cross with a locally developed wheat line and a CIMMYT wheat line. MH-2021 and MA-2020 were selected from the CIMMYT wheat breeding germplasm through international trials and nurseries.

Subhani-21 and MA-2020 were selected from special trials assembled by CIMMYT for expanded testing, early access and genomic selection under the USAID-funded Feed the Future Innovation Lab for Applied Wheat Genomics at Kansas State University, in partnership with Cornell University and four South Asian countries (Bangladesh, India, Nepal and Pakistan).

Over the course of multiple years and locations, the new varieties exhibited a yield potential that is 5 to 20% higher than current popular varieties such as Faisalabad 2008, in addition to good grain quality and attainable yields of over 7 tons per hectare. They also showed an impressive resistance to leaf and yellow rusts, compatibility with wheat-rice and wheat-cotton farming systems, and resilience to stresses.

“It is exciting to see new varieties coming out of these collaborative projects between the Pakistani breeding programs, CIMMYT and the university teams,” said Jesse Poland, associate professor at Kansas State University and director of the Wheat Genomics Innovation Lab.

Wheat breeder and WRI director Javed Ahmad (center, wearing a white cap) explains the performance of a new variety and its positive traits to visitors. (Photo: Muhammad Shahbaz Rafiq)
Wheat breeder and WRI director Javed Ahmad (center, wearing a white cap) explains the performance of a new variety and its positive traits to visitors. (Photo: Muhammad Shahbaz Rafiq)

Closing the yield gap between research fields and smallholder fields

Despite all of these encouraging traits, releasing a new variety is just half of the battle. The other half is getting these new, quality seeds to markets quickly so that wheat growers can realize the benefits. A fast-track seed multiplication program for each of these varieties has been designed and implemented.

“Pakistan has started to multiply early-generation seeds of rust-resistant varieties. These will be available to seed companies for multiplication and provision to farmers in the shortest possible time,” agreed wheat breeder and WRI Director Javed Ahmad and the National Wheat Coordinator Atiq Rattu.

Wheat breeder and WRI director Javed Ahmad (left) discusses performance of the new varieties with a colleague. (Photo: Muhammad Shahbaz Rafiq)
Wheat breeder and WRI director Javed Ahmad (left) discusses performance of the new varieties with a colleague. (Photo: Muhammad Shahbaz Rafiq)

However, the current seed replacement rate is still low, mainly because new, quality seeds are rarely available at the right time, location, quantity, and price for smallholders. Strengthening and diversifying seed production of newly released varieties can be done by decentralizing seed marketing and distribution systems and engaging both public and private sector actors. Additionally, marketing and training efforts need to be improved for women, who are mostly responsible for household-level seed production and seed care.

In 2020, Pakistan harvested 25.7 million tons of wheat, up from 23.3 million tons a decade ago in 2010, which roughly matches its annual consumption of the crop. Pakistan is coming close to its goal of self-sufficiency, as outlined in the Pakistan Vision 2025, Food Security Policy 2018 and Vision for Agriculture 2030. Research shows that the public sector cannot extensively disseminate seeds alone; new policies must create an attractive environment to private sector partners, so that entrepreneurs are also attracted to the seed business.  With continued efforts and a bold distribution and training effort, new releases like these will contribute to narrowing the yield gap between research stations and farmers’ fields.

The global network safeguarding the world’s wheat

The new interactive map allows visitors to visually explore the milestones that allowed a global network of researchers to fight threats to wheat production.
The new interactive map allows visitors to visually explore the milestones that allowed a global network of researchers to fight threats to wheat production.

In 2005, preeminent wheat breeder and Nobel Laureate Norman E. Borlaug sounded the alarm to bring the world’s attention to the outbreak of a new variant of stem rust, Ug99, that threatened to wipe out 80% of the world’s wheat.

The result was the Borlaug Global Rust Initiative (BGRI), a global community that pioneered innovative ways for scientists and smallholder farmers around the globe to collaborate on meeting challenges brought about by wheat disease and climate change.

As a founding member of BGRI, the International Maize and Wheat Improvement Center (CIMMYT) and, later, the CGIAR Research Program on Wheat, played a crucial role in the core work of the initiative. They led breeding and large-scale international testing to develop disease resistant wheat varieties, coordinated closely with longstanding national partners to facilitate the release and spread of the varieties to farmers, and contributed to critical disease monitoring and tracking initiatives.

The BGRI has documented these efforts and related resources in a newly released interactive story map: Inside the global network safeguarding the world’s wheat from disease and climate change. The map highlights the BGRI’s efforts from 2005 to 2020 to introduce climate-resilient, disease-resistant wheat to resource-constrained wheat growers around the world, especially in sub-Saharan Africa and South Asia.

When a disease threatens to destroy the world’s most important food crop, who do you call?

The map highlights work undertaken by scientists on the front lines of the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects from 2005 to 2020. These achievements formed the foundation for the work that continues today under the auspices of the CIMMYT-led  Accelerating Genetic Gains In Maize and Wheat for Improved Livelihoods (AGG) project.

BGRI scientists from more than 22 national and international agricultural research centers infused resilience into wheat and largely staved off large-scale rust epidemics, working with farmers in East Africa, South Asia and other important bread baskets of the world. The BGRI community improved breeding pipelines, created the world’s most sophisticated pathogen surveillance network, increased capacity in germplasm testing nurseries while conserving and sharing genetic resources, and training new generations of young scientists.

Through videos, photos, interviews, journal articles, blogs, news stories and other resources, the map allows visitors to explore the multifaceted work from hunger fighters in Australia, Canada, China, Ethiopia, India, Kenya, Mexico, Nepal, Russia, the United Kingdom, the United States and other countries.

Written and produced by BGRI cinematographer Chris Knight and associate director for communications Linda McCandless, the map is linked to multimedia and resources from contributors around the world.

Browse the interactive story map:
Inside the Global Network Safeguarding the World’s Wheat from Disease and Climate Change

The DRRW and DGGW projects received funding from the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth and Development Office, national research institutes, and Cornell University.

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops. Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods that improve breeding efficiency and precision to produce and deliver high-yielding varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs. 

Research reported in this story was supported by the Foundation for Food and Agriculture Research under award number Grant ID COTF0000000001. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the Foundation for Food and Agriculture Research.

 

Q&A: A decade of improved and climate-smart maize through collaborative research and innovation

The food security and livelihoods of smallholder farming families in sub-Saharan Africa depend on maize production. The region accounts for up to two-thirds of global maize production, but is facing challenges related to extreme weather events, climate-induced stresses, pests and diseases, and deteriorating soil quality. These require swift interventions and innovations to safeguard maize yields and quality.

In this Q&A, we reflect on the results and impact of the long-term collaborative work on drought-tolerant maize innovations spearheaded by two CGIAR Research Centers: the International Maize and Wheat Improvement Center (CIMMYT) and International Institute of Tropical Agriculture (IITA). This innovative work has changed guises over the years, from the early work of the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects through later iterations such as Stress Tolerant Maize for Africa (STMA) and the newest project, Accelerating Genetic Gains in Maize and Wheat (AGG).

In this Q&A, three leaders of this collaborative research reflect on the challenges their work has faced, the innovations and impact it has generated for smallholder farmers, and possible directions for future research. They are: B.M Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program on Maize (MAIZE); Abebe Menkir, a maize breeder and maize improvement lead at IITA; and Cosmos Magorokosho, project lead for AGG-Maize at CIMMYT.

Briefly describe the challenges confronting small-scale farmers prior to the introduction of drought-tolerant maize and how CIMMYT and IITA responded to these challenges?

B.M.P.: Maize is grown on over 38 million hectares in sub-Saharan Africa, accounting for 40% of cereal production in the region and providing at least 30% of the population’s total calorie intake. The crop is predominantly grown under rainfed conditions by resource-constrained smallholder farmers who often face erratic rainfall, poor soil fertility, increasing incidence of climatic extremes — especially drought and heat — and the threat of devastating diseases and insect pests.

Around 40% of maize-growing areas in sub-Saharan Africa face occasional drought stress with a yield loss of 10–25%. An additional 25% of the maize crop suffers frequent drought, with yield losses of up to 50%. Climate change is further exacerbating the situation, with devastating effects on the food security and livelihoods of the millions of smallholder farmers and their families who depend on maize in sub-Saharan Africa. Therefore, the improved maize varieties with drought tolerance, disease resistance and other farmer-preferred traits developed and deployed by CIMMYT and IITA over the last ten years in partnership with an array of national partners and seed companies across sub-Saharan Africa are critical in effectively tackling this major challenge.

A.M.: Consumption of maize as food varies considerably across sub-Saharan Africa, exceeding 100 kg per capita per year in many countries in southern Africa. In years when rainfall is adequate, virtually all maize consumed for food is grown in sub-Saharan Africa, with a minimal dependence on imported grain. Maize production, however, is highly variable from year to year due to the occurrence of drought and the dependence of national maize yields on seasonal rainfall. One consequence has been widespread famine occurring every five to ten years in sub-Saharan Africa, accompanied by large volumes of imported maize grain as food aid or direct imports.

This places a significant strain on resources of the World Food Programme and on national foreign exchange. It also disincentivizes local food production and may not prevent or address cyclical famine. It also leaves countries ill-equipped to address famine conditions in the period between the onset of the crisis and the arrival of food aid. Investment in local production, which would strengthen the resilience and self-sufficiency in food production of smallholder farming families, is a far better option to mitigate food shortages than relying on food aid and grain imports.

C.M.: Smallholder farmers in sub-Saharan Africa face innumerable natural and socioeconomic constraints. CIMMYT, in partnership with IITA and national agricultural research system partners, responded by developing and catalyzing the commercialization of new maize varieties that produce reasonable maize yields under unpredictable rainfall-dependent growing season.

Over the life of the partnership, more than 300 new climate-adaptive maize varieties were developed and released in more than 20 countries across sub-Saharan Africa where maize is a major staple food crop. Certified seed of over 100 stress-tolerant improved maize varieties have been produced by seed company partners, reaching more than 110,000 tons in 2019. The seeds of these drought-tolerant maize varieties have benefited more than 8 million households and were estimated to be grown on more than 5 million hectares in eastern, southern and west Africa in 2020.

A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)
A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)

In what ways did the drought-tolerant maize innovation transform small-scale farmers’ ability to respond to climate-induced risks? Are there any additional impacts on small scale farmers in addition to climate adaptation?

B.M.P.: The elite drought-tolerant maize varieties can not only provide increased yield in drought-stressed crop seasons, they also offer much needed yield stability. This means better performance than non-drought-tolerant varieties in both good years and bad years to a smallholder farmer.

Drought-tolerant maize varieties developed by CIMMYT and IITA demonstrate at least 25-30% grain yield advantage over non-drought-tolerant maize varieties in sub-Saharan Africa under drought stress at flowering. This translates into at least a 1 ton per hectare enhanced grain yield on average, as well as reduced downside risk in terms of lost income, food insecurity and other risks associated with crop yield variability. In addition to climate adaptation, smallholder farmers benefit from these varieties due to improved resistance to major diseases like maize lethal necrosis and parasitic weeds like Striga. We have also developed drought-tolerant maize varieties with enhanced protein quality — such as Quality Protein Maize or QPM — and provitamin A, which improve nutritional outcomes.

We must also note that drought risk in sub-Saharan Africa has multiple and far-reaching consequences. It reduces incentives for smallholder farmers to intensify maize-based systems and for commercial seed companies to invest and evolve due to a limited seed market.

Drought-tolerant maize is, therefore, a game changer as it reduces the downside risk for both farmers and seed companies and increases demand for improved maize seed, thus strengthening the commercial seed market in sub-Saharan Africa. Extensive public-private partnerships around drought-tolerant maize varieties supported the nascent seed sector in sub-Saharan Africa and has enabled maize-based seed companies to significantly grow over the last decade. Seed companies in turn are investing in marketing drought-tolerant maize varieties and taking the products to scale.

A.M.: The DTMA and STMA projects were jointly implemented by CIMMYT and IITA in partnership with diverse national and private sector partners in major maize producing countries in eastern, southern and western Africa to develop and deploy multiple stress-tolerant and productive maize varieties to help farmers adapt to recurrent droughts and other stresses including climate change.

These projects catalyzed the release and commercialization of numerous stress-resilient new maize varieties in target countries across Africa. Increasing the resilience of farming systems means that smallholder farmers need guaranteed access to good quality stress resilient maize seeds. To this end, the two projects worked with public and private sector partners to produce large quantities of certified seeds with a continual supply of breeder seeds from CIMMYT and IITA. The availability of considerable amount of certified seeds of resilient maize varieties has enabled partners to reach farmers producing maize under stressful conditions, thus contributing to the mitigation of food shortages that affect poor people the most in both rural and urban areas.

C.M.: The drought-tolerant maize innovation stabilized maize production under drought stress conditions in sub-Saharan Africa countries. Recent study results showed that households that grew drought-tolerant maize varieties had at least half a ton more maize harvest than the households that did not grow the drought-tolerant maize varieties, thus curbing food insecurity while simultaneously increasing farmers’ economic benefits. Besides the benefit from drought-tolerant innovation, the new maize varieties developed through the partnership also stabilized farmers’ yields under major diseases, Striga infestation, and poor soil fertility prevalent in sub-Saharan Africa.

How is the project addressing emerging challenges in breeding for drought-tolerant maize and what opportunities are available to address these challenges in the future? 

Margaret holds an improved ear of drought-tolerant maize. Margaret’s grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabwe’s capital Harare. (Photo: Jill Cairns/CIMMYT)
Margaret holds an improved ear of drought-tolerant maize. Margaret’s grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabwe’s capital Harare. (Photo: Jill Cairns/CIMMYT)

B.M.P.: A strong pipeline of elite, multiple-stress-tolerant maize varieties — combining other relevant adaptive and farmer-preferred traits — has been built in sub-Saharan Africa through a strong germplasm base, partnerships with national research partners and small- and medium-sized seed companies, an extensive phenotyping and multi-location testing network, and engagement with farming communities through regional on-farm trials for the identification of relevant farmer-preferred products.

CGIAR maize breeding in sub-Saharan Africa continues to evolve in order to more effectively and efficiently create value for the farmers we serve. We are now intensively working on several areas: (a) increasing genetic gains (both on-station and on-farm) through maize breeding in the stress-prone environments of sub-Saharan Africa by optimizing our breeding pipelines and effectively integrating novel tools, technologies and strategies (e.g., doubled haploids, genomics-assisted breeding, high-throughput and precise phenotyping, improved breeding data management system, etc.); (b) targeted replacement of old or obsolete maize varieties in sub-Saharan Africa with climate-adaptive and new varieties; (c) developing next-generation climate-adaptive maize varieties with traits such as native genetic resistance to fall armyworm, and introgressed nutritional quality traits (e.g., provitamin A, high Zinc) to make a positive impact on the nutritional well-being of consumers; and (d) further strengthening the breeding capacity of national partners and small and medium-sized seed companies in sub-Saharan Africa for a sustainable way forward.

A.M.:  The DTMA and STMA projects established effective product pipelines integrating cutting-edge phenotyping and molecular tools to develop stress-resilient maize varieties that are also resistant or tolerant to MLN disease and fall armyworm. These new varieties are awaiting release and commercialization. Increased investment in strengthening public and private sector partnerships is needed to speed up the uptake and commercialization of new multiple stress-resilient maize varieties that can replace the old ones in farmers’ fields and help achieve higher yield gains.

Farmers’ access to new multiple-stress-tolerant maize varieties will have a significant impact on productivity at the farm level. This will largely be due to new varieties’ improved response to fertilizer and favorable growing environments as well as their resilience to stressful production conditions. Studies show that the adoption of drought-tolerant maize varieties increased maize productivity, reduced exposure to farming risk among adopters and led to a decline in poverty among adopters. The availability of enough grain from highly productive and stress-resilient maize varieties can be the cheapest source of food and release land to expand the cultivation of other crops to facilitate increased access to diversified and healthy diets.

C.M.:  The project is tackling emerging challenges posed by new diseases and pests by building upon the successful genetic base of drought-tolerant maize. This is being done by breeding new varieties that add tolerance to the emerging disease and pest challenges onto the existing drought-tolerant maize backgrounds. Successes have already been registered in breeding new varieties that have high levels of resistance to MLN disease and the fall armyworm pest.

Opportunities are also available to address new challenges including: pre-emptively breeding for threats to maize production challenges that exist in other regions of the world before these threats reach sub-Saharan Africa; enhancing the capacity of national partners to build strong breeding programs that can address new threats once they emerge in sub-Saharan Africa; and sharing knowledge and novel high-value breeding materials across different geographies to immediately address new threats once they emerge.

Cover photo: Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)

Successful Crop Innovation Is Mitigating Climate Crisis Impact in Africa

In an op-ed, Martin Kropff, Director General of CIMMYT, and Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA), discuss how higher-yielding, stress-tolerant maize varieties can not only help smallholder farmers combat climatic variabilities and diseases, but also effectively diversify their farms.

Read more: http://www.ipsnews.net/2021/02/successful-crop-innovation-mitigating-climate-crisis-impact-africa/

MAIZE delivers “valuable solutions” for critical needs, according to an external review

A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT's Drought Tolerant Maize for Africa (DTMA) project, in partnership with Tanzanian seed company Tanseed International Limited. It is based on material from CIMMYT-Zimbabwe, CIMMYT-Mexico, and Tanzania. (Photo: Anne Wangalachi/CIMMYT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project, in partnership with Tanzanian seed company Tanseed International Limited. It is based on material from CIMMYT-Zimbabwe, CIMMYT-Mexico, and Tanzania. (Photo: Anne Wangalachi/CIMMYT)

The CGIAR Research Program on Maize (MAIZE) “uniquely fills a gap at the global and regional level, positioning it to continue catalyzing good science across borders,” according to a new report.

Commissioned by the CGIAR Advisory Services Shared Secretariat (CAS Secretariat), the report assesses the research-for-development program’s achievements and operations over the course of its second phase, from 2017-2019.

The reviewers commend MAIZE’s “valuable” technology transfer in the areas of double haploid production and stress-tolerance phenotyping, as well as its “proactive and productive” incorporation of crosscutting gender and youth focused issues in major projects such as Stress Tolerant Maize for Africa (STMA). They note that climate change is “central to all that the [program] is doing.”

In addition to the exceptional quality of the program’s scientific inputs and the overall quality of its outputs, the reviewers note the program’s capacity to mobilize “stakeholders, resources and knowledge to rapidly deliver valuable solutions for a critical need.” The review authors specifically note MAIZE’s efforts towards halting the spread of maize lethal necrosis (MLN).

While, like all CGIAR Research Programs, MAIZE is due to conclude at the end of 2021, much of the program’s pioneering work will continue under new guises, such as the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project.

“As we move towards the implementation of One CGIAR, MAIZE’s expertise in increasing genetic gains in tropical and sub-tropical, stress-prone environments through the integration of advanced breeding methodologies, a strong phenotyping network for various abiotic and biotic stresses, improved agronomic practices, and a rich network of public-private partnerships for scaling and deploying climate resilient improved maize varieties in Africa, Asia and Latin America — not to mention its capacity to respond quickly and successfully to devastating transboundary diseases and pests through multidisciplinary and multi-institutional initiatives — will be extremely valuable,” says B.M. Prasanna, director of MAIZE and of the International Maize and Wheat Improvement Center’s (CIMMYT) Global Maize Program.

MAIZE — led by CIMMYT in partnership with the International Institute of Tropical Agriculture (IITA) — spearheads international, multi-stakeholder research for development to improve the livelihoods and food security of poor maize producers and consumers. It simultaneously seeks to strengthen the sustainability of maize-based agri-food systems. The program focuses on maize production in low- to middle-income countries — accounting for approximately two-thirds of global maize production — where the crop is “key to the food security and livelihoods of millions of poor famers,” according to the report.

“MAIZE provides a very robust platform for collaboration with our national partners, including private companies, community seed produces and other stakeholders. Through projects such as Drought Tolerant Maize for Africa (DTMA) and STMA, research has been able to provide innovative solutions to challenges that smallholder farmers face in their daily lives, such as drought, poor soils, and pests and diseases,” says Nteranya Sanginga, IITA’s Director General.

The review concludes that MAIZE “good management and governance practice are a strong foundation for the remainder of [the program’s] running.” The reviewers also recommend that the “excellent,” participatory application of theory of change thinking in the second phase of MAIZE be mainstreamed at the CGIAR system level moving forward. Key recommendations for the program’s final phase include:

  • Building on MAIZE’s “strong network of partners” by deepening these relationships into “multidirectional partnerships.”
  • Building on existing cross-cutting work on capacity development, climate change, gender and youth.
  • Diversifying and expanding MAIZE’s knowledge dissemination efforts to more deeply engage with include multiple and non-scientific audiences.

To read more, see the report summary or visit the CGIAR Advisory Services page.