Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

A Chinese Wheat Breeder’s International Vision

China is the largest global producer and consumer of wheat. The country’s breeders are developing high quality, high yield varieties, with resistance to the droughts and crop blights that have increased in frequency and spread due to climate change.

He Zhonghu, a research fellow with the Institute of Crop Sciences under the Chinese Academy of Agricultural Sciences (CAAS), is passionate about the power of international exchanges and cooperation for fueling agricultural development.

He is also director of the China office for the International Maize and Wheat Improvement Center (CIMMYT), introducing 20,000 samples of wheat seed sources to more than 25 institutions and contributing to the breeding of more than 80 new varieties.

Read more: A Chinese Wheat Breeder’s International Vision

Singh recognized for wheat crop improvement

Ravi Singh delivers a lecture during the 61st All India Wheat and Barley Research Workers’ Meet celebrating the fruitful partnership of CIMMYT and ICAR. (Credit: SAWBAR)

Ravi Singh, head of wheat improvement and rust research at the International Maize and Wheat Improvement Center (CIMMYT), received the Sh. VS Mathur Memorial Award 2022 for outstanding contribution in the field of wheat crop improvement from the Society for Advancement of Wheat and Barley Research (SAWBAR).

Singh received the award from T. R. Sharma, Deputy Director General of the Indian Council of Agricultural Research (ICAR) and G. P. Singh, Director of the Indian Institute for Wheat and Barley Research (IIWBR) at ICAR.

As recipient of the award, Singh delivered a lecture during the 61st All India Wheat and Barley Research Workers’ Meet in Gwalior, India, on August 29. He highlighted and praised the partnership between India and CIMMYT as essential for accelerating gains in wheat yield despite the stresses of climate change thanks to improved resilience in new varieties and earlier sowing.

“The ICAR-CIMMYT wheat improvement partnership remains crucial for delivering new varieties with higher rates of genetic gain in farmers’ fields to enhance productivity, climate resilience, disease resistance and nutrition while meeting market needs,” he said.

Successes of the partnership include integrated breeding with a common agenda, commercialized varieties that are adapted to flexible sowing dates including early sowing, diverse and durable resistance to rust diseases, adoption of wheat blast resistant varieties in large areas, biofortified and high-quality varieties, and the move towards mainstreaming of zinc (Zn) biofortification.

Singh also paid homage to the award’s namesake, as VS Mathur’s “wheat varieties once occupied fields of many millions of farmers and provided food and nutrition to many more millions throughout India and beyond”.

Singh, a CIMMYT scientist, receives the Sh. VS Mathur Memorial Award for his outstanding contribution in the field of wheat crop improvement. (Credit: SAWBAR)

About SAWBAR:

SAWBAR was founded in 2007 and is housed at ICAR-Indian Institute of Wheat and Barley Research Karnal (Haryana) India. The Society presently has 300 life members and more than 320 annual and student members. SAWBAR is playing a significant role in bringing wheat and barley researchers on one platform for the exchange of innovative research and dissemination of knowledge related to the latest research happenings in the area of wheat and barley improvement. Annually, SAWBAR gives awards to pioneer cereal workers in various award categories. 

About the Sh. VS Mathur Mathur Memorial Award:

The Sh. VS Mathur Memorial Award was constituted in year 2018 in the memory of eminent wheat worker Sh. VS Mathur. Mathur was one of the pioneer wheat workers who worked tirelessly with MS Swaminathan and HK Jain and developed a large number of high-yielding wheat varieties viz. Heera, Moti, Janak (HD 1982), Arjun (HD 2009), HD 2177, HD 2182, HD 2204, HD 2236, HD 2278, HD 2281, HD 2285, HD 2329, HD 2307 and HD 2327 for various regions of India.

Fragile global food system calls for a collaborative approach

Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), underscored the need for collaboration to address the challenges of global food shocks, climate change and agricultural trade.

Speaking at a Strengthening AR4D in South Asia workshop on Thursday, September 1, Govaerts highlighted the work of CIMMYT’s Borlaug Institute of South Asia (BISA) project.

“The collaborative, inclusive approach of BISA (Borlaug Institute for South Asia) is more relevant than ever today. In an era when the challenges of food and nutrition insecurity — exacerbated by climate change, poverty, and inequality — cannot be solved by one sector,” he explained.

Read more: Fragile global food system calls for a collaborative approach

CM holds parleys with experts of BISA to give major push to crop diversification in the state

Punjab Chief Minister Bhagwant Mann met with experts from the International Maize and Wheat Improvement Center (CIMMYT) to promote crop diversification and use of Direct Sowing Rice (DSR) Basmati as part of the Borlaug Institute for South Asia (BISA) project.

In a meeting with CIMMYT Director General Bram Govaerts, water shortages were an integral part of the discussion. Mann encouraged use of BISA models across the state that require less water consumption than other methods, without impacting farmers’ income.

Mann also highlighted the potential of crops like maize, pulses, oilseeds, vegetables, bamboo, popular, and fruit such as guava and kinoo.

Read more: CM holds parleys with experts of BISA to give major push to crop diversification in the state

Excellence in Agronomy Initiative commences in Africa

CGIAR researchers and partners outside the International Livestock Research Institute (ILRI) campus in Addis Ababa, Ethiopia, where the workshop took place. (Credit: Enawgaw Shibeshi/CIMMYT)

The Excellence in Agronomy for Sustainable Intensification and Climate Change Adaptation Initiative launched in east and southern Africa on July 28-29 in Addis Ababa, Ethiopia, at a workshop with panel discussions and ideation sessions to determine key actions for the project.

The Initiative aims to deliver agronomic gain at scale for millions of smallholder farming households in prioritized farming systems, with emphasis on supporting women and young farmers, to demonstrate measurable impact on food and nutrition security, income, water use, soil health and climate resilience.

Co-creation of agricultural solutions with farmers is integral to the Initiative through the engagement of modern tools, digital technologies, and behavioral science.

At the workshop, participants created a shared understanding of the Initiative’s goals for the region, laid groundwork for in-country planning and implementation, and increased visibility of the Initiative. Attendees agreed on the need to reevaluate beyond the boundaries of traditional agronomic practices and microeconomic challenges, considering policies at national and regional levels.

Roundtable discussions between participants highlight priorities and opportunities for the Excellence in Agronomy Initiative in east and southern Africa. (Credit: Enawgaw Shibeshi/CIMMYT)

Combining expertise from across CGIAR research centers, private sector actors and government agriculture departments, the Initiative takes a data-based approach to offer demand-driven solutions. This was of particular appeal to Eyasu Elias, deputy minister at Ethiopia’s Ministry of Agriculture, who described the approach as “truly commendable” in comparison to conventional supply-driven approaches.

Elias, who was represented by a delegate at the event, highlighted Ethiopia’s current three priorities: managing acid soils; managing Vertisols so they utilize their natural productive potentials; and adopting practices that mitigate the formation of salt-affected soils.

“Attaining food security will be a tremendous challenge under current conditions,” explained Elias’ representative. “More than ever, we need innovative agronomic solutions that enhance nutrient use efficiencies; we need solutions that can be crafted from locally available alternatives. Collaborations that allow co-creation, co-design and participatory technology generation along these lines are appreciated from our end.”

CIMMYT is prominent in global climate-food systems conversations, new study shows

Published in Nature Scientific Reports, a new study describes an innovative method to assess the reach and impacts of knowledge and partnerships created as part of the work of research-for-development organizations.

It uses text mining and the analysis of social networks and hyperlinks to draw inferences from publicly available digital sources, including institutional repositories, scientific databases, and social media.

“The method can uncover narratives, dynamics, and relationships that are hidden from traditional bibliometric analyses,” said Tek Sapkota, a cropping systems and climate change specialist at the International Maize and Wheat improvement Center (CIMMYT) and co-author or the study, which also involved the University of Coimbra, Portugal, and the University of Molise, Italy.

“Nearly 90 percent of CIMMYT’s research is related to climate change and its impact on food systems and vice-versa, so we assessed that to illustrate our new, web-based analytical framework. This novel approach can help research-for-development organizations to leverage online data and measure their impact.”

Read the full study: Digital artifacts reveal development and diffusion of climate research

Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)

CGIAR Initiative: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience

Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience aims to create resilient, inclusive and productive deltas — which maintain socio-ecological integrity, adapt to climatic and other stressors, and support human prosperity and wellbeing — by removing systemic barriers to the scaling of transformative technologies and practices at community, national and regional levels.

This objective will be achieved through:

  • Adapting deltaic production systems by identifying, synthesizing, evaluating, adapting and scaling interventions to ensure systems can adapt to and mitigate the effects of salinity, flooding, drought, terminal heat and sinking land.
  • Nutrition-sensitive deltaic agrifood systems, developed through the promotion of sustainable production and consumption of nutritious foods in Asian mega-deltas, by involving institutional stakeholders in the co-production of nutrition-sensitive interventions.
  • De-risking delta-oriented value chains by assessing the potential of digital climate advisory and complementing services to address climate risks among vulnerable groups, supporting development of improved and inclusive digital and bundled services, and identifying and developing financing models and partnerships to achieve scale.
  • Joined-up, gender equitable, inclusive deltaic systems governance, informed by transdisciplinary research evidence, local knowledge and political economy insights used to coordinate multi-stakeholder dialogues for more coherent water-agriculture-environment policies and strategies; collaborative, networked implementation practices; and gender-equitable and socially inclusive governance innovations.
  • Evidence-based delta development planning at the macro-level to ensure plans/policies incorporate inclusive and climate-proof approaches to food systems transformation.

CGIAR Initiative: Transforming Agrifood Systems in South Asia (TAFSSA)

Working across South Asia, the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative will deliver a coordinated program of research and engagement across the food production to consumption continuum to improve equitable access to sustainable healthy diets, improve farmer livelihoods and resilience, and conserve land, air, and groundwater resources.

TAFSSA aims to propel evidence into impact through engagement with public and private partners across the production-to-consumption continuum, to achieve productive, environmentally-sound South Asian agrifood systems that support equitable access to sustainable healthy diets.

This objective will be achieved through:

  • Facilitating agrifood systems transformation through inclusive learning platforms, public data systems and partnerships: building new and enhancing existing learning platforms; improving the evidence base; increasing quality data availability and accessibility; and demonstrating the value of integrated agrifood systems datasets.
  • Transforming agroecosystems and rural economies to boost income, generate jobs and support diversified food production within environmental boundaries: generating linkages between farmers, landscapes and markets to diversify agricultural production, increase farmers’ incomes and foster rural entrepreneurship within environmental boundaries.
  • Improving access to and affordability of sustainably produced healthy foods through evidence and actions across the food system: creating favorable environments for diversification; improving access to inputs for and marketability of sustainable nutritious food; and improving access to healthy food for the poor through changes in food retail environments.
  • Understanding behavioral and structural determinants of sustainable healthy diets: studying dietary practices of food consumers; identifying determinants of food choices; and testing innovations to support consumption of sustainable healthy diets.
  • Building resilience and mitigating environmental impact: examining how South Asia can produce healthy diets within an environmentally safe and socially equitable operating space, and in consideration of ongoing climate change and farmers’ resilience to shocks.

In Ethiopia, local challenges inform national action for climate-smart agriculture

A recent workshop in Ethiopia brought together researchers from the Ethiopia Institute of Agricultural Research (EIAR) and the Ministry of Agriculture, the Regional Bureau of Agriculture, alongside partners from regional agricultural research institutes, Universities, and CGIAR centers. (Credit: CGIAR)

In some of Ethiopia’s most vulnerable communities, climate change is having a disastrous effect on agriculture, a critical sector to the livelihood of millions. Droughts, floods, pests, and disease outbreaks are key challenges farmers face in the age of the climate crisis. These climate-related threats have already contributed to reducing agricultural productivity and food insecurity.

In order to minimize agricultural risks from the above challenges and maximize farmers’ resilience, there is a critical need to introduce the technologies, innovations, and practices that underpin ‘climate-smart agriculture. For instance, cascading knowledge on agricultural risk management and promoting conservation agriculture may prove to be sustainable practices that address the limiting factors of food security. This, however, cannot be done in a ‘one-size-fits-all’ approach. In Ethiopia, we’ve seen how climate-smart agriculture (CSA) not only needs to be localized – so it is effective in different environments – it also needs to be inclusive, meeting the needs of women and youth in various communities.

CSA is critical to making Ethiopian farmers and their communities more resilient in the face of climate change. Awareness-raising campaigns and consultations fit an important role in engaging scientists, practitioners, and beneficiaries to understand and implement area-specific climate adaptation mechanisms through CSA-based input. A current challenge is that climate-smart interventions in Ethiopia are limited because of a lack of awareness of the necessary skill set to implement and manage those technologies properly. After all, it is wise to remember that CSA is a knowledge-intensive exercise. For instance, let us look at the Ethiopian highlands, which constitute a substantial amount of the country’s farming population. In the extreme highlands of Ethiopia – generally dubbed as Wurch or mountain zone above 3800m elevation above sea level – CSA implementation is even scarce due to climatic and socio-economic conditions. In fact, those parts of the highlands are often referred to as the “forgotten agroecology” and agricultural research institutions – both in Ethiopia and beyond – must develop and package climate-smart interventions tailored for regions that have these agroecological characteristics.

Despite some practical challenges, it is also wise to note that there are successful cases of CSA implementation and addition across the various parts of the country. This is recognized for the literature review to document CSA experiences in the country and develop a detailed ‘CSA compendium’. These experiences can promote public engagement informed and inspired by the practical experience of climate-smart interventions, both from sites that have similar agroecological characteristics – as well as different – so that farmers and communities can learn from the successes and failures of other ventures. This public engagement should be underpinned by business and financing models that work for resource-poor farmers, so they can access or invest in making their agriculture more climate-smart.

Knowing what works where will be essential to develop strategies that can facilitate targeting and scaling CSA approaches. Developing a CSA compendium, a collection of concise but detailed information on CSA practices can be an entry point to achieve this – which also requires efforts from various experts and collaboration among institutions in the country and beyond.

In line with this understanding, a recent workshop in Ethiopia brought together researchers from the Ethiopia Institute of Agricultural Research (EIAR) and the Ministry of Agriculture, the Regional Bureau of Agriculture, alongside partners from regional agricultural research institutes, Universities, and CGIAR centers.

It aimed to raise awareness among partners on the kinds of climate-smart packages of agricultural technologies and practices that are socially inclusive and responsive to the needs of young people while also being feasible from a socio-economic standpoint and ready to be expanded and delivered on a bigger scale. Key presentations were made about what CSA is and what it is not. In addition, the type and description of indicators used to identify CSA practices that are economically feasible, socially acceptable, and gender-responsive were discussed in-depth. As part of this exercise, experts identified more than 20 potential climate-smart agriculture interventions tested, validated, and implemented effectively in different parts of the country.

Some of the key presentations and discussions at the workshop revealed critical lessons for implementing CSA:

  • Climate-smart agriculture is not a set of practices that can be universally applied but rather an approach that involves different elements embedded in local contexts.
  • Climate-smart agriculture relates to actions both on farms and beyond the farm, incorporating technologies, policies, institutions, and investment.”
  • Climate-smart agriculture is also a continuous process, though we should focus on the big picture and avoid trivial debates about whether CSA is a practice, technology, or an option.
  • Due consideration should be given to gender sensitiveness and social inclusiveness as a criterion in identifying compelling innovations.
  • Better indicators should be developed in measuring how climate-smart agriculture is adopted.

The workshop was the first of a series planned to raise awareness of different approaches to climate-smart agriculture while aligning Ethiopian institutions behind common understandings of how climate-smart agriculture can be delivered at both a local and national level.

In closing this first workshop, Ermias Abate, Deputy Director-General of the Amhara Region Agricultural Research Institute, stated, “Agriculture wouldn’t move an inch forward if we continued with business as usual and hence the need to be smart to face the new realities of agriculture under climate change.”

The Accelerating Impacts of CGIAR Climate Research in Africa (AICCRA) workshop was held between December 24 and 25, 2021, in Bahir Dar, Ethiopia, and was organized jointly by:

  • The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT)
  • CGIAR Program on Climate Change Agriculture and Food Security (CCAFS)
  • International Maize and Wheat Improvement Center (CIMMYT)
  • International Center for Agricultural Research in the Dry Areas (ICARDA) and
  • International Livestock Research Institute (ILRI)

Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Among the inputs needed for a healthy soil, nitrogen is unique because it originates from the atmosphere. How it moves from the air to the ground is governed in part by a process called biological nitrogen fixation (BNF), which is catalyzed by specific types of bacteria.

Nitrogen supply is frequently the second most limiting factor after water availability constraining crop growth and so there is great farmer demand for accessible sources of nitrogen, such as synthetic nitrogen in fertilizer. This increasing demand has continued as new cereal varieties with higher genetic yield potential are being released in efforts to feed the world’s growing population.

Currently, the primary source for nitrogen is synthetic, delivered through fertilizers. Synthetic nitrogen revolutionized cereal crop (e.g., wheat, maize, and rice) production by enhancing growth and grain yield as it eliminated the need to specifically allocate land for soil fertility rejuvenation during crop rotation. However, synthetic nitrogen is not very efficient, often causing excess application, which leads to deleterious forms, including ammonia, nitrate, and nitrogen oxides escaping into the surrounding ecosystem, resulting in a myriad of negative impacts on the environment and human health. Nitrogen loss from fertilizer is responsible for a nearly 20% increase in atmospheric nitrous oxide since the industrial revolution. Notably, more nitrogen from human activities, including agriculture, has been released to the environment than carbon dioxide during recent decades, leading climate scientists to consider the possibility that nitrogen might replace carbon as a prime driver of climate change.

New research co-authored by International Maize and Wheat Improvement Center (CIMMYT) scientists, published in Field Crops Research, posits that facilitating natural methods of gathering useable nitrogen in BNF can reduce the amount of synthetic nitrogen being used in global agriculture.

As agricultural systems become more intensive regarding inputs and outputs, synthetic nitrogen has become increasingly crucial, but there are still extensive areas in the world that cannot achieve food and nutrition security because of a lack of nitrogen.

“This, together with increasing and changing dietary demands, shows that the future demand for nitrogen will substantially grow to meet the anticipated population of 9.7 billion people by the middle of the century,” said J.K. Ladha, adjunct professor in the Department of Plant Sciences at University of California, Davis, and lead author of the study.

Before the synthetic nitrogen, the primary source of agricultural nitrogen was gathered through BNF as bacteria living underground that convert atmospheric nitrogen into nitrogen that can be utilized by crops. Therefore, legumes are often employed as a cover crop in rotating fields to replenish nitrogen stocks; their root systems are hospitable for these nitrogen producing bacteria to thrive.

“There are ways in which BNF could be a core component of efforts to build more sustainable and regenerative agroecosystems to meet nitrogen demand with lower environmental footprints,” said Timothy Krupnik, Senior System Agronomist at CIMMYT in Dhaka, Bangladesh.

Plant scientists have often hypothesized that the ultimate solution for solving the ever-growing nitrogen supply challenge is to confer cereals like wheat, maize, rice, with their own capacity for BNF. Recent breakthroughs in the genomics of BNF, as well as improvements in the understanding how legumes and nitrogen bacteria interact, have opened new avenues to tackle this problem much more systematically.

“Enabling cereal crops to capture their own nitrogen is a long-standing goal of plant biologists and is referred to as the holy grail of BNF research,” said P.M. Reddy, Senior Fellow at The Energy Research Institute, New Delhi. “The theory is that if cereal crops can assemble their own BNF system, the crop’s internal nitrogen supply and demand can be tightly regulated and synchronized.”

The study examined four methods currently being employed to establish systems within cereal crops to capture and use their own nitrogen, each with their advantages and limitations. One promising method involves identifying critical plant genes that perceive and transmit nitrogen-inducing signals in legumes. Integrating these signal genes into cereal crops might allow them to construct their own systems for BNF.

“Our research highlights how BNF will need to be a core component of efforts to build more sustainable agroecosystems,” said Mark Peoples, Honorary Fellow at The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia. “To be both productive and sustainable, future cereal cropping systems will need to better incorporate and leverage natural processes like BNF to mitigate the corrosive environmental effects of excess nitrogen leaking into our ecosystems.”

Besides the efforts to bring BNF to cereals, there are basic agronomic management tools that can shift focus from synthetic to BNF nitrogen.

“Encouraging more frequent use of legumes in crop rotation will increase diversification and the flow of key ecosystem services, and would also assist the long-term sustainability of cereal-based farming systems­,” said Krupnik.

Read the study: Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Cover photo: A farmer in the Ara district, in India’s Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Sagar Kafle

Sagar has been working at CIMMYT-Nepal since December 2015, contributing to various projects. His main focus has been on the CSISA initiative, which aims to research and scale up resource-saving technologies within Nepal’s cereal systems. Through his work, he has developed expertise in technology scaling within cereal systems, developing market systems, and strengthening governance in the agricultural research and extension services sector. This is in part due to his strong understanding of local contextual factors that influence the adoption of sustainable intensification technologies, including mechanization.

Since 2024, Sagar has turned his attention to generating innovations, tools and scaling pathways in the mixed farming systems of the mid-hills of Nepal as part of the CGIAR Mixed Farming Systems (MFS) Initiative.

The potential of conservation agriculture in increasing yield and tackling climate change

A multitude of research on the benefits of conservation agriculture in South Asia has predominantly focused on favorable environments where farmers have reliable access to energy supporting irrigation and inputs.

In this new publication, scientists from the International Maize and Wheat Improvement Center (CIMMYT) explore the performance of conservation agriculture in under-developed coastal environments in southern coastal Bangladesh over a period of three consecutive years, including under rainfed conditions and/or with limited application of irrigation.

Farmers calibrate their machines for strip tillage in communities participating in experiments. (Credit: Ranik Martin)

Responding to the identified research gap, this research tests the hypothesis that seasonally alternating tillage (SAT) practices that alternate between strip-tillage in the winter season for maize and conventional tillage (CT) prior to rice can reduce energy use, increase energy productivity, and reduce yield-scaled emissions while increasing or maintaining yield and profit, even under these challenging conditions.

Working with 35 farmers who managed experiments in partially irrigated and rainfed environments in southern coastal Bangladesh, researchers teamed up with farming communities to compare the full suite of conservation agriculture to SAT practices against CT and farmer’s own practices.

The research found that in these coastal environments, both conservation agriculture and SAT practices have the potential to increase cereal yields and energy productivity while reducing yield-scaled emissions, thereby enabling farmers even in challenging coastal environments to produce more while reducing energy use and mitigating greenhouse gas emissions.

However, in consideration of farmers’ aversion to the elimination of tillage in rice, the research suggests that adaptations in CA practices and seasonal tillage prior to rice may be a more practical fit for rice-maize systems managed by smallholders reluctant to eliminate tillage for rice in coastal Bangladesh.

This research gives implications for future research and development efforts to take into consideration farmers’ preferences or the trade-offs resulting from significant change to conservation agriculture management in otherwise fully tilled systems. It is also vital to integrate development efforts that focus not only on agronomic management, but also on building supportive value chains to improve availability and affordability of the inputs and farm machinery required to successfully establish crops with such practices.

Read the full study: Adapted Conservation Agriculture Practices Can Increase Energy Productivity and Lower Yield-Scaled Greenhouse Gas Emissions in Coastal Bangladesh

Cover photo: Long-term conservation agriculture in Rajshahi, Bangladesh. (Credit: CIMMYT/Sam Storr)

How bad will we let the food crises get?

As the Russia-Ukraine war continues to degrade global food security, the Australian who leads the global effort on improving wheat production has set out the concrete actions needed by governments and investors to mitigate the food crisis, stabilise supply and transition to greater agrifood system resilience.

Alison Bentley leads the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), the renowned research organisation from which more than 90 per cent of the wheat varieties grown in Australia can be traced. She will be addressing the Crawford Fund’s international conference Celebrating Agriculture for Development – Outcomes, Impacts and the Way Ahead this week in Parliament House, Canberra. The conference will also be addressed by the Minister for Agriculture, Fisheries and Forestry, Senator The Hon, Murray Watt.

“The broad food security impacts of the Russia-Ukraine war highlight the fragility of the global food supply, but the war is only one of a multitude of problems that we’ll be facing for many years to come. Few will remain unaffected,” said Alison Bentley, who was the lead author in a recently published related article in Nature Food.

“More than 2.5 billion people worldwide consume wheat-based foods. We need to move beyond defining the problem to implementing practical actions to ensure stable food supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system, and we will all benefit,” she said.

“The first priority is to mitigate the immediate crisis by boosting wheat production by bundling existing agronomic and breeding improvements and sustainable farming practices, just as Australia and other wealthy countries are doing. This will reduce dependence on imported grain and fertilizer in poorer countries.”

“We have learned since the Green Revolution that this must be done within agro-ecological boundaries, with high-yielding disease-resistant wheat and by mainstreaming capacity for pest and disease monitoring. Importantly, we also need to address climate change, gender disparities, nutrition insufficiency and increase investment in agricultural research,” she concluded.

The Fund’s annual conference will bring together international and Australian specialists to look at the mutual benefit and impacts of investment in global food security and poverty alleviation, and consider the effects of emerging threats including climate change and changing geo-political conditions on agricultural production, food chains and the environment.

Other speakers include international affairs specialist Allan Gyngell, climate change and security specialist Robert Glasser and renowned international economist Phil Pardey.

Contact for enquiries
Cathy Reade – Director of Outreach
+61 413 575 934                                                                                                                              crawford@crawfordfund.org
www.crawfordfund.org

All the powerpoints can be found on the website – you’ll find them linked to each speaker’s presentation title on the program page. 

Worsening food insecurity calls for stress-tolerant seeds

From chemical fertiliser shortages to lack of irrigation, farmers in Nepal have been facing a multitude of human-induced problems every year. The most urgent concern is the climate crisis.

Erratic weather patterns, untimely and uneven rainfall and rapidly rising temperatures have got farmers by the scruff of their necks.

For the farmers, such dramatic climate change manifests in the form of floods, droughts and landslides, directly hitting their agriculture-dependent livelihoods. For the nation as a whole, the climate crisis worsens food insecurity.

The tales of the climate crisis are petrifying. However, not all hope is lost.

Interventions such as climate resilient seeds that are tolerant to extreme climatic stresses like drought, flooding or submersion have been discovered and implemented in phases, according to scientists, to help sustain agricultural productivity.

“Due to the increasing climate change impacts, farmers are facing challenges to produce traditional seeds used during normal situations,” says AbduRahman Beshir Issa, seed systems lead at the International Maize and Wheat Improvement Centre, South Asia Office.

“In Nepal, farmers are witnessing both drought stress and excess moisture during the summer cropping season. In the spring season, high temperatures, coupled with drought stress, make it difficult for normal seeds or varieties to grow.”

With an increasing number of mouths to feed, and more pronounced effects of climate change yet to present themselves, climate-resilient seeds can help sustain Nepal’s agricultural productivity, according to crop development experts.

“Climate resilient seeds are crucial for food security. In addition, these crops are nutritionally important,” said Prakash Acharya, a senior crop development officer at the Seed Quality Control Centre. “With changing climate, not all crops and seeds can endure even two-three days of drought or submergence or extreme heat.”

Approximately 3 million hectares of land is cultivated in Nepal, which is 21 percent of the total land area. Rice, maize and wheat constitute more than 80 percent of cereal acreage and production.

The overall cereal yield in Nepal is 2.6 tonnes per hectare, which is far lower than the regional and global average of 4.1 tonnes per hectare, indicating an overall low productivity.

Paddy constitutes the highest production, commanding a 20.8 percent share in the agriculture gross domestic product (AGDP).

Nepal’s economic wellbeing is intimately linked with the monsoon. Water from the skies is the lifeblood of Nepal’s Rs4.85 trillion economy which is farm-dependent, as nearly two-thirds of the farmlands are rain-fed.

A large part of the country gets nearly 80 percent of its annual rainfall during the four months—June to September.

The production of food grains, mainly rice, depends on the amount and distribution of monsoon rainfall over the country. The monsoon rains also replenish ground water and reservoirs critical for drinking and power generation.

Analysing data from the past 33 years of minimum and maximum temperatures and rainfall, scientists predict drought to be the most important limiting factor for crop production, including paddy.

As paddy is sensitive to drought due to its high water requirement, scientists say there is a need for promoting “climate change-ready rice” that can tolerate drought for up to months.

For instance, research in Nawalparasi in the central Tarai found that the existing paddy varieties would not sustain the yield potential of the present level after 2020.

In October 2021, unusual weather patterns led to a torrential downpour lasting three days, causing massive loss of agricultural harvests and physical infrastructure across many parts of Nepal.

In 2020, in East Rukum, continuous rainfall from January to September decreased maize yield. The drought that followed then destroyed the wheat crop. Right after, the heavy rains also wiped out potatoes and maize.

Climate projections further suggest changes in precipitation during the monsoon period (with variations from 14 percent to 40 percent), as well as the increased likelihood of heavy precipitation events.

Experts are concerned that such unpredictable changes in weather patterns will lead to a decline in agricultural productivity, further worsening food insecurity in the region.

“We aren’t food secure right now as well. And with climate change, it is only getting worse. In the long run, the condition of food security in Nepal will be alarming,” says Yamuna Ghale, agriculture and food security policy analyst who is also research director at the Nepal Centre for Contemporary Research.

Around 65 percent of Nepal’s population depends on agriculture for its livelihood, which accounts for 25 percent of the GDP.

With the increasing population and declining agricultural productivity, experts say that Nepal could sooner or later face food insecurity.

“Everyone has the right to food. But the current situation indicates that a food shortage is looming,” said Ghale, who is also an expert at the Food Security Coordination Committee under the Ministry of Agriculture and Livestock Development. “We have to focus on climate-smart alternatives now, beginning with climate-resilient seeds.”

Climate-resilient seeds can withstand extreme conditions brought about by climate change. For example, drought-tolerant seeds can sustain periods of dry conditions, and submergence-tolerant seeds can withstand flood stress.

For example, improved varieties like Sukkhaa Dhan 4, Sukkhaa Dhan 5 and Sukkhaa Dhan 6 have an average yield of 4-4.5 tonnes per hectare, and under good irrigation conditions, the output can go up to 5.5 tonnes per hectare on an average.

Sukkhaa 6 has the ability to re-grow even two weeks after submergence.

Swarna Sub-1, Sambha Mansuli Sub-1, Cherang Sub-1, Gangasagar-1, and Gangasagar-2 are submergence-tolerant paddy varieties.

Rice varieties like Bahuguni-1 and Bahuguni-2 are both drought and submergence tolerant.

Similarly, maize varieties that are drought tolerant, such as Deuti, Manakamana-5 and Manakamana-6 are also available. Rampur hybrid-10 and Rampur hybrid-12 are heat-tolerant varieties.

Seto Kaguno is a promising variety of foxtail millet that is drought-tolerant and extremely climate-resilient.

Paddy varieties which possess the “Sub1A” gene remain dormant during submergence, and conserve energy until the floodwaters recede. Paddy plants with the “Sub1A” gene can survive more than two weeks of complete submergence. The plant recovers well from drought by growing new shoots.

“A character is incorporated into existing rice varieties to make them stress-tolerant or climate-resilient. This makes them fare better than traditional crops,” said Acharya.

“In very recent years, because of climate change, we have begun researching drought- and submergence-tolerant seeds,” said Acharya.

These climate-smart varieties, which can survive under stress and retain desirable grain qualities, can create positive impacts on the lives of farmers, scientists say.

Since 1966, Nepal has released and registered 144 varieties of paddy seeds, according to the Agriculture Ministry.

Scientists say that a majority of these stress-tolerant varieties do not demand excess fertilisers or tillage methods.

The Nepal Agriculture Research Council (NARC) is spearheading various projects for producing and popularising drought- and submergence-tolerant seeds.

“Under USAID’s support, Nepal Seed and Fertiliser Project, paddy seeds which are drought and submergence tolerant are being produced and marketed in Nepal in partnership with the government and the private seed companies,” Issa said in an email.

The National Maize Research Programme of NARC has released heat stress-tolerant maize hybrids that can survive at high temperatures compared to traditional varieties.

Likewise, under the National Grain Legumes Research Programme of NARC, field testing of waterlogging-tolerant lentil varieties is being done to come up with varieties that can withstand excess moisture from unusual winter rains during the lentil growing season, according to Issa.

Despite the availability of stress-tolerant seeds, farmers are not much aware of the new varieties and are hesitant to adopt such seeds easily.

Due to lack of awareness, farmers hardly adopt new varieties and they prefer traditional varieties. Local governments too have failed to create awareness.

According to experts, Sukhaa Dhan 3, Samba Mansuli Sub-1 and Cherang Sub-1 are popular among farmers in the Tarai and mid-hills.

However, varieties like Bahuguni-2 have been rejected by farmers because “Nepali consumers prefer non-sticky, fluffy rice as opposed to sticky varieties,” experts say.

Despite being both drought and submergence tolerant, such varieties are not adopted by farmers.

“Farmers are enthusiastic about using new ways and techniques of farming, but local governments have completely ignored investing in agriculture,” said Ujjal Acharya, freelance researcher on climate change and environment economics.

“They have been more focused on building infrastructure, roads, bridges, temples and so on. Food security, climate resilient agriculture, organic farming—all do not fall within the priorities of local governments,” he said.

However, scientists acknowledge that climate resilient crop varieties are only a part of the solution of the bigger climate-resilient agricultural system.

“It is extremely important to develop climate-resilient crop varieties that can withstand extreme weather conditions, but seeds are just one part among the various solutions,” says Issa.

This piece by Aakriti Ghimire, was originally posted on The Kathmandu Post.

Understanding the role of organic material application in soil microbial community structures

While previous studies have demonstrated the importance of organic material in soil for sustainable agricultural practices, there has been limited research into how organic material application affects the soil microbial community structures.

Researchers from El Centro de InvestigaciĂłn y de Estudios Avanzados del Instituto PolitĂ©cnico Nacional (CINVESTAV) studied soil from the International Maize and Wheat Improvement Center’s (CIMMYT) long-term experiment in northwestern Mexico to determine the effect on the soil metagenome after adding easily decomposable organic residues. The soil was collected from plots where maize and wheat were cultivated without tillage on permanent beds with crop residue left on the soil surface since 1992.

Dried young maize plants were added to the soil in the laboratory. After three days of incubation, soil samples were analyzed using shotgun metagenomic sequencing to discover how the application of young maize plants affects the structure of microbial communities in arable soil, how the potential functioning of microbial communities is altered, and how the application affects the soil taxonomic and functional diversity.

Bacterial and viral groups were strongly affected by organic material application, whereas archaeal, protist and fungal groups were less affected. Soil viral structure and richness were impacted, as well as metabolic functionality. Further differences were recorded in cellulose degraders with copiotrophic lifestyle, which were enriched by the application of young maize plants, while groups with slow growing oligotrophic and chemolithoautotrophic metabolism performed better in unamended soil.

Given the importance of embedding and adopting sustainable agricultural practices as part of climate change adaptation and mitigation, the study improves our insight in a key aspect of sustainable agriculture, the management of crop residues.

Read the full study: Application of young maize plant residues alters the microbiome composition and its functioning in a soil under conservation agriculture: a metagenomics study

Cover photo: Wheat crops growing at CIMMYT’s long-term experiment site in Ciudad Obregon, Mexico. (Credit: Nele Verhulst/CIMMYT)