Skip to main content

Theme: Climate adaptation and mitigation

Climate change threatens to reduce global crop production, and poor people in tropical environments will be hit the hardest. More than 90% of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while producing more food, and reduce emissions where possible. Innovations include new maize and wheat varieties that withstand drought, heat and pests; conservation agriculture; farming methods that save water and reduce the need for fertilizer; climate information services; and index-based insurance for farmers whose crops are damaged by bad weather. CIMMYT is an important contributor to the CGIAR Research Program on Climate Change, Agriculture and Food Security.

More than a drop in the bucket: addressing food security in Nepal through improved sustainable irrigation

Agriculture is always impacted by war. However, Russia’s war in Ukraine, fought between two major agricultural producers in an era of globalized markets, poses unprecedented implications for global agriculture and food security. Russia and Ukraine are significant exporters of maize, wheat, fertilizers, edible oils and crude oil. These exports have been compromised by the war, with the greatest impact being on poor and low-income countries that rely most on food imports. Partly because of the Ukraine-Russia conflict and partly due to the decline in agricultural production caused by the climate emergency, food prices have increased between 9.5 and 10.5 percent over the past ten years. 

Nepal, where one in four families is impoverished, is an example of a low-income country impacted by the war’s disruption of trade in agricultural goods and inputs. Although wheat, maize and rice are staples, vegetables are also important for nutrition and income, and Nepal imports fuel and fertilizer for their domestic production. Uncertainty in global supply chains, combined with the Nepali rupee’s significant depreciation against the US dollar, has resulted in a 500% increase in the cost of diesel since 2012. ­­

Irrigation to boost homegrown production

Land irrigation is crucial to crop growth and to the capacity of famers to withstand the effects of the climate emergency and economic shock. However, the majority of Nepal’s groundwater resources are underutilized, leaving ample room for increasing climate-resilient agricultural production capable of withstanding an increasing number of drought events. With the right kind of management of its groundwater, Nepal can increase its domestic output, and bolster smallholder resilience and food security in times of economic and climate crisis.

As part of the first prong of this approach, the Cereal Systems Initiative for South Asia (CSISA) advises farmers (particularly women), governments and donors on the targeted support available to enable them to access existing low-cost and fuel-efficient engineering solutions. These solutions can contribute to the immediate goals of increasing agricultural productivity, intensifying groundwater irrigation and improving rural livelihoods. CSISA informs small producers about ways to access irrigation and develop water entrepreneurship. It also and empowers farmers, especially women, to improve service provision and gain access to services and irrigation pumps, including through access to finance.

Policymakers, businesses, researchers and farmers (especially women, youth and marginalized groups) will collaborate to co-create business models for sustainable and inclusive irrigation with development partners and Nepali public and private sector actors. While there are more than one million wells and pumps in Nepal, many of these are not used efficiently, and social barriers often preclude farmers from accessing services such as pump rentals when they need them. To address these constraints and support private investment in irrigation and water entrepreneurship models, CSISA will work with existing infrastructure investment programs and local stakeholders to build a dynamic and more inclusive irrigation sector over the course of the next year, positively impacting a projected 20,000 small farming households.

At the macro-level, these water entrepreneurship models will respond to prioritized irrigation scaling opportunities, while at the farm level they will respond to irrigation application scheduling advisories. CSISA will also create policy brief documents, in the form of an improved farm management advisory, to be distributed widely among partners and disseminated among farmers to support increases in production and resilience. CSISA’s sustainable and inclusive irrigation framework guides its crisis response.

Scaling digital groundwater monitoring to support adaptive water management

In growing resilience-building irrigation investments, there is always a risk of groundwater depletion, which means that accurate and efficient groundwater data collection is vital. However, Nepal doesn’t currently have a data or governance system for monitoring the impact of irrigation on groundwater resources.

To tackle the need for low-cost, context-specific data systems which improve groundwater data collection, as well as mechanisms for the translation of data into actionable information, and in response to farmer, cooperative and government agency stakeholder demands, the Government of Nepal Groundwater Resources Development Board (GWRDB) and CSISA have co-developed and piloted a digital groundwater monitoring system for Nepal.

In a recent ministerial level workshop, GWRDB executive director Bishnu Belbase said, “CSISA support for groundwater monitoring as well as the ongoing support for boosting sustainable and inclusive investments in groundwater irrigation are cornerstone to the country’s development efforts.”

A pilot study conducted jointly by the two organizations in 2021 identified several options for upgrading groundwater monitoring systems. Three approaches were piloted, and a phone-based monitoring system with a dashboard was evaluated and endorsed as the best fit for Nepal. To ensure the sustainability of the national response to the production crisis, the project will extend government monitoring to cover at least five Tarai districts within the Feed the Future Zone of Influence, collecting data on a total of 100 wells and conducting an assessment of potential network expansion in Nepal’s broad, inner-Tarai valleys and Mid-Hills regions. The goal is to utilize this data to strengthen the Feed the Future Zone of Influence in Nepal by increasing GWRDB’s capability to monitor groundwater in five districts.

Ensuring food security

These activities will be continued for next two years. During that time CSISA will increase GWRDB’s capacity to monitor groundwater and apply this to five districts in Nepal’s Feed the Future Zone of Influence, using an enhanced monitoring system which will assist planners and decision-makers in developing groundwater management plans. As a result, CSISA expects to support at least 20,000 farming households in gaining better irrigation access to achieve high yields and climate-resilient production, with 40 percent of them being women, youth and/or marginalized groups. This access will be made possible through the involvement of the private sector, as CSISA will develop at least two promising business models for sustainable and inclusive irrigation. Finally, through this activity government and private sector stakeholders in Western Nepal will have increased their capacity for inclusive irrigation and agricultural value chain development.

CSISA’s Ukraine Response Activities towards boosting sustainable and inclusive irrigation not only respond to crucial issues and challenges in Nepal, but will also contribute to the regional knowledge base for irrigation investments. Many regions in South Asia face similar challenges and the experience gained from this investment in Nepal will be applicable across the region. Given the importance of of groundwater resources for new farming systems and food system transformation, the project is mapped to Transforming Agrifood Systems in South Asia (TAFSSA), the One CGIAR regional integrated initiative for South Asia, that will act as a scaling platform for sharing lessons learned and coordinating with stakeholder regionally towards more sustainable groundwater management and irrigation investments.

Cover photo: Ram Bahadur Thapa managing water in his paddy field in Dailekh district of Nepal. (Photo: Nabin Baral)

Adapting growing seasons to climate change can boost yields of world’s staple crops

Rising global temperatures due to climate change are changing the growth cycles of crops worldwide. Recent records from Europe show that wild and cultivated plants are growing earlier and faster due to increased temperatures.

Farmers also influence the timing of crops and tend to grow their crops when weather conditions are more favorable. With these periods shifting due to climate change, sowing calendars are changing over time.

Over thousands of years of domesticating and then breeding crops, humans have also managed to artificially change how crop varieties respond to both temperature and day length, and in turn have been able to expand the area where crop species can be grown. Farmers can now choose varieties that mature at different rates and adapt them to their environment.

Including farmers’ decisions on when to grow crops and which varieties to cultivate are vital ingredients for understanding how climate change is impacting staple crops around the world and how adaptation might offset the negative effects.

In a ground-breaking study, a team of researchers from the Potsdam Institute for Climate Impact Research (PIK), the Technical University of Munich and the International Maize and Wheat Improvement Center (CIMMYT) investigated how farmers’ management decisions affect estimates of future global crop yields under climate change.

“For long time, the parametrization of global crop models regarding crop timing and phenology has been a challenge,” said Sara Minoli, first author of the study. “The publication of global calendars of sowing and harvest have allowed advancements in global-scale crop model and more accurate yield simulations, yet there is a knowledge gap on how crop calendars could evolve under climate change. If we want to study the future of agricultural production, we need models that can simulate not only crop growth, but also farmers’ management decisions.”

Using computer simulations and process-based models, the team projected the sowing and maturity calendars for five staple crops, maize, wheat, rice, sorghum and soybean, adapted to a historical climate period (1986–2005) and two future periods (2060–2079 and 2080–2099). The team then compared the crop growing periods and their corresponding yields under three scenarios: no adaptation, where farmers continue with historical sowing dates and varieties; timely adaptation, where farmers adapt sowing dates and varieties in response to changing climate; and delayed adaptation, where farmers delay changing their sowing dates and varieties by 20 years.

The results of the study, published last year in Nature Communications, revealed that sowing dates driven by temperature will have larger shifts than those driven by precipitation. The researchers found that adaptation could increase crop yields by 12 percent, compared to non-adaptation, with maize and rice showing the highest potential for increased crop yields at 17 percent. This in turn would reduce the negative impacts of climate change and increase the fertilization effect of increased levels of carbon dioxide (CO2) in the atmosphere.

They also found that later-maturing crop varieties will be needed in the future, especially at higher latitudes.

“Our findings indicate that there is space for maintaining and increasing crop productivity, even under the threat of climate change. Unfortunately, shifting sowing dates – a very low-cost measure – is not sufficient, and needs to be complemented by the adaptation of the entire cropping cycle through the use of different cultivars,” said Minoli.

Another important aspect of this study, according to Anton Urfels, CIMMYT systems agronomist and co-author of the study, is that it bridges the GxMxE (Gene-Management-Environment) spectrum by using crop simulations as an interdisciplinary tool to evaluate complex interactions across scientific domains.

“Although the modeled crops do not represent real cultivars, the results provide information for breeders regarding crop growth durations (i.e. the need for longer duration varieties) needed in the future as well as agronomic information regarding planting and harvesting times across key global climatic regimes. More such interdisciplinary studies will be needed to address the complex challenges we face for transitioning our food systems to more sustainable and resilient ones,” said Urfels.

Read the study: Global crop yields can be lifted by timely adaptation of growing periods to climate change

Cover photo: Work underway at the International Maize and Wheat Improvement Center in Zimbabwe (CIMMYT), is seeking to ensure the widespread hunger in the country caused by the 2015/6 drought is not repeated, by breeding a heat and drought tolerant maize variety that can still grow in extreme temperatures. CIMMYT maize breeders used climate models from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) to inform breeding decisions. (Photo: L. Sharma/Marchmont Communications)

‘Farmers now more aware about climate resilient agri’

A workshop in New Delhi on the Climate Resilient Agriculture (CRA) programme explored solar harvesting, carbon credit, crop residue management, climate resilient cultivars, millets and pulses in cropping systems, and maize drying and processing.

Arun Kumar Joshi from the Borlaug Institute for South Asia (BISA) highlighted the potential of the programme if more farmers embrace CRA technology.

New technologies and innovations are essential in helping farmers adapt to changing climate conditions and reduce reliance on greenhouse gases (GHG).

Read the original article: ‘Farmers now more aware about climate resilient agri’

CIMMYT-China workshop aims to facilitate future collaborations to battle climate change

Hybrid maize seed and ears of the Yunrui 88 variety, developed using CIMMYT and Chinese germplasm. It is high-yielding, resistant to important diseases, and drought tolerant, and farmers report that the ears can be stored for longer and are better for animal feed. It was released in 2009 and is now the most popular hybrid in the area. (Photo: Michelle DeFreese/CIMMYT)

The negative effects of climate change on food systems are felt across political boundaries, so creating sustainable remediation steps are best accomplished through global collaboration. In that spirit, the International Maize and Wheat Improvement Center (CIMMYT) and the Chinese Academy of Agricultural Sciences (CAAS) convened the China-CIMMYT Workshop on Climate Change & Food Crops Production on December 6, 2022.

Participants included principal investigators of China’s National Key Technology Research and Development Program, representatives of Chinese agricultural universities, CIMMYT scientists and representatives from a variety of international organizations. The agenda featured discussions regarding research priorities, efforts to establish best practices in classifying and prioritizing climate risks and identifying potential crucial points for future cooperation between CIMMYT and China.

After the welcome address from Wheat Breeder and Country Representative for China Zhongzhu He, Thomas Lumpkin, CIMMYT Director General Emeritus provided the introduction to global climate issues and their effects on agriculture, particularly staple crops like wheat.

“All climate change mitigation strategies must account for their effect on food production systems, the aim of this convening was to facilitate discussions among climate change scientists, crop breeders and agronomists,” said Lumpkin. “Global issues require global solutions and so collaboration among institutions is pivotal.”

Tek Sapkota, CIMMYT Agricultural Systems and Climate Change Scientist, presented a framework for quantifying GHG emissions and mitigation potential for food systems, key research objectives of the One CGIAR initiative MITIGATE+, an initiative aimed to reduce annual global food systems emissions by 7% by 2030.

Three other CIMMYT scientists presented at the workshop. Wei Xiong, Senior Scientist, Crop Modeler, focused on genotype-environment interactions and its implication on breeding. Urs Schulthess, Remote Sensing Scientist, presented state-of-the-art results on the effects of temperature and vapor pressure deficit on radiation use efficiency of wheat. Huihui Li, Scientist, Quantitative Geneticist, discussed expanding genome wide association mapping and genomic selection to include climatic factors, highlighting novel methods to bring genes and climate together to accelerate breeding cycles.

In the workshop’s closing remarks, Wei reiterated CIMMYT’s commitments to continued collaboration with Chinese institutions and outlined next steps, such as CIMMYT’s commitment to increasing global agricultural resilience via novel research, partnerships, and increased engagement. Wei also detailed methods to identify new mechanisms and funding channels to promote global cooperation, such as One CGIAR initiatives and funding from national partners, including the CAAS.

Closing the investment gap for sustainable agriculture

The conflict between Russia and Ukraine has impacted exports of wheat, barley and fertilizers, affecting food security in many regions that rely heavily on imports to access these products. The UN Food and Agricultural Organization (FAO) and the World Food Programme predict that acute food insecurity will affect up to 205 million people by early 2023, with conditions deteriorating further in 19 countries.

Redesigning agricultural systems to solve this challenge must also take climate change into account: research published in Nature Food suggests that food systems cause a third of global greenhouse gas (GHG), while use and misuse of fertilizers, pesticides, energy, and water damages biodiversity.

The private sector is missing out on opportunities to invest in the agricultural sector and be part of the solution due to the challenges of putting a price on something like ‘protecting biodiversity’.

Director of CIMMYT’s global wheat program Alison Bentley says that while overseas development assistance and national governments provide significant support to the organization, private finance does play a role. “We have some really nice collaborations with the private sector, which allow us to access technology. The private sector, in the space of plant genetics and plant breeding, has pioneered some methodologies and technologies,” she tells GTR.

Read the original article: Closing the investment gap for sustainable agriculture

Exotic wheat DNA helps breed ‘climate-proof’ crops

A new study has determined that wheat with exotic DNA from wild relatives benefits from up to 50 percent higher yields in hot weather, compared with elite lacks lacking these genes.

The study by the International Maize and Wheat Improvement Center (CIMMYT) and the Earlham Institute examined how exotic alleles contribute to wheat heat tolerance in different field conditions based on field trials in Sonora, Mexico.

“Crossing elite lines with exotic material has its challenges,” said Matthew Reynolds, co-author of the study and leader of Wheat Physiology at CIMMYT. “There’s a well-recognized risk of bringing in more undesirable than desirable traits, so this result represents a significant breakthrough in overcoming that barrier and the continued utilization of genetic resources to boost climate resilience.”

These results can be used to improve crop resilience and food security in the face of the challenges posed by climate change, as well as emphasizing the importance of genetic diversity in key crops where selective breeding has reduced adaptability.

Read the original article: Exotic wheat DNA helps breed ‘climate-proof’ crops

Identifying climate mitigation strategies from AFOLU sector in Mexico

The vital tasks for each country to reduce its greenhouse gas (GHG) emissions and limited carbon outputs are daunting, especially with 2030 deadlines imposed by the Paris Climate Agreement only eight years away. National stakeholders would benefit greatly from roadmaps that identify realistic and achievable milestones to point the way forward.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) have provided just such a road map. Using easily available data, they developed rapid assessment methods and adoption costs for mitigation related to crops, livestock, and forestry to identify priority locations and actions. Their article, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico”, was published in Carbon Management.

Applying these methods for Mexico, researchers found a national mitigation potential of 87.88 million metric tons (Mt) of carbon dioxide equivalents per year.

“Faced with such an overwhelming issue like climate change, it can be difficult for an individual, an organization, and especially an entire nation to know where to start. We developed a rapid assessment framework, tested in India, Bangladesh, and Mexico, but we believe other nations can use our methods as well,” said Tek Sapkota, the project leader and first author of the paper.

The research specifically focused on climate change mitigation in agriculture, forestry, and other land uses (AFOLU). Agriculture and related land use change contributed about 23% of the world’s anthropogenic GHG emissions in 2016, and that number is expected to increase as more food needs to be produced for the world’s growing population.

Chickpeas planted on wheat residue under conservation agriculture. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

The researchers’ starting point was to quantify baseline emissions and analyze the major sources of emissions. Mexico’s AFOLU sector is responsible for 14.5% of its total national GHG emissions. In Mexico’s agricultural sector, methane and nitrous oxide emissions arise from livestock activities (enteric fermentation and fertilizers), as well as from agricultural activities (soil management and field burning of crop residues). For land use, carbon dioxide emissions and removals result from changes in forest lands, pastures, agricultural land, wetlands, and settlements.

Activities identified for GHG mitigation in crop production included avoiding fertilizer subsidies, since those tend reward inefficient nitrogen use. Subsidies could be of use, however, in encouraging farmers to adopt more efficient nitrogen management. Precision levelling of crop fields can help to lower GHG emissions by reducing cultivation time and improving the efficiency of fertilizer and irrigation water and adoption of conservation agriculture practices, such as zero tillage.

“Adoptions of these practices will not only reduce GHG emissions, but they will also help increase productivity,” said Ivan Ortiz-Monasterio, co-author and Mexico coordinator of the study.

In the livestock sector, mitigation possibilities identified are the creation of official programs, financial support, and capacity building on composting and biodigester. In FOLU sector, researchers identified options such as zero deforestation and C offset in the C market.

In addition to mapping out the mitigation benefits of specific activities, researchers also considered the costs associated with implementing those activities. “Looking at these efforts together with the cost of their implementation provide a complete picture to the implementing bodies to identify and prioritize their mitigation efforts consistent with their development goals,” said Sapkota. For example, some efforts, like increasing nitrogen use efficiency, do not provide the most climate benefits but are relatively inexpensive to realize, while establishing and maintaining carbon capture markets provides large reductions in GHG, they can be expensive to implement.

Researchers examined publicly available AFLOU spatial data for each Mexican state. At the state level, AFOLU mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8Mt CO2eq), indicating these states can be considered the highest priority for alleviation efforts. They identified an additional 11 states (Oaxaca, Quintana Roo, Yucatan, Jalisco, Sonora, Veracruz, Durango, Chihuahua, Puebla, MichoacĂĄn, and Guerrero) as medium priorities with mitigation potentials of 2.5 to 6.5 Mt CO2eq.

“Our data driven, and evidence-based results can help the government of Mexico refine its national GHG inventory and its Nationally Determined Contributions target and monitor progress,” said Eva Wollenberg, the overall coordinator of the study and research professor of University of Vermont, USA. “This analysis further provides an example of a methodology and results to help inform future efforts in other countries in addition to Mexico.”

Read the study: Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico

Cover photo: Low nitrogen (at the front) and high nitrogen (at the back) maize planted to address nitrogen use efficiency. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

Tracking the development and reach of CIMMYT’s climate research

Research for development organizations generate a wealth of knowledge. However, due to time and resource restraints, this knowledge has not been systematically analyzed, and the dynamics of how research is shared online have not been fully understood.

Today, technical advances in text mining, network analysis and hyperlink analysis have made it possible to capture conversations around research outcomes mentioned almost anywhere on the web. New digital research methodologies have emerged offering comprehensive approaches to leverage data across the web and to synthesize it in ways that would be impossible to carry out using traditional approaches.

In a study published in Nature Scientific Reports, scientists from the International Maize and Wheat Improvement Center (CIMMYT) teamed up with researchers from the University of Coimbra and University of Molise to investigate how CIMMYT research in climate change and climate sensitive agriculture is developing and the extent to which the center is exchanging knowledge with communities around the world.

Using text mining, social network analysis and hyperlink analysis to uncover trends, narratives and relationships in digital spaces such as research databases, institutional repositories, and Twitter, the team found that CIMMYT has steadily increased its focus on climate change research and is effectively sharing this knowledge around the world. The authors also found that CIMMYT’s climate research was centered on three main countries: Mexico, India, and Ethiopia.

The novel analytical framework developed by the team will help scientists track where their research is being shared and discussed on the web, from traditional scientific journal databases to social media.

“The web analytics framework proposed in this paper could be a useful tool for many research for development organizations to assess the extent of their knowledge production, dissemination, and influence from an integrated perspective that maps both the scientific landscape and public engagement,” said Bia Carneiro, first author of the paper.

The results of the study showed that sharing of CIMMYT’s climate science research was strongest on academic and research platforms but was also reflected in social media and government and international organization websites from across the Global North and South.

The findings from the study are important for the decolonization of science and the democratization of scientific debate. They show that CIMMYT is decolonizing climate science by sharing, creating, and co-creating knowledge with communities across the globe, particularly in Latin America, South Asia and Africa. On Twitter, the team noted that almost all countries were mentioned in CIMMYT’s Twitter conversations.

The study also shows that CIMMYT is bringing climate science and climate-sensitive agriculture into public debate, particularly through social media platforms, though they note there is potential to share more knowledge through these channels.

According to CIMMYT Agricultural Systems and Climate Change Scientist and coordinator of the study, Tek Sapkota, these types of analyses help research for development organizations to understand how people around the world view their expertise on subject matter, identify their comparative advantage and develop the value proposition of their work going forward.

Read the study: Digital artifacts reveal development and diffusion of climate research

Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)

In maize research, farmers’ priorities are our priorities

Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.

While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.

Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.

In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.

The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.

The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.

By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.

Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)

Drought and striga tolerance come out top for Kenyan farmers

In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.

The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.

“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.

“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”

The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”

Read the studies:

Maize variety preferences among smallholder farmers in Ethiopia: Implications for demand-led breeding and seed sector development

Building Resilient Maize Production Systems With Stress-Adapted Varieties: Farmers’ Priorities in Western Kenya

Cover photo: Roadside vendor sells roasted maize cobs to a customer in Timau, Kenya. (Photo: Peter Lowe/CIMMYT)

Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency

In an interview, Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), highlights the challenges facing crop cultivation management and agricultural product trade in Mexico and the rest of the world.

“At present, one of the most pressing challenges [in Mexico] is water scarcity exacerbated by la Niña’s occurrence,” explains Govaerts. “The global average of freshwater consumption for food production is 70 percent. However, Mexico ranks 24 in a global Water Stress Index facing high levels of stress by consuming between 40 and 80 percent of water supplies available in any given year.”

The article explores successful local sustainable grain sourcing projects in Mexico, research into sustainable global agricultural development, genetically-modified crops and their connection to biodiversity, and soil health.

Read the original article: Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency

A reluctant farmer changes the fortune of his inherited land

In the sultry spring-summer heat of Bihar, India, the landscape is yellow with wheat grains ready for harvest. Here, in Nagma village farmer Ravi Ranjan attends to his fields — mostly wheat, with some pulses in the adjoining plots. The harvest this year will be a little less than anticipated, he explains, as receding monsoon rains left the soil too moist to begin sowing on time.

Ranjan’s grandfather and father were both farmers who owned sizable land. His father used to say that the land was productive but required a lot of hands, sweat, and time to sustain the yields. Agriculture was all that the family had known and depended on for decades before Ranjan’s father left the sector for the civil service. After the early demise of his grandfather in 2003, and with his father in a secure government job, it fell to Ranjan to shoulder the responsibility of managing the family farm.

As a young man, Ranjan had sometimes helped his grandfather in the fields, but now, as the owner of a hydraulic mechanical service firm working hundreds of kilometers away in Chhattisgarh, he had never imagined becoming a farmer himself. Though reluctant to begin with, Ranjan decided there was no alternative but to take on the challenge and do his best, and while initially he had little success with the new venture, slowly and steadily he began to change the fortune of his inherited land.

Today Ranjan is one of the local area’s success stories, as a progressive and influential farmer with ties to the Cereal Systems Initiative for South Asia (CSISA) project. Researchers on the CSISA team have been working with farmers like him in the region for over a decade and are proud of the ongoing collaboration. Ranjan’s fields are regularly used as CSISA trial plots to help demonstrate the success of new technologies and conservation agriculture practices that can enhance productivity and sustainability. For example, in the 2021-2022 winter cropping season — locally known as Rabi — he harvested 6.2 tons per hectare – while a separate acre plot as demonstration site was harvested publicly with officials from CSISA and the Krishi Vigyan Kendra Network (KVK), JEEViKA, and farmers from neighboring villages for improving yield sustainably.

As India celebrates Kisan Diwas (Farmer’s Day) on December 23, we speak to Ranjan about his hopes for the future and the continuity of farming in his family after he hangs his boots.

Farming has seen a sea of change since your grandfather’s time. What do you think has been the most transformative change in the years you have been involved in farming?

I think using mechanized tools and technology to ensure good cropping practices has tremendously reduced manual work. Furthermore, today with innovations and digitization in agriculture science, farming is not just recognized as a noble profession, but also an enterprising one. I am happy I came into it right when things were changing for good. I have no regrets.

Though not by choice that I came into it, I am now fully invested and devoted to farming. From being an entrepreneur to farming, it has been a transformational journey for me. I am unsure whether my daughters — I have three, the eldest turns 18 next year — will choose to be involved in agricultural farming. But I will encourage and fully support them if they choose to take it up. After all, they will inherit the land after me.

Extreme climate effects are challenging agricultural practices and output. How are you preparing to reduce the impact of these in your fields?

It is worrying to see how extreme climatic effects can be challenging for agriculture, particularly for smallholder farmers in the region. Erratic rains, drought at times, and increasing temperatures have all harmed our cereal and vegetable farms and affected yield in wheat crops significantly. The adoption of new technologies like direct seeded rice (DSR) to avoid puddled rice transplanting, early wheat sowing (EWS) to avoid terminal heat at maturity, zero tillage technology (ZTT), and better-quality seeds, are interventions introduced and supported by CSISA and other agricultural organizations from the state that has helped combat some of these climate-induced problems.

In my own fields, I have also introduced proper irrigation systems to reduce the impact of limited water availability. I hope to stay ahead of the curve and make sure I am aware of all that is possible to keep my farm productive and sustainable.

How did you begin your association with CSISA? What has been your experience of working with them to make your agriculture resilient and productive?

I was initially approached by one of their scientists working in the area. And because of my interest, they slowly began informing me of various technologies I could try. With these technologies implemented in my field, the yield and productivity improved.

Soon after expanding my agriculture output, I got 50 acres of land on lease in the village to grow more crops like pulses, along with rice and wheat. Today, CSISA has started using my fields as their demonstration plots for new technologies and best practices, and to spread awareness and bring in more farmers from neighboring villages to encourage adoption.

CSISA and others call me a progressive and innovative farmer. I am proud that many farmers and other agricultural agencies in the area have appreciated our efforts to continue making agriculture productive and sustainable.

About CSISA:

Established in 2009, the Cereal Systems Initiative for South Asia (CSISA) is a science-driven and impacts-oriented regional initiative for increasing the productivity of cereal-based cropping systems. CSISA works in Bangladesh, India, and Nepal. CSISA activities in India focus on the eastern Indo-Gangetic Plains, dominated by small farm sizes, low incomes, and comparatively low agricultural mechanization, irrigation, and productivity levels.

Cover photo: Ravi Ranjan takes the author on a tour of his fields where wheat grown with conservation agriculture practices like zero tillage technology is ready for harvest, Nagwa village, Bihar, India. (Photo: Nima Chodon/CIMMYT)

How a policy to address a groundwater shortage inadvertently increased air pollution in northern India

A recent study by Harvard University, the Jet Propulsion Laboratory, Environmental Defense Fund (EDF), the University of Michigan, the Public Health Foundation of India, the International Maize and Wheat Improvement Center (CIMMYT), Columbia University, and the University of California, Los Angeles, has determined the environmental impact of a government policy of delayed rice planting in northwest India.

As explained in an article for the Tech and Science Post, farmers had to push back rice sowing to take advantage of monsoon rains and decrease reliance on groundwater-fed irrigation systems. However, this led to farmers relying on fire to quickly clear fields ready for the next planting season, thereby exacerbating air pollution in the region.

“We have shown that the groundwater and air quality crises are major regional issues and are interconnected,” said co-author Balwinder-Singh, former Cropping System Scientist at the International Maize and Wheat Improvement Center (CIMMYT) in New Delhi. “But there is still a path to clearer skies and safer water practices. Local solutions include planting rice varieties that either grow more quickly or need less water. Promoting less water-demanding crops like maize would be helpful in zones with severe groundwater depletion.”

Read the original article: How a policy to address a groundwater shortage inadvertently increased air pollution in northern India

Sustainability of rice production in the Northwestern Indo-Gangetic Plains

Rice is a vital crop for India, contributing around 30 percent of calories consumed in the country and providing a crucial source of income from exports. However, due to climate change and conversion of land for other uses, rice growing area in India is projected to decline by 6-7 million hectares (ha) by 2050, while production must increase by 1.1% annually over the next four decades to achieve rice self-sufficiency for the country.

As there is limited opportunity to horizontal expansion of cultivable land, the predicted increase in demand must be met through increasing rice yields in regions with low yields and maintaining existing yields in high-yielding areas. This must be achieved using sustainable farming practices: currently, 90 percent of total greenhouse gas (GHG) emissions of monsoon season cropped cereals in India is caused by rice cultivation, as is 80 percent of the energy and water used in agriculture.

Scientists found that in the Northwestern Indo-Gangetic Plains (IGP) of India, yield gaps were small (ca. 2.7 t ha−1, or 20% of potential yield) mainly because of intensive production system with high input use. Using management data from 4,107 individual farmer fields, the study highlighted scope to reduce nitrogen (N) inputs without compromising yields in this intensive production system.

Findings show evidence of and methodology for the quantification of yield gaps and approaches that can improve resource-use efficiency, providing a possible alternative approach that could be reproduced elsewhere for other crops and contexts. It is recommended that future research focuses on ways to reduce other production inputs without compromising the yields in such intensive production systems.

This paper is the result of Harishankar Nayak’s PhD training in collaboration with the Indian Council of Agricultural Research (ICAR) jointly supervised by the researchers at the Indian Agricultural Research Institute (IARI) and International Maize and Wheat Improvement Center (CIMMYT).

Read the study: Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers’ practices

Cover photo: A farmer stands in his rice field at a Climate-Smart Village in the Vaishali district of Bihar, India, as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). (Photo: DK Singh/CIMMYT)

The importance of germplasm in protecting nature

At COP15, Sarah Hearne gives an overview of the CGIAR Allele Mining Initiative projects and their potential role in conserving biodiversity and nature. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Prioritizing the protection of biodiversity is an essential part of mitigating and adapting to the effects of climate change and global warming. At the 15th meeting of the Conference of the Parties to the UN Convention on Biological Diversity (CBD) (COP15), held between December 7-19 in Montreal, Canada, emphasis was placed on the important role of nature in meeting the Sustainable Development Goals (SDGs), proposing the adoption of a bold global biodiversity framework that addresses the key drivers of nature loss to secure health and wellbeing for humanity and for the planet.

On December 7, scientists from the International Maize and Wheat Improvement Center (CIMMYT), together with colleagues from CGIAR research centers and the secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture, presented at a COP15 side event on how Digital sequence information (DSI) is changing the way genetic resources are used in agricultural research and development and implications for new benefit-sharing norms.

The session, organized by the CGIAR Initiative on Genebanks explored the role of DSI to conserve crop and livestock genetic diversity and explore and utilize that diversity in plant and animal breeding programs.

Attendees at the COP15 side event on DSI discover how genetic resources are used in research and development for agriculture. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Carolina Sansaloni, wheat germplasm bank curator and genotyping specialist, illustrated how DSI is being used in the CIMMYT wheat collection to analyze structure, redundancies, and gaps, further detailing how generation and use of DSI to conduct similar analyses within national genebanks in Latin America is being supported through collaborative efforts of CIMMYT and the Alliance of Bioversity and CIAT.

CIMMYT principal scientist Sarah Hearne focused on the application of DSI to interrogate broad swathes of crop genetic diversity for potential climate change adaptation, providing examples of work from the Allele Mining Initiative projects, Mining Useful Alleles and Fast Tracking Climate Solutions, alongside earlier work funded by the Mexican Government.

The take-home message was that genetic diversity and germplasm bank collections, when explored at “global scale” with modern tools and diverse partnerships, offer a powerful resource in the efforts to mitigate the impacts of climate change. This potential is only realized through appropriate generation and sharing of DSI generated from collections of many countries of origin.

Sansaloni and Hearne also contributed to a discussion paper, titled “Digital sequence information is changing the way genetic resources are used in agricultural research and development: implications for new benefit sharing norms”. This article, developed by scientists and germplasm law experts from across the CGIAR, provides a more detailed assessment of CGIAR use of DSI and the benefit sharing options being considered by the Contracting Parties to the Convention on Biological Diversity.

Combining improved seed varieties and index insurance to address drought losses

This VoxDevTalk features Paswel Marenya, Adoption and Impact Assessment Economist at the International Maize and Wheat Improvement Center (CIMMYT), being interviewed about a recent study, “Bundling Genetic and Financial Technologies for More Resilient and Productive Small-scale Agriculture”.

To test solutions that could mitigate the impacts of drought, the study used randomized control trials to test the impact of combining drought-resistant seeds and index insurance in Mozambique and Tanzania.

Results show that combining these two technologies expands their benefits: using the improved seeds reduces insurance costs, and having insurance to begin with counteracts the risk of adopting the seeds. Farmers who use both technologies have greater resilience to drought in the short- and long-term.

Demonstrating the benefits to farmers and informing the scaling-up of the solution-bundling approach was also found to be important.

Listen to the podcast: Combining improved seed varieties and index insurance to address drought losses