Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYTâs work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.
Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)
Partners of CGIARâs new regional integrated Initiative in eastern and southern Africa held a kick-off meeting in Nairobi on March 2â3, 2022. Eighty-five people participated, including national agricultural research extension programs, government representatives, private sector actors, funders and national and regional agricultural research and development organizations.
Entitled Ukama Ustawi, the Initiative aims to support climate-smart agriculture and livelihoods in 12 countries in eastern and southern Africa: Kenya, Zambia, Ethiopia and Zimbabwe (in Phase 1); Malawi, Rwanda, Tanzania and Uganda (in Phase 2); and Eswatini, Madagascar, Mozambique and South Africa (in Phase 3).
The Initiative aims to help millions of smallholders intensify, diversify and de-risk maize-mixed farming through improved extension services, institutional capacity strengthening, targeted farm management bundles, policy support, enterprise development and private investment.
Ukama Ustawi is a bilingual word derived from the Shona and Swahili languages. In Shona, Ukama refers to partnerships, and in Swahili, Ustawi means well-being and development. Together, they resemble the vision for the Initiative to achieve system-level development through innovative partnerships.
The meeting brought together partners to get to know each other, understand roles and responsibilities, identify priorities for 2022, and review the cross-cutting programmatic underpinnings of Ukama Ustawi â including gender and social inclusion, capacity strengthening and learning.
Baitsi Podisi, representing the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), said he is excited to be part of the Initiative: “CCARDESA, in its cooperation and coordination mandate, can learn a lot from CGIAR in restructuring to respond to the changing times.â Podisi supported the partnership with CGIAR in the Initiativeâs embedded approach to policy dialogue, working with partners such as CCARDESA, the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and the Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN).
Similarly, FANRPANâs Francis Hale emphasized the need not to re-invent the wheel but to work with partners who already have a convening power, to advance the policy agenda for diversification and sustainable intensification.
What were key issues discussed?
One of the features of Ukama Ustawi is the use of four interconnected platforms: a scaling hub, a policy hub, an accelerator program and a learning platform. These will provide spaces for exchange and learning with partners across all CGIAR Initiatives in the region. Partners conducted a series of âfishbowlâ interactions across work packages to review the planned activities and provide a clearer understanding of deliverables, identify synergies, potential overlaps, common partners and countries, and set timelines.
The Initiative will work with innovative multimedia platforms to change knowledge, attitudes and practices of millions of farmers in eastern and southern Africa. One key partner in this area is the Shamba Shape Up TV show and the iShamba digital platform. Sophie Rottman, Producer of Shamba Shape Up, said she is looking forward to the work with Initiative partners, that will help expand the show to Uganda and Zambia.
Jean Claude Rubyogo, representing the Pan-Africa Bean Research Alliance (PABRA) said: âIt is time we move away from CGIAR-initiated to country-initiated development activities. This is what Ukama Ustawi is all aboutâ.
Martin Kropff, Global Director of Resilient Agrifood Systems at CGIAR, explained CGIARâs regional integrated initiatives are designed to respond to national/regional demands. âThe initiatives will start by working with partners to assess the food and nutritional challenges in the region, and tackle them by bringing in innovative solutions.â
The event was concluded by agreeing on the implementation of the inception phase of the Ukama Ustawi Initiative, and follow-on discussions to finalize key activities in 2022.
On the 67th Edition of the Day of the Farmer in Mexicoâs Yaqui Valley, JesĂșs Larraguibele Artola, president of the Agricultural Research and Experimentation Board of the State of Sonora (PIEAES), publicly recognized the work and trajectory of Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement at the International Maize and Wheat Improvement Center (CIMMYT).
An Indian national, Singh first arrived to CIMMYTâs Experimental Station in Ciudad ObregĂłn, Sonora, in 1983, and has since developed 680 wheat varieties in 48 countries, including the Cirno and Borlaug varieties, grown in 98% of the Yaqui Valleyâs wheat fields.
At the event, Larraguibele Artola also highlighted the importance of the legacy of Norman Borlaug, father of the Green Revolution, who saved the lives of billions of people from starvation with his improved wheat varieties. He also recalled how the first Day of the Farmer was organized by Borlaug back in 1948, when the American agronomist presented his first rust-resistant wheat varieties to farmers in the region. Over time, the event became a unique place for researchers and scientists in Sonora to increase collaboration with farmers and producers in the region and share their latest scientific advances.
Acknowledging the key role of new technologies and wheat varieties in tackling current and future agricultural challenges, FĂĄtima Yolanda RodrĂguez Mendoza, Secretary of Agriculture, Farming, Hydraulic Resources, Fishing and Aquaculture (SAGRHPA) of Sonora, reiterated the commitment of the governor, Alfonso Durazo Montaño, to invest in agricultural research to boost production and drive the growth of the regionâs agrifood sector.
âWeâll continue to invest in research and innovation and support scientists, who put their knowledge at the service of the people of Sonoraâ, she promised.
The Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project aims to support investments by the government and by the private sector in appropriate-scale farm mechanization in Zimbabwe, particularly around Pfumvudza (a system of manual conservation agriculture), and transfer learnings to South Africa.
Overall, the project has the goal to improve access to mechanization and reduce labor drudgery whilst stimulating the adoption of climate-smart/sustainable intensification technologies. The project will improve the understanding of private sector companies involved in appropriate-scale farm mechanisation towards the local markets in which they operate.
Manufacturing knowledge of two-wheel and small four-wheel tractor operated implements for mechanized Pfumvudza will also increase and private sector companies will have increased access to information through the development and strengthening of regional and national communities of practitioners on appropriate-scale farm mechanization. Finally, the project will strengthen the capacity of the existing knowledge networks around appropriate-scale mechanisation in Zimbabwe, through the results that will be generated and through the regular multi-stakeholder roundtables that will be organised.
Objectives
Increasing and more spatially-targeted Government spending in appropriate-scale farm mechanisation in Zimbabwe (and South Africa)
Increasing sales of appropriate-scale farm mechanization equipment in Zimbabwe (and South Africa) thanks to more targeted marketing by private sector (both in terms of geographies and clients)
Local manufacturing and commercialization of two-wheel tractor operated basin diggers and bed planters in Zimbabwe.
Farmers learn about two-wheel tractors. (Photo: CIMMYT)
A new project aims to climate-proof Zimbabwean farms through improved access to small-scale mechanization to reduce labor bottlenecks. Harnessing Appropriate-scale Farm mechanization In Zimbabwe (HAFIZ) is funded by the Australian Department of Foreign Affairs and Trade (DFAT) through ACIAR and led by the International Maize and Wheat Improvement Center (CIMMYT).
The project aligns with the Zimbabwean nationwide governmental program Pfumvudza, which promotes agricultural practices based on the principles of conservation agriculture. The initiative aims to increase agricultural productivity through minimum soil disturbance, a permanent soil cover, mulching and crop diversification.
Over 18 months, the project will work with selected service providers to support mechanized solutions that are technically, environmentally and economically appropriate for use in smallholder settings.
Speaking during the project launch, the Permanent Secretary of the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development in Zimbabwe, John Basera, explained the tenets of Pfumvudza which translates as âa new season.â A new season of adopting climate-smart technologies, conservation agriculture practices and increasing productivity. Simply put, Pfumvudza means a sustainable agricultural productivity scheme.
âPfumvudza was a big game-changer in Zimbabwe. We tripled productivity from 0.45 to 1.4 [metric tons] per hectare. Now the big challenge for all of us is to sustain and consolidate the growth, and this is where mechanization comes into place,â Basera said. âThis project is an opportunity for the smallholder farmer in Zimbabwe, who contributes to over 60% of the food in the country, to be able to produce more with less.â
Building on the  findings of the completed ACIAR-funded project Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI), the new initiative will work with selected farmers and service providers to identify farming systems most suitable for mechanization. It will also assist companies in targeting their investments as they test a range of technologies powered by small-engine machinery adapted to the Zimbabwe context and transfer the resultant learnings to South Africa.
Conservation agriculture adoption offers multidimensional benefits to the farmers with significant yields and sustainability of their systems. The introduction of mechanization in systems using animals for draught reduces the livestock energy demand â energy that will contribute to increasing meat and milk production.
While conservation agriculture and research alone cannot solve all the issues affecting agricultural productivity, awareness-raising is integral to help address these issues, and this is where small-scale mechanization comes in, says ACIAR Crops Research Program Manager, Eric Huttner.
âWe learnt a lot from FACASI and a similar project in Bangladesh on the opportunities of appropriate small-scale mechanization as a tool towards sustainable intensification when adopted by farmers,â he explained. âIf we avoid the mistakes of the past, where large-scale mechanization efforts were invested in the wrong place and resulted in ineffective machines unusable for farmers, we can make a huge difference in increasing yields and reducing farm drudgery,â Huttner said.
Agriculture is one of the five main greenhouse gas-emitting sectors where innovations can be found to reach net zero emissions, according to the new documentary and ten-part miniseries âSolving for Zero: The Search for Climate Innovation.â The documentary tells the stories of scientists and innovators racing to develop solutions such as low-carbon cement, wind-powered global transportation, fusion electricity generation and sand that dissolves carbon in the oceans.
Three CGIAR scientists are featured in the documentary, speaking about the contributions being made by agricultural research.
Whereas all sectors of the global economy must contribute to achieve net zero emissions by 2050 to prevent the worse effects of climate change, agricultural innovations are needed by farmers at the front line of climate change today.
CIMMYT breeder Yoseph Beyene spoke to filmmakers about the use of molecular breeding to predict yield potential. (Image: Wondrium.com)
Breeding climate-smart crops
âClimate change has been a great disaster to us. Day by day itâs getting worse,â said Veronica Dungey, a maize farmer in Kenya interviewed for the documentary.
Around the world, 200 million people depend on maize for their livelihood, while 90% of farmers in Africa are smallholder farmers dependent on rainfall, and facing drought, heatwaves, floods, pests and disease related to climate change. According to CGIAR, agriculture must deliver 60% more food by 2050, but without new technologies, each 1°C of warming will reduce production by 5%.
âSeed is basic to everything. The whole family is dependent on the produce from the farm,â explained Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at the International Maize and Wheat Improvement Center (CIMMYT). As a child in a smallholder farming family with no access to improved seeds, Beyene learned the importance of selecting the right seed from year to year. It was at high school that Beyene was shown the difference between improved varieties and the locally-grown seed, and decided to pursue a career as a crop breeder.
Today, the CIMMYT maize program has released 200 hybrid maize varieties adapted for drought conditions in sub-Saharan Africa, called hybrids because they combine maize lines selected to express important traits over several generations. Alongside other CGIAR Research Centers, CIMMYT continues to innovate with accelerated breeding approaches to benefit smallholder farmers.
âCurrently we use two kinds of breeding. One is conventional breeding, and another one is molecular breeding to accelerate variety development. In conventional breeding you have to evaluate the hybrid in the field,â Beyene said. âUsing molecular markers, instead of phenotypic evaluation in the field, we are evaluating the genetic material of a particular line. We can predict based on marker data which new material is potentially good for yield.â
Such innovations are necessary considering the speed and the complexity of challenges faced by smallholder farmers due climate change, which now includes fall armyworm. âFall armyworm is a recent pest in the tropics and has affected a lot of countries,â said Moses Siambi, CIMMYT Regional Representative for Africa. âIncreased temperatures have a direct impact on maize production because of the combination of temperature of humidity, and then you have these high insect populations that lead to low yield.â
Resistance to fall armyworm is now included in new CIMMYT maize hybrids alongside many other traits such as yield, nutrition, and multiple environmental and disease resistances.
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity and CIAT, spoke about CGIARâs community-focused climate work. (Image: Wondrium.com)
Building on CGIARâs climate legacy
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), told the filmmakers about CGIARâs community-focused climate work, which includes Climate-Smart Villages and Valleys. Launched in 2009, these ongoing projects span the global South and effectively bridge the gap between innovation, research and farmers living with the climate crisis at their doorsteps.
âTechnological innovations are critical to food system transformation,â said Loboguerrero, who was a principal researcher for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). âBut if local contexts are not considered, even the best innovations may fail because they do not respond to beneficiaries needs.â
CCAFSâs impressive legacy â in research, influencing policy and informing $3.5 billion of climate-smart investments, among many achievements â is now being built upon by a new CGIAR portfolio of initiatives. Several initiatives focus on building systemic resilience against climate and scaling up climate action started by CCAFS that will contribute to a net-zero carbon future.
Loboguerrero pointed to other innovations that were adopted because they addressed local needs and were culturally appropriate. These include the uptake of new varieties of wheat, maize, rice and beans developed by CGIAR Research Centers. Taste, color, texture, cooking time and market demand are critical to the success of new varieties. Being drought-resistant or flood-tolerant is not enough.
Local Technical Agroclimatic Committees, another CCAFS innovation that is currently implemented in 11 countries across Latin America, effectively delivers weather information in agrarian communities across the tropics. Local farmers lead these committees to receive and disseminate weather information to better plan when they sow their seeds. âThis success would not have been possible if scientists hadnât gotten out of their labs to collaborate with producers in the field,â Loboguerrero said.
Climate adaptation solutions
Across CGIAR, which represents 13 Research Centers and Alliances, and a network of national and private sector partners, the goal is to provide climate adaptation solutions to 500 million small-scale farmers around the world by 2030. This work also covers reducing agricultural emissions, environmental impacts and even the possibility of capturing carbon while improving soil health.
Interested in learning more? The documentary âSolving for Zero: The Search for Climate Innovationâ is available at Wondrium.com alongside a 10-part miniseries exploring the ongoing effort to address climate change.
As agricultural researchers around the world explore ways to avert what is quickly becoming the worst global food crisis in 50 years, it is imperative to shift the focus from efficient food value chains to resilient food systems.
This was one of the key messages Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT) shared with global and local audiences at a series of lectures and presentations at Cornell University the week of March 14, 2022.
Speaking as an Andrew White Professor-at-Large lecturer and lifetime Cornell faculty member, Govaerts advocated for ratcheting up investment in agricultural research and development. Not only this is necessary to avert the looming humanitarian catastrophe, he argued, but also to recover from the COVID-19 pandemic and rebuild a more peaceful, resilient and food-secure world.
âCountries that are ill-prepared to absorb a global food shock are now facing similar conditions to those that triggered the Arab Spring a decade ago â possibly even worse,â Govaerts said.
âToday, humanity faces an existential challenge fueled by conflict, environmental degradation and climate change that urges a transformational response in the way that we produce, process, distribute and consume food,â he said.
âWe need to get climate change out of agriculture, and agriculture out of climate change,â he said, advocating for climate change as the driver of research and innovation, and calling for investment in transforming from efficiency to resilience.
Referencing the Ukraine crisis and its looming food security implications, he reminded attendees that we can all be inspired by Norman Borlaugâs accomplishments applying science to agriculture, and move quickly, together, to avert disaster.
âWe need the same bold thinking, to do something before itâs too late,â Govaerts told the audience, which included nearly 200 online attendees and a full auditorium at Cornellâs College of Agricultural and Life Sciences.
âThere is no âotherâ team that is going to do it for us. This is the meeting. This is the team.â
CIMMYT implements integrated agri-food systems initiatives to improve maize and wheat seeds, farming practices and technologies to increase yields sustainably with support from governments, philanthropists and farmers in more than 40 countries.
In addition, along with the Nobel Peace Center and the Governments of Mexico and Norway, CIMMYT launched the Agriculture for Peace call in 2020 to mobilize funding for agricultural research and extension services to help deliver much-needed global food systems transformation.
Cover photo: Maize and other food crops on sale at Ijaye market, Oyo State, Nigeria. (Photo: Adebayo O./IITA)
The paper âEnlisting wild grass genes to combat nitrification in wheat farming: A nature-based solutionâ received the 2021 Cozzarelli Prize, which recognizes outstanding articles published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The paper was published as a joint research collaboration of Japan International Research Center for Agricultural Sciences (JIRCAS), the International Maize and Wheat Improvement Center (CIMMYT), the University of the Basque Country (UPV/EHU) and Nihon University.
The study identifies of a chromosomal region that regulates the biological nitrification inhibition (BNI) ability of wheat grass (Leymus racemosus), a wild relative of wheat. It also outlines the development of the world’s first BNI-enhanced wheat, through intergeneric crossing with a high-yielding wheat cultivar.
This research result is expected to contribute to the prevention of nitrogen pollution that leads to water pollution and greenhouse gas emissions, reducing the use of nitrogen fertilizer while maintaining productivity.
Best of the year
PNAS is one of the most cited scientific journals in the world, publishing more than 3,000 papers per year on all aspects of science. A total of 3,476 papers were published in 2021, covering six fields: Physical and Mathematical Sciences, Biological Sciences, Engineering and Applied Sciences, Biomedical Sciences, Behavioral and Social Sciences, and Applied Biological, Agricultural and Environmental Sciences.
The Cozzarelli Prize was established in 2005 as the PNAS Paper of the Year Prize and renamed in 2007 to honor late editor-in-chief Nicholas R. Cozzarelli. It is awarded yearly by the journalâs Editorial Board to one paper from each field reflecting scientific excellence and originality. The BNI research paper received the award in the category of Applied Biological, Agricultural, and Environmental Sciences.
The awards ceremony will be held online on May 1, 2022, and a video introducing the results of this research will be available.
CIMMYT has collaborated with JIRCAS on BNI-enhanced wheat research since 2009, with funding from Japanâs Ministry of Agriculture, Forestry and Fisheries. CIMMYT is one of the founding members of the BNI Consortium, established in 2015.
The CGIAR Research Programs on Wheat (WHEAT) and Maize (MAIZE) co-funded BNI research since 2014 and 2019 respectively, until their conclusion at the end of 2021.
BNI research has been positioned in the âMeasures for achievement of Decarbonization and Resilience with Innovation (MeaDRI)â strategy of Japanâs Ministry of Agriculture, Forestry and Fisheries, and was also selected as one of the ministryâs âTop 10 agricultural technology news for 2021.â
Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed â including more than 24,000 farmer landraces â and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)
A new $25.7 million project, led by the International Maize and Wheat Improvement Center (CIMMYT), a Research Center part of CGIAR, the worldâs largest public sector agriculture research partnership, is expanding the use of biodiversity held in the worldâs genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.
As climate change accelerates, agriculture will be increasingly affected by high temperatures, erratic rainfall, drought, flooding and sea-level rise. Looking to the trove of genetic material in genebanks, scientists believe they can enhance the resilience of food production by incorporating this diversity into new crop varieties â overcoming many of the barriers to fighting malnutrition and hunger around the world.
“Better crops can help small-scale farmers produce more food despite the challenges of climate change. Drought-resistant staple crops, such as maize and wheat, that ensure food amid water scarcity, and faster-growing, early-maturing varieties that produce good harvests in erratic growing seasons can make a world of difference for those who depend on agriculture. This is the potential for climate-adaptive breeding that lies untapped in CGIARâs genebanks,” said Claudia Sadoff, Managing Director, Research Delivery and Impact, and Executive Management Team Convener, CGIAR.
Over five years, the project, supported by the Bill & Melinda Gates Foundation, aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Entitled Mining useful alleles for climate change adaptation from CGIAR genebanks, the project will enable breeders to more effectively and efficiently use genebank materials to develop climate-smart versions of important food crops, including cassava, maize, sorghum, cowpea and rice.
Wild rice. (Photo: IRRI)
The project is a key component of a broader initiative focused on increasing the value and use of CGIAR genebanks for climate resilience. It is one of a series of Innovation Sprints coordinated by the Agriculture Innovation Mission for Climate (AIM4C) initiative, which is led by the United Arab Emirates and the United States.
âBreeding new resilient crop varieties quickly, economically and with greater precision will be critical to ensure small-scale farmers can adapt to climate change,â said Enock Chikava, interim Director of Agricultural Development at the Bill & Melinda Gates Foundation. âThis initiative will contribute to a more promising and sustainable future for the hundreds of millions of Africans who depend on farming to support their families.â
Over the past 40 years, CGIAR Centers have built up the largest and most frequently accessed network of genebanks in the world. The network conserves and makes nearly three-quarters of a million crop accessions available to scientists and governments. CGIAR genebanks hold around 10% of the worldâs plant germplasm in trust for humanity, but account for about 94% of the germplasm distributed under the International Treaty on Plant Genetic Resources for Food and Agriculture, which ensures crop breeders globally have access to the fundamental building blocks of new varieties.
âThis research to develop climate-smart crop varieties, when scaled, is key to ensuring that those hardest hit by climate shocks have access to affordable staple foods,â said Jeffrey Rosichan, Director of the Crops of the Future Collaborative of the Foundation for Food & Agriculture Research (FFAR). âFurther, this initiative benefits US and world agriculture by increasing genetic diversity and providing tools for growers to more rapidly adapt to climate change.â
âWe will implement, for the first time, a scalable strategy to identify valuable variations hidden in our genebanks, and through breeding, deploy these to farmers who urgently need solutions to address the threat of climate change,â said Sarah Hearne, CIMMYT principal scientist and leader of the project.
Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors and the United Kingdomâs Biotechnology and Biological Sciences Research Council (BBSRC), the project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods, to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.
INTERVIEW OPPORTUNITIES:
Sarah Hearne â Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:
Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2070.
Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.
Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex â that is, they are controlled by many genes and gene interactions â so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.
Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.
Is plant breeding a modern technique?
Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.
Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.
With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the cropsâ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered âbanks.â
The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.
Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.
Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.
Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.
Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.
Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plantâs genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA âfingerprintâ of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.
Plant breeders normally prefer to work with âeliteâ populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.
Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmersâ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.
Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.
The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)
Selected impacts of maize and wheat breeding
In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa â a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought â was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.
Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.
Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.
Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.
Crosses of wheat with related crops (rye) or even wild grasses â the latter known as wide crosses â have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as âgoat grass,â that boost their resilience and provide other valuable traits to protect yield.
Biofortification â breeding to develop nutritionally enriched crops â has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.
Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in ObregĂłn, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)
Thefuture
Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.
Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information â also called phenotyping â to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles â or generations â to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.
Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.
Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIARâs Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.
A farmer harvests wheat in one of CIMMYT’s research plots in Ethiopia. (Photo: P. Lowe/CIMMYT)
Five international wheat research teams have been awarded grants for their proposals to boost climate resilience in wheat through discovery and development of new breeding technologies, screening tools and novel traits.
Wheat is one of the worldâs most important staple crops, accounting for about 20% of all human calories and protein and is increasingly threatened by the impacts of climate change. Experts around the world are working on ways to strengthen the crop in the face of increasing heat and drought conditions.
The proposals were submitted in response to a call by the Heat and Drought Wheat Improvement Consortium (HeDWIC), led by the International Maize and Wheat Improvement Center (CIMMYT) and global partners, made in 2021.
The grants were made possible by co-funding from the Foundation for Food & Agriculture Research (FFAR) and in-kind contributions from awardees as part of a project which brings together the latest research from scientists across the globe to deliver climate resilient wheat to farmers as quickly as possible.
Cutting-edge wheat research
Owen Atkin, from the Centre for Entrepreneurial Agri-Technology at the Australian National University, leads the awarded project âDiscovering thermally stable wheat through exploration of leaf respiration in combination with photosystem II capacity and heat tolerance.â
âThe ratio of dark respiration to light and CO2 saturated photosynthesis is a clear indicator of the respiratory efficiency of a plant,â Atkin said. âWe will measure and couple this indicator of respiratory efficiency to the leaf hyperspectral signature of field grown wheat exposed to heat and drought. The outcome could be a powerful tool which is capable of screening for wheat lines that are more productive when challenged with drought and heatwave.â
Hannah M. Schneider, of Wageningen University & Research, leads the awarded project examining the use of a novel root trait called Multiseriate Cortical Sclerenchyma to increase drought-tolerance in wheat.
âDrought is a primary limitation to global crop production worldwide. The presence of small outer cortical cells with thick, lignified cell walls (MCS: Multiseriate Cortical Sclerenchyma) is a novel root trait that has utility in drought environments,â Schneider said. âThe overall objective of this project is to evaluate and develop this trait as a tool to improve drought resistance in wheat and in other crops.â
An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)
John Foulkes, of the University of Nottingham, leads an awarded project titled âIdentifying spike hormone traits and molecular markers for improved heat and drought tolerance in wheat.â
âThe project aims to boost climate-resilience of grain set in wheat by identifying hormone signals to the spike that buffer grain set against extreme weather, with a focus on cytokinin, ABA and ethylene responses,â Foulkes said. âThis will provide novel phenotyping screens and germplasm to breeders, and lay the ground-work for genetic analysis and marker development.â
Erik Murchie, from the University of Nottingham, leads an awarded project to explore new ways of determining genetic variation in heat-induced growth inhibition in wheat.
âHigh temperature events as part of climate change increasingly limit crop growth and yield by disrupting metabolic and developmental processes. This project will develop rapid methods for screening growth and physiological processes during heat waves, generating new genetic resources for wheat,â Murchie said.
Eric Ober of the National Institute of Agricultural Botany in the UK, leads the awarded project âTargeted selection for thermotolerant isoforms of starch synthase.â
âWheat remains a predominant source of calories and is fundamental to regional food security around the world. It is urgent that breeders are equipped to produce new varieties with increased tolerance to heat and drought, two stresses that commonly occur together, limiting grain production. The formation and filling of grain depends on the synthesis of starch, but a key enzyme in the pathway, starch synthase, is particularly sensitive to temperatures over 25°C. However, there exist forms of this enzyme that exhibit greater thermotolerance than that found in most current wheat varieties,â Ober said. âThis project aims to develop a simple assay to screen diverse germplasm for sources of more heat-resistant forms of starch synthase that could be bred into new wheat varieties in the future.â
Breakthroughs from these projects are expected to benefit other crops, not just wheat. Other benefits of the projects include closer interaction between scientists and breeders and capacity building of younger scientists.
India has conferred posthumously upon Sanjaya Rajaram, 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), its prestigious 2022 Padma Bhushan Award in “Science and Engineering” in recognition of “distinguished service of high order.”
Among the most successful crop breeders in history, Rajaram, who passed away in 2021, personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties that were grown on at least 58 million hectares in over 50 countries, increasing global wheat production by more than 200 million tons and especially benefiting hundreds of millions of the resource-poor whose diets and livelihoods depend on this critical crop. In India and the neighboring South Asian nations of Bangladesh, Nepal, and Pakistan, inhabitants consume more than 120 million tons of wheat and wheat-based foods each year.
âDr. Rajaram was a true titan of wheat breeding and an inspiration for young researchers, training and mentoring more than 700 scientists from developing countries worldwide,â said Bram Govaerts, CIMMYT director general. âHe was also a complete gentleman, comporting himself with modesty and grace despite his many honors and accomplishments; his first priority was helping and crediting others. Rajaram is an example today for all of us to keep working with the final stakeholder â the farmer â in mind.â
The rise from rural beginnings
Born on a small farm in District Varanasi, Uttar Pradesh, India, in 1943, Rajaram studied genetics and plant breeding at the Indian Agricultural Research Institute in New Delhi. After receiving his Ph.D. from the University of Sydney, he joined CIMMYT in 1969, working as a wheat breeder alongside Nobel Prize Laureate and CIMMYT scientist Norman Borlaug in Mexico. Recognizing his talent and initiative, Borlaug appointed Rajaram as head of CIMMYTâs wheat breeding program at just 29 years of age.
The Padma Bhushan Award was announced by President Ram Nath Kovind of India on the countryâs Republic Day, January 26. In 2015, Rajaram received the Pravasi Bharatiya Samman award, the highest honor conferred on Indians overseas. In 2001 he accepted the Padma Shri award from the government of India and, in 1998, the Friendship Award from the government of China.
Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)
Though a plant breeder and scientist by profession, Rajaram used the platform of his 2014 World Food Prize to promote an expansive, integrated vision for agricultural development. âIf we want to make a change, research wonât do it alone; we need to work directly with farmers and to train young agronomists, ensuring they have a broad vision to address the problems in farmersâ fields,â Rajaram said at a news conference in Mexico City in 2014.
Rajaram also served as Director of the Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA) before formally retiring in 2008. In his retirement, he continued as a special scientific advisor to CIMMYT and ICARDA.
Longstanding partners pushing forward for farmers
“Indiaâs agricultural research community is proud of the distinguished achievements of Dr. Rajaram,” said Trilochan Mohapatra, Director General of the Indian Council of Agricultural Research (ICAR) and Secretary of the Department of Agricultural Research and Education (DARE), of India’s Ministry of Agriculture and Farmers’ Welfare. “ICAR greatly appreciates its valuable collaborations with CIMMYT to help farmers grow better crops and conserve resources under increasingly challenging conditions.”
The partnership of India with CIMMYT harks back to the 1960s-70s, when Indian farmers tripled national wheat yields in a few years by growing Borlaugâs high-yield wheat varieties and adopting improved farming practices.
In 2011, India and CIMMYT jointly launched the Borlaug Institute for South Asia (BISA) to improve cropping systems and food security, helping farmers to confront climate change and natural resource scarcities, among other challenges.
S. Ayyappan, former ICAR Director General who signed the joint declaration of intent for BISAâs establishment in India, has been honored with the 2022 Padma Shri Award.
CIMMYT is a non-profit international agricultural research and training organization focusing on two of the worldâs most important cereal grains, maize and wheat, and related cropping systems and livelihoods. Wheat varieties derived from CIMMYT and ICARDA research cover more than 100 million hectares â nearly two-thirds of the area sown to improved wheat worldwide â and bring benefits in added grain worth as much as $3.8 billion each year.
At the same time, climate change has likely slowed breeding progress for high-yielding, broadly adapted wheat, according to the new study, published recently in Nature Plants.
âBreeders are usually optimistic, overlooking many climate change factors when selecting,â said Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the publication. âOur findings undermine this optimism and show that the amplified interaction of wheat lines with the environment due to climate change has made it harder for breeders to identify outstanding, broadly adapted lines.â
What do 10 million data points tell scientists?
Each year for nearly half a century, wheat breeders taking part in the CIMMYT-led International Wheat Improvement Network (IWIN) have tested approximately 1,000 new, experimental wheat lines and varieties at some 700 field sites in over 90 countries.
Promising lines are taken up by wheat breeding programs worldwide, while data from the trials is used to guide global breeding and other critical wheat research, explained Wei Xiong, CIMMYT crop modeler/physiologist based in China and lead author of the new paper.
âTo date, this global testing network has collected over 10 million data points, while delivering wheat germplasm estimated to be worth several billion dollars annually in extra productivity to hundreds of millions of farmers in less developed countries,â Xiong said.
Xiong and his colleagues analyzed âcrossover interactionsâ â changes in the relative rankings of pairs of wheat lines â in 38 years of data from four kinds of wheat breeding trials, looking for the extent to which climate change or breeding progress have flipped those rankings. Two of the trials whose data they examined focused on yield in bread wheat and durum wheat, while the other two assessed wheat linesâ performance under high temperatures and in semi-arid environments, respectively.
In addition to raising yields, wheat breeders are endowing the crop with added resilience for rising temperatures.
âWe found that warmer and more erratic climates since the 1980s have increased ranking changes in global wheat breeding by as much as 15 percent,â Xiong said. âThis has made it harder for breeders to identify superior, broadly adapted lines and even led to scientists discarding potentially useful lines.â
Conversely, wheat cultivars emerging from breeding for tolerance to environmental stresses, particularly heat, are showing substantially more stable yields across a range of environments and fostering wheatâs adaptation to current, warmer climates, while opening opportunities for larger and faster genetic gains in the future, according to the study.
âAmong other things, our findings argue for more targeted wheat breeding and testing to address rapidly shifting and unpredictable farming conditions,â Reynolds added.
Like many development research and funding organizations, the Australian Centre for International Agricultural Research (ACIAR) is emphasizing a renewed commitment to a nutrition-sensitive approach to agricultural development projects.
In the past decade, awareness has grown about the importance of diets that are rich in vitamins and minerals, and the need to combat micronutrient malnutrition which can lead to irreversible health outcomes impacting entire economies and perpetuating a tragic cycle of poverty and economic stagnation.
Lack of vitamins and minerals, often called âhidden hunger,â is not confined to lower-income food-insecure countries. In richer countries we clearly see a transition towards energy-rich, micronutrient-poor diets. In fact, populations throughout the world are eating more processed foods for reasons of convenience and price. To hit our global hunger and health targets we need to invest in nutrition-sensitive agricultural research and production as well as promoting affordable diets with varied and appealing nutrient-rich foods.
Alongside hunger, we have a pandemic of diet-related diseases that is partly caused by the over-consumption of energy-rich junk diets. This is because modern food formulations are often shaped towards addictive and unhealthy products. We see this in rising levels of obesity and diabetes, some cancers, heart diseases and chronic lung conditions.
Investing in agri-food research and improving nutrition will be much cheaper than treating these diet-related non-communicable diseases. Besides being healthier, many people will be much happier and able to live more productive lives.
Yet, the picture is bigger than micronutrient malnutrition. Even if new investments in research enable us to increase the production and delivery of fruits, vegetables and other nutrient-rich foods such as legumes and nuts, we will not have cracked the whole problem of food security, nutrition and health.
Besides âhidden hunger,â many hundreds of millions of people worldwide are hungry because they still lack the basic availability of food to live and work.
Enter cereals. Wheat, maize and rice have been the major sources of dietary energy in the form of carbohydrates in virtually all societies and for thousands of years: recent research in the Middle East suggests that the original âpaleoâ diet was not just the result of hunting and gathering, but included cereals in bread and beer!
There are three reasons why cereals are essential to feeding the world:
First, nutritionists and medics tell us that cereals not only provide macronutrients â carbohydrates, proteins and fats â and micronutrients â vitamins and minerals. We now know that cereals are important sources of bioactive food components that are not usually classed as nutrients, but are essential to health all the same. These are compounds like carotenoids, flavonoids, phytosterols, glucosinolates and polyphenols, which are found naturally in various plant foods and have beneficial antioxidant, anticarcinogenic, anti-inflammatory and antimicrobial properties, likely to be important in mitigating and/or combating disease.
Second, whole-grain foods, especially wheat, are also a major source of dietary fibre, which is essential for efficient digestion and metabolism. Fibre from cereals also nourishes the human gut flora whose products such as short-chain fatty acids have many health benefits including combatting some cancers. Eating such carbohydrates also helps us recognise that we have eaten sufficiently, so that we know when âenough is enough.â
Third, cereal foods are relatively cheap to produce and to buy, and also easy to transport and preserve. Hence, supplies are relatively stable, and good nutrition from cereals is likely to remain accessible to less affluent people.
But all is not well with cereals these days. Cereals are under siege from climate change-related heat and drought, and new and more virulent forms of plant diseases, which threaten our agriculture and natural resources. There remains much research to undertake in this era of rapidly changing climatic conditions, and of economic and political stresses.
Here are a few strategies for agri-food research and its supporters:
We can further increase the nutritional content of cereal foods through biofortification during plant breeding.
We can produce disease- and heat-resilient varieties of grains that are efficient in the use of water and fertilizer, and whose production is not labor-intensive.
By working with communities, we can adapt new production technologies to local conditions, especially where women are the farmers.
We can enhance the quality of cereal foods through nutrient fortification during milling, and by better processing methods and food formulation.
Experts in all agri-food disciplines can work together to inform and ânudgeâ consumers to make healthy food purchasing decisions.
Cereals matter, but in an age of misinformation, we still have to be cautious: Some people are susceptible to certain components of cereals such as gluten. People who are medically diagnosed with cereal intolerances must shape their diets accordingly and get their carbohydrates and bioactive food components from other sources.
So, we cannot live on bread alone: We should aim for diets which are rich in diverse foods.
Such diets include fruits and vegetables that must be accessible to people in different regions, particularly to the most vulnerable, and that provide different macronutrients, micronutrients and essential bioactive components. For most of us, the health-promoting content of cereals means that they must remain a major part of the global diet.
Nigel Poole is Emeritus Professor of International Development at SOAS University of London and Consultant at the International Maize and Wheat Improvement Center (CIMMYT).
Rajiv Sharma is Senior Scientist at the International Maize and Wheat Improvement Center (CIMMYT).
Alison Bentley is the Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT).
Carlos Muñoz is an Research Associate – Maize Phytopathology working with CIMMYTâs Maize program.
Muñoz works on the phenotyping of the main diseases and pests that affect maize crops in Mexico with high natural incidence, and develops protocols for artificial inoculations that help identify and develop resistant maize through genetic and molecular improvement.
He is currently working on the validation of agronomic, biological and chemical management tactics to reduce mycotoxin contamination and on advising producers and technicians on the correct diagnosis of the causal agent of biotic or abiotic stresses.
Md. Harun-Or-Rashid is an Agricultural Development Officer working with CIMMYT’s Sustainable Agrifood Systems (SAS) program. He conducts research and outreach within maize- and wheat-based cropping systems, with an emphasis on various cutting-edge crop management techniques and technologies, such as conservation agriculture, machine learning, crop modeling, integrated pest management, GIS, and remote sensing methods.