Skip to main content

Theme: Capacity development

CIMMYT training courses play a critical role in helping international researchers meet national food security and resource conservation goals. By sharing knowledge to build communities of agricultural knowledge in less developed countries, CIMMYT empowers researchers to aid farmers. In turn, these farmers help ensure sustainable food security. In contrast to formal academic training in plant breeding and agronomy, CIMMYT training activities are hands-on and highly specialized. Trainees from Africa, Asia and Latin America benefit from the data assembled and handled in a global research program. Alumni of CIMMYT courses often become a significant force for agricultural change in their countries.

Preventing stripe rust in Sichuan, China

GarryFieldOne of the worst wheat diseases in China, stripe rust has appeared in yearly epidemics since 1950 and caused losses of more than 60 million tons. As China is among the world’s main producers of wheat, the CIMMYT China office in Chengdu, in collaboration with the Sichuan Academy of Agricultural Sciences (SAAS), organized a two-day workshop to address these issues.

On 23 April 2012, around 50 participants from Sichuan and neighboring provinces were joined at SAAS by representatives from the Sichuan Department of Science and Technology and the Foreign Expert Bureau of Sichuan Province. The purpose of the workshop, which included site visits, was to learn about breeding for durable resistance to stripe rust in wheat.

Following an introduction by SAAS vice president Liu Jianjun, the workshop began with several seminars on breeding and rust diseases. Professor Bob McIntosh from Sydney University, Australia, presented a seminar on host pathogen interactions and the current status of global rust
epidemics, followed by CIMMYT scientist Sybil Herrera who gave an update on her work with minor, durable resistance genes, marker development and their application in breeding programs. CIMMYT wheat breeder Garry Rosewarne outlined some of the work on quantitative trait locus (QTL) analysis and breeding strategies at SAAS. Ennian Yang from SAAS closed with an account of CIMMYT SAAS collaborations, outlining the early shuttle breeding between China and Mexico and related outcomes.

The rest of the workshop was dedicated to field visits, with two sites visited on the first day. At Xindu farm, the main SAAS breeding site, the participants saw demonstrations of the selected bulk methodology. At the Guanghan site there were several elite yield trials as well as seed multiplication blocks of the latest, high-yielding releases from another Sichuan based breeder, Dr Wuyun Yang. During discussions, Dr Tang, a local agronomist, also explained conservation agriculture techniques developed in collaboration with CIMMYT’s consultant Ken Sayre. In traditional Chinese fashion, the evening was spent at a banquet at the “One Duck” restaurant, with everyone enjoying excellent food and wine, and catching up with old friends.

The second day of the workshop involved a visit to the field station of the Neijiang Academy of Agricultural Sciences, hosted by their president Huang Yuecheng. Based in a mountainous region near Chengdu, there were interesting demonstrations of intercropping with high-yielding wheat and specially designed equipment for cultivation and sowing on small, hilly plots. The main purpose of this field visit however was to see the academy’s own variety, Neimai 836, which has high yield potential and good resistance to powdery mildew (Pm21) as well as stem rust resistance against Ug99.

Defining priorities for quality research in native maize

DSC_0127In order to define the research priorities for the Seeds of Discovery initiative in maize quality of landraces (a Strategic Initiative of both CRPs MAIZE and WHEAT funded by Mexico), a diverse group of food scientists, chemists, maize breeders, genebank curators, social scientists, and representatives of research institutions such as UNAM and Chapingo, met for a workshop to discuss future research on quality characteristics within native Mexican maize.

Held during 23-24 April 2012, at MansiĂłn del Quijote, the workshop recognized the need to preserve cultural customs and identify market niches in order to ensure the conservation and use of germplasm. Many native maize landraces are grown by farmers for specific culinary uses. Tlayudas, for example, are normally prepared using native maize from Raza bolita, whilst Pozole is only prepared with pozolero maize belonging to the ancho, cacahuacintle, and eloteros occidentales races. These culinary and cultural niches are not easily filled by standard
commercial hybrids.

The workshop was organized by Martha Willcox (Genetic Resources Program) and Natalia Palacios (Global Maize Program). “We wanted to prioritize specific uses and areas of research,” said Natalia Palacios. “By discussing state of the art research on quality, germplasm conservation
and characterization, and the uses and applications of landraces, we were able to identify some starting points for further research,” she added. Whilst a great deal of work has focused on landrace quality, much of this research has gone undocumented. Therefore, one of the key focuses for 2012 will be on data analysis, documentation, and publication.

“Overall, we hope to identify and characterize accessions with exceptional quality parameters to be used in breeding, both at the landrace level and to introgress into improved breeding lines, in order to provide an economic benefit to farmers,” stated Martha Willcox.

Pakistan and CIMMYT: The center says “Khush Aamdeed” (warm welcome) to a distinguished delegation

Grupo-enmabada-Pakistan-sin-logoThe strength and breadth of the fruitful five-decade partnership between Pakistan and CIMMYT have grown significantly in recent years: this was one conclusion from the visit to CIMMYT on 29 May 2012 of a 12-member team of senior civil servants, ambassadors, and corporate executives from Pakistan.

The event was one leg of a foreign study tour by the group, as part of the 96th National Management Course given by the government of Pakistan’s National Management College. Designed to sensitize participants in public policy formulation and implementation, diplomacy, and external and bilateral relations, the tour’s stop at El Batán gave the visitors a broadbrush overview of Pakistan and CIMMYT’s shared history, of global challenges to food security, and how our current and future partnerships address them.

As emerged in the CIMMYT presentations, Pakistani policymakers, researchers, and farmers played a key role in the Green Revolution. In 1961 as part of his work with Norman Borlaug, Pakistani FAO trainee Manzoor Bajwa (later Director General of Pakistan’s AYUB Agricultural Research Institute) selected Mexipak, a high-yielding wheat that would eventually become the country’s most popular variety. In 1966, Pakistan imported 41,000 tons of Mexipak seed from Mexico and, only two years later, harvested 7 million tons of wheat, making it the first country in Asia to achieve self sufficiency for the crop. Sixty percent of the wheat seed to be sown in Pakistan this year comes from direct CIMMYT selections, and at least half the improved maize varieties grown are derived from joint Pakistan-CIMMYT breeding research. In the late 1990s-early 2000s, with CIMMYT support, Pakistan researchers helped launch conservation agriculture in South Asia.

From our shared history, the discussions moved to challenges to food security for humanity and for individual nations like Pakistan, as well as solutions. On the latter, the visitors learned of the global alliances MAIZE and WHEAT and—as examples of country and regional initiatives— the Sustainable Modernization of Traditional Agriculture with Mexico, including the Wheat Yield Consortium and Seeds of Discovery project, and the Borlaug Institute for South Asia (BISA). Despite having arrived in Mexico the previous day after more than 30 hours of travel, the visitors were attentive and inquisitive, with questions about CIMMYT’s policies on intellectual property, about genetically-modified crops, about small-scale farmers’ access to improved seed and the role of transnational seed companies, and about the rationale for research on wheat photosynthesis, to name a few topics.

There was an excellent presentation on legal aspects of the Pakistan-CIMMYT partnership and on the germplasm bank. Four Norman Borlaug Fellows (a program funded by USDA) from Pakistan accompanied the visitors for lunch, where talk touched upon how to improve practical aspects of the Pakistan-CIMMYT partnership. “We came here to learn,” said Ahmed Yar Khan, Director General of the National School of Public Policy, “and we have learned many things. We’ll certainly take back the messages we’ve heard to our colleagues in Pakistan.” CIMMYT also took the opportunity to thank the Embassy of Pakistan in Mexico for its typically excellent assistance in organizing the visit and arranging visas.

CIMMYT director general Thomas Lumpkin, who was traveling in South Asia at the time, was pleased to hear the visit went well and thanked everyone involved: “I am sure that Dr. Borlaug would be smiling, knowing that we are making good progress to rebuild a relationship with a country that was so important to him.”

Genetic resources information and analytical system (GRIS) for wheat and triticale

20120509_120632GRIS (http://wheatpedigree.net) is designed to study the diversity of wheat through analysis of pedigrees, and provides information services for breeding and research programs. The database contains pedigree and genetic allele information on 160,000 genotypes (varieties and breeding lines). All data are accompanied by standardized reference citations.

The author of the GRIS database, Sergey Martynov of Vavilov Research Institute, and programmer of the web application Dmitriy Dobrotvorskyi, recently met in Istanbul with a group of CIMMYT scientists involved in the development of Wheat Atlas, Rust Spore and IWIS-bib, to discuss collaboration on further development of these web-based tools. The key outputs of the meeting were agreements on (1) incorporation of the GRIS search into the Wheat Atlas and (2) further development of web-based modules to broaden the use of GRIS to conduct various genealogical and statistical analyses. Compatibility of GRIS with external statistical software (ANOVA, various algorithms of cluster analysis, etc.) is also considered essential in order to extend the opportunities for use of GRIS.

Thanks go to the CIMMYT-Turkey office, and to Alexei Morgounov in particular for facilitating this meeting.

Honing skills in scientific writing for publishing

107_7608writing-workshopHave you ever wondered why the papers you have written on a piece of innovative research are rejected by your target peer-reviewed journals, or why your colleagues in similar projects are publishing with less difficulty? It could be that you are not writing in a style that is acceptable by the journals. For this reason Insect Resistant Maize for Africa (IRMA) and its sister project Water Efficient Maize for Africa (WEMA) have been conducting annual scientific writing workshops for their project scientists and students based in Nairobi. This year’s IRMA/WEMA Writing Workshop, which was attended by 15 participants, was held in Nakuru, Kenya during 07–11 May 2012.

The objectives of the workshop were to: train the participants on how to write scientific papers; demonstrate how to write technical papers in English; break down the process of journal choice, submission, reviews, and publication; provide assistance in completing manuscripts; and to draft new technical papers.

Stephen Mugo, principal scientist, Global Maize Program (GMP) and the IRMA/WEMA team leader, notes that publishing is the most effective way to disseminate research findings to fellow researchers, extension and development agents, and farmers. It is the best way to advance science and also provides an opportunity to account for resources provided by donors. GMP scientists are encouraged to publish at least one or two articles per year.

Reiterating the importance of publishing, maize breeder Biswanath Das of the Improved Maize for African Soils (IMAS) project stated, “Considering that we are working in public institutions, we have an obligation to share our research findings.” He was one of the scientists outside the IRMA and WEMA projects who were attracted to the writing workshop. There are plans to expand participation in the workshop to include more scientists from other CIMMYT projects in Kenya.

Mugo noted that the workshop is particularly important in training young professionals and students in scientific writing. This kind of retreat is a sure way of getting publications out in the shortest time possible.

Indeed, the number of papers published in peer reviewed journals is steadily increasing, from six in 2010—when the projects held their first writing workshop—to 16 in 2011. By the end of April 2012, seven papers had been published. Another six papers have been submitted to various journals, while 23 more are being drafted with authors promising to submit by the end of July this year.

For Murenga Mwimali, a PhD student, the workshop provided him with an opportunity to sharpen his skills in scientific writing. It was also an opportunity for him to consolidate data findings and to write papers based on research done within the IRMA/WEMA projects.

The workshop was facilitated by Stephen Mugo and Liz Lucas, consulting copy editor. They would like to thank Hugo De Groote for his work in compiling resources for these workshops.

Nepal farmers like rust resistant wheat

DSC02555On 14 May 2012, at Tikathali, Changathali Village Development Committee Centre (VDC) in Lalitpur, around 30 participants from MoA, NARC, seed companies, and CIMMYT were joined by 61 farmers (43 female, 18 male) and several graduate students and technicians. The event also saw active participation from senior district agriculture development officers from Lalitpur, Bhaktapur, and Kathmandu as well as the Crop Development Directorate of Nepal and the Seed Quality Control Center.

After a brief introduction, the farmers were led on a field tour by Maiya Maharjan Saligram, the head of the Loktantrik Integrated Pest Management Group in Changathali. Here they were shown the wheat plots and given detailed information about the characteristics of each variety, such as maturity class, yield potential, and disease resistance.They were split into four groups and asked to evaluate six varieties and two checks, which they then ranked one to eight according to individual performance.

Back at the VDC, NARC’s senior plant pathologist Sarala Sharma said that with active awareness among farmers, wheat breeders, and pathologists, Nepal is fully prepared to face the possible arrival of the stem rust race Ug99 because resistant varieties are already in farmers’ fields. She also described how positive the PVS approach has been over recent years; not only has there been a rapid increase in adoption rates of new varieties, but there has also been a remarkable reduction in yellow rust. Madan Bhatta, chief of NARC’s germplasm division, also endorsed the PVS approach, while Dilaram Bhandari from Seed Quality Control suggested that small-scale farmers should work together to develop an effective seed producers organization. The farmers were further encouraged by Suroj Pokhrel, director of the Crop Development Directorate, and Yubak Dhoj G.C. from the Plant Protection Directorate, who assured them that their suggestions are extremely important.

The farmers themselves were very happy with the event, saying that by sharing experiences with each other, they were building confidence in their own ability to manage wheat diseases, seed production, and profitability. They were particularly enthusiastic about strengthening their groups to share new technology and seed varieties, with the female farmers especially motivated. Through PVS, farmers have widened the coverage of rust resistant varieties, tested new options, and gradually replaced older, lower-yielding varieties, thus increasing production and productivity. With the new varieties, the farmers expected a 10% yield increase.

Other participants included Hira Kaji Manandhar from the plant pathology division at the National Agriculture Research Institute (NARI) of NARC, NARC scientist D.B. Thapa; NARC crops and horticulture director Yagya Prasad Giri; CIMMYT’s regional wheat breeder Arun Joshi; and lead farmer Dhana Maharjan.

Zhonghu He becomes a CIMMYT Distinguished Scientist

During his visit to the Chinese Academy of Agricultural Sciences (CAAS) in China, Director General Thomas Lumpkin took the opportunity to make a very special announcement – the promotion of Zhonghu He to CIMMYT Distinguished Scientist. He now joins an illustrious group of past and present CIMMYT Distinguished Scientists: Mujeeb Kazi, Sanjaya Rajaram, Surinder K. Vasal, Ravi Singh, Jose Crossa, and Hugo Córdova.

He first joined CIMMYT as a post-doctoral scientist from 1990-92, before coming back to lead the China office when it first opened in 1997. In the subsequent 15 years He used his connections with CAAS to successfully establish a CIMMYT-CAAS wheat improvement program that is now highly recognized in China and worldwide for its significant achievements in varietal development, quality testing technology, molecular marker development and application, and training. In addition, He has authored 219 refereed journal articles in the last eight years alone, including publications in Crop Science, Euphytica, Journal of Cereal Science, and Journal of Theoretical and Applied Genetics.

Upon receiving the news of his promotion, He said: “Becoming a Distinguished Scientist was beyond my dreams ten years ago. It is a great honor, not only for me but also for my program and my fellow scientists and support staff. I am very grateful for the support and encouragement received from our colleagues at CIMMYT and CAAS, and thanks also to our collaborators in China and worldwide.”

Congratulations He and good luck in your new appointment.

Ganesan Srinivasan continues to harvest success

ganesanWe are delighted to hear that Ganesan Srinivasan has been appointed Dean of Agriculture and Natural Resources at Santa Rosa Junior College, California, USA.

Srinivasan joined CIMMYT in 1990 as a post-doctoral fellow. Over 15 years he headed the International Maize Testing Program, led the Highland Maize Program and later the Subtropical Maize Program, and, in 2000, became associate director of the Maize Program. He made important contributions in breeding improved, stress tolerant, and quality protein maize germplasm, and developed and released several CIMMYT Maize Lines (CMLs). In 2005 he left to become director of the University Agricultural Laboratory at California State University at Fresno, though he remains a member of CIMMYT’s extended family.

He takes up his new post on 31 May 2012. Congratulations Ganesan and we wish you every success!

Tsedeke Abate joins CIMMYT as DTMA Project Leader

Dr-Tsedeke-Abates-PhotoA citizen of Ethiopia, Tsedeke Abate joined CIMMYT Global Maize Program on 08 May 2012, and has taken over responsibilities from Wilfred Mwangi as the project leader of the Drought Tolerant Maize for Africa (DTMA) project. Abate will be based in Nairobi, Kenya. He obtained his BS and MS degrees in agriculture from the University of Florida, USA, and his PhD in biological sciences from Simon Fraser University, Vancouver, Canada.

Abate has a wide range of productive and successful experience in leadership and management of agricultural research and development. As project coordinator, during 2008-12 he led the Tropical Legumes II project jointly implemented by ICRISAT, CIAT and IITA in Africa and South Asia. Prior to this Abate was the director general of the Ethiopian Institute of Agricultural Research (EIAR). He is also well known for his passion for putting agricultural knowledge into practical use—scaling-up and scaling-out improved technologies to impact the lives and livelihoods of smallholder farmers.

Bangladesh and CIMMYT: decades of partnership, commitment, and achievement

CIMMYT E-News, vol 5 no. 8, August 2008

01aWork by CIMMYT with researchers, extension workers, policymakers, and farmers in Bangladesh for nearly four decades has helped establish wheat and maize among the country’s major cereal crops, made farming systems more productive and sustainable, improved food security and livelihoods, and won ringing praise from national decision makers in agriculture, according to a recent report published by CIMMYT.

“CIMMYT is one of the leading centers of the CGIAR 
working in Bangladesh since the early 70s
initiating multi-dimensional work for varietal improvement, improved crop management, conservation of natural resources, and human resource development,” says Dr. Md. Nur-E-Elahi, Director General, Bangladesh Rice Research Institute, citing the center’s contributions to the development of high-yielding maize and wheat varieties, wheat-rice and maize-rice systems, whole-family training, small-scale farm mechanization for conservation agriculture, and triticale (a wheat-rye hybrid) for fodder. “CIMMYT’s contributions to agricultural research and development in Bangladesh are highly recognized.”

aug06
Building capacity among scientists and farm families

More than 140 Bangladeshi wheat and maize scientists and extensionists have taken part in courses at CIMMYT-Mexico or come as visiting scientists in crop breeding, agronomy, pathology, cereal technology, experiment station management, seed production, economics, heat stress, and resource conserving practices. Dozens of scientists from Bangladesh have also attended conferences or international workshops organized by the center and partners. Finally, joint efforts in crop, soil, and water management research over the last 20 years have added to expertise in Bangladesh.More often than not, women and children contribute substantively to farm activities, so CIMMYT and the Wheat Research Centre (WRC) developed and refined a whole-family-training approach that has boosted adoption of improved cropping practices. “We’ve reached over 27,000 women and men farmers on maize and wheat production, and around 700 small-scale dairy farmers,” says Anton Prokash Adhikari, CIMMYT-Bangladesh Administrator. Follow-up studies in 1996 among a randomly-selected subset of families who attended training sessions showed a 90-100% adoption of improved practices. After training, maize farmers adopted a range of improved production practices, planting the crop on more land and raising grain yields by 0.8 tons per hectare. “This type of training has raised the quality of farming in Bangladesh,” says Adhikari.

With an average of over 1,000 inhabitants per square kilometer, Bangladesh is among the world’s most densely-populated countries, and nearly two-thirds of its people work in agriculture. The country furnishes a case study for the future of farming in developing countries: as a result of intensive cropping rotations, every square centimeter of arable land is used 1.8 times a year, and resources are stretched beyond what is normally considered “sustainable.” A recent report on CIMMYT efforts in Bangladesh gives an interesting account of how, through broad partnerships and sustained research for farmers, an international agricultural center can help improve farmers and consumers’ lives.

Joint work brings food and windfalls

“The last quarter century of work by a small team of dedicated CIMMYT staff and their colleagues in Bangladesh national programs has brought improvements in local and national income, food security, human nutrition, and well-being,” says agronomist Stephen Waddington, who worked for CIMMYT in Bangladesh during 2005-2007. “This is easily seen by any visitor to Bangladesh, where nowadays many otherwise poor people regularly have wheat chapattis for their breakfast, a glass of milk from triticale fodder-fed cows for their lunch, and maize-fed chicken, eggs, or fish for their dinner.”

Bangladesh emerged on the map of significant wheat-growing countries in the 1980s, according to Waddington. “Wheat became the second major cereal after rice, contributing to food security and human nutrition, and improving the livelihoods of resource-poor farmers and urban consumers,” he says. “Nineteen of the twenty-four wheat varieties released in Bangladesh carry CIMMYT lines in their backgrounds.” Much crop management and soil research for wheat was conducted in joint Bangladesh Wheat Research Center (WRC)-CIMMYT programs.

With climate change, enter maize and alternative crops

After playing a crucial role in Bangladesh agriculture, wheat production has declined in recent years, due chiefly to higher temperatures that hamper grain filling and incubate wheat diseases. But maize has become increasingly popular, partly in response to rising demand from the poultry sector for feed. “Last year farmers produced 1.3 million tons of maize, and output and interest are growing ,” says Enamul Haque, Senior Program Officer for CIMMYT-Bangladesh. “Maize fits well in Bangladesh’s climate, soils, and intensive farming systems.”

Again, CIMMYT has helped in a big way, providing improved maize lines adapted to local conditions, offering expertise in hybrid-based maize breeding and crop management research, helping to promote dialogue on enabling policies that foster productivity and effective markets. “Six out of the seven maize hybrids released by the Bangladesh Agricultural Research Institute, in recent years contain CIMMYT maize lines, and there is significant use of CIMMYT maize by emerging private breeding companies,” says Haque.

Finally, in recent years, triticale has become a source of high-quality green fodder for small-scale dairy producers during the cool, dry, winter season. “Dual-purpose fodder and grain triticale can produce 7 to 12 tons per hectare of fresh fodder, and as much as 2 tons per hectare of grain for poultry feed or for chapattis,” says Haque. All triticale varieties sown in Bangladesh come from CIMMYT.

Mechanization and resource-conserving practices

Within the last decade or so, agriculture in Bangladesh has become highly-mechanized: 8 of 10 farmers use two-wheel tractors, which are more apt for their small and scattered land holdings than the four-wheel variety. Since 1995, Haque has worked with the WRC and local organizations to promote a varied set of implements for reduced, more efficient tillage and seeding. One key aim has been to enable farmers to sow wheat or other crops directly after rice harvest in a single day—instead of after two weeks of back-breaking, fuel-hungry plowing—thus saving money and allowing the new crop to mature before the pre-monsoon heat shrivels the grain.

 Craig Meisner (left), a CIMMYT wheat agronomist during 1990-2005, contributed significantly to CIMMYT's presence, partnerships, and achievements in Bangladesh.
Craig Meisner (left), a CIMMYT wheat agronomist during 1990-2005, contributed significantly to CIMMYT’s presence, partnerships, and achievements in Bangladesh.

“To date thousands of farmers have adopted a small, two-wheel tractor-driven implement that tills, seeds, and covers the seed in a single pass,” says Haque. “This reduces turn-around between crops by 50%, cuts costs 15-20%, saves 30% in irrigation water and 25% in seed, and improves fertilizer efficiency—all this, as well as increasing yields by 20%, for wheat.” Owners of the single-pass seeding implement often hire out their services, earning USD 1,000-2,000 a year and each helping 20-100 other farmers to obtain the above-mentioned benefits. In addition, the reduced tillage implement and practices help address labor shortages that constrain farm operations at peak times, and are opening lucrative opportunities for machinery manufacturing and repair businesses.

For the future, CIMMYT staff are testing and promoting with researchers and farmers the use of permanent, raised beds and straw retention systems that can increase yields as much as 50% in intensive, wheat-maize-rice cropping sequences. Future activities of CIMMYT-Bangladesh will also focus on strengthening wheat and maize breeding programs, system-based research and resource-conserving practices, and the use of maize as food, fodder, and feed. “We’d also like to do more capacity building, study soil health and nutrition, and better disseminate useful technologies to farmers and extension agents,” Haque says, “but much depends on the resources available.”

Extensive partnerships key to past and future success

“CIMMYT has worked with national programs, NGOs, the private sector, farmers, donors, and policy planners,” says Md. Harun-ur-Rashid, Executive Chairman, Bangladesh Agricultural Research Council, and Director General, Bangladesh Agricultural Research Institute. “These joint programs have accumulated an impressive array of achievements and benefits.”

In addition to the key partners cited above, CIMMYT has worked with agricultural universities in Bangladesh, the Department of Agricultural Extension, the Bangladesh Livestock Research Institute, the Soil Resource Development Institute, the Bangladesh Rural Advancement Committee (BRAC), the Bangladesh Chashi Kollan Samity, the Bangladesh Institute of Nuclear Agriculture, Deoel Agro Industries Complex Ltd., and the Mahbub Engineering Workshop at Jamalpur. IRRI; ILRI; ICRISAT; IFDC; FAO; Murdoch University, ACIAR, and CSIRO, in Australia; Cornell University, Texas A&M University, Winrock International, and the Helen Keller Foundation, USDA, in the USA.

For more information: Enamul Haque, Senior Program Manager, CIMMYT-Bangladesh (e.haque@cgiar.org)

Doubled haploids speed development of drought tolerant maize for Africa

CIMMYT E-News, vol 5 no. 5, May 2008

may01CIMMYT is adapting an advanced technology—the doubled haploid approach—to develop inbred lines of tropical maize for sub-Saharan Africa. It promises to reduce costs and speed the arrival of better-adapted maize for resource-poor farmers in the world’s toughest environments.

CIMMYT scientists have begun developing drought tolerant varieties of tropical maize for places like sub-Saharan Africa using a high-tech approach—known as doubled haploids—previously applied principally by commercial seed companies working mostly on temperate maize.

“Haploid” refers to the number of chromosomes in a reproductive cell, like sperm or ovum. In grasses like maize, the reproductive cells—pollen and ovules—contain half the chromosomes of a full-grown individual. Fertilization joins the genetic information from the two parents, and offspring carry paired sets of chromosomes, reflecting the diversity of each parent.

“Maize breeders working on hybrids—the most productive type of maize variety and the one marketed by most seed companies—must at some point create genetically-stable and pure lines of desirable, individual plants, for use as parents of hybrids,” says CIMMYT maize physiologist Jose Luis Araus. Conventionally, breeders get the lines by repeatedly fertilizing selected, individual maize plants with the plant’s own pollen. The process requires expensive field space, labor, and time—normally, seven or more generations, which represents at least three years, even in settings where it’s possible to grow two crops per season.

Purer, faster, cheaper

In the latter part of the 20th century, crop scientists developed a quicker, cheaper path to genetically-uniform parent lines—though a technically intricate method. The first step involves crossing normal maize with special maize types called “inducers,” whose pollen causes the normal maize to produce seed containing haploid embryos. The haploid embryo carries a single set of its own chromosomes, rather than the normal paired sets. The embryos are planted, and subsequent treatment of the seedlings with a particular chemical causes them to make “photocopies” of their haploid chromosomes, resulting in a fertile plant endowed with a doubled set of identical chromosomes and able to produce seed of 100% genetic purity. “The actual treatment, as well as getting from the embryo to a reasonable amount of seed of the pure line, is very complicated,” says Ciro Sánchez Rodríguez, CIMMYT technician in charge of doubled haploid field trials, “but when the process is perfected, it only takes two generations—about one year—and the logistical advantages are tremendous.”

may04

First extensive use in the tropics

CIMMYT is implementing the doubled haploid technology on a research station in Mexico, using drought tolerant plants adapted to sub-Saharan Africa. “CIMMYT’s use of the practice is another example of how we put advanced technologies at the service of disadvantaged, small-scale farmers,” says Araus. “Among other things, this represents a significant opportunity to increase the availability of improved, drought tolerant maize varieties for sub-Saharan Africa,” he says.

Commercial seed companies in Europe and North America have been the main users of the doubled haploid technology, and the inducer genotypes available are of temperate adaptation. “The inducers perform very poorly in the tropical conditions of our Mexico stations,” says Vanessa Prigge, a PhD student from the University of Hohenheim working at CIMMYT to perfect the technique. To generate inducers that work better in tropical settings, Prigge and colleagues are crossing temperate inducers from Hohenheim with CIMMYT maize from Mexico, Kenya, and Zimbabwe. “We expect to have tropical versions of the inducers in a couple years,” she says.

Reaching farmers’ fields

Maize lines from this work will be used initially in the Drought Tolerant Maize for Africa (DTMA) and the Water Efficient Maize for Africa (WEMA) projects.

“This is a very exciting technology,” says Aida Kebede, an Ethiopian PhD student from Hohenheim helping to establish the doubled haploid technology at CIMMYT. “It holds the key to addressing more quickly the persistent problems of African maize growers: drought, disease pressure, and low productivity. I’m happy to contribute!”

Enhanced partnerships for improved productivity and livelihoods in Kenya

November, 2004

A reaffirmation of partnerships spanning the globe occurred at the 9th Annual KARI Biennial Scientific Conference and the First Kenya Agricultural Research Forum, in Nairobi. Staff from CIMMYT joined scientists, farmers, seed producers, and manufacturers at the 8–12 November meeting to share research findings, heighten awareness, and promote discussion. A key topic was the consolidation of Kenya’s national agricultural research system. The conference was opened by Kenya’s Minister for Agriculture, Hon. Kipruto arap Kirwa, who noted that the agricultural network should be “more efficient, cost effective, with the desired impact at the household level, and have effective dissemination of research results.” These goals, once realized, will enable Kenya’s agricultural sector to improve linkages with research partners and farmers. Studies on farmer access to grain marketing information were presented and discussed by CIMMYT’s Hugo de Groote and Martins Odendo.

The pen shows its might at CIMMYT

November, 2004

A group of 14 Mexican journalists visited CIMMYT’s research station at El BatĂĄn, Mexico, on 17 November, for an introduction to center activities and field, seed bank, and laboratory tours. Coming at the invitation of CIMMYT and the Mexican public relations firm, Arvizu Communications, the visitors included correspondents from leading Mexico City dailies and several agricultural periodicals. Presentations covered the center and partners’ work in conservation agriculture, the conservation and use of crop genetic diversity, and biotechnology. Particular interest centered on CIMMYT’s research in transgenics, in the context of media reports of transgenic maize in the Mexican countryside. In a wrap-up with the group, CIMMYT research director John Dodds and a diverse group of scientific staff emphasized that genetic engineering is a small portion of the center’s total research portfolio—roughly 0.5%. “CIMMYT engages in limited work with GMO technology because of the potentially important benefits to small-scale farmers in the developing world,” Dodds explains. “Ultimately, the decision whether to use GM crops or not is up to each nation.”

Ravi Singh receives prestigious prize

The University of Minnesota recently announced CIMMYT distinguished scientist Ravi Singh as the recipient of its 2010 E.C. Stakman Award.  Established in 1955 by plant pathologist E.C. Stakman, a pioneer in combating wheat diseases, the award is given to individuals for outstanding achievements in plant pathology. Stakman was also a former professor of Norman Borlaug.

“I feel extremely honored and humbled to receive this highly prestigious award,” Singh said. “Dr. Stakman was a mentor to Dr. Borlaug and is largely responsible for sending him to Mexico in 1944. You wonder whether Dr. Stakman knew or even guessed that this decision was going to change history and save millions of lives.”

Singh, who has been with CIMMYT for over 25 years, is world-renowned for his efforts to control wheat rusts and has trained over 400 young scientists. With this award he joins a long list of notable scientists, including I. A. Watson, who was dean of Sydney University’s College of Agriculture and a former pupil of Stakman himself, and 2007’s recipient, the late Bent Skovmand, former head of wheat genetic resources at CIMMYT, director of the Nordic Gene Bank, and key player in the development of Svalbard International Seed Bank.

Congratulations, Ravi!

Workshop on enabling technologies and environments for climate resilient future farming systems in Jharkhand, India

A two-day workshop on potential technologies and policy environments for smallholder rainfed maize farming systems of Jharkhand state, India was organized jointly by Birsa Agriculture University (BAU), CIMMYT, and the International Plant Nutrition Institute (IPNI) during 16-17 April, 2012 at Ranchi, Jharkhand, India. The outcomes of the workshop will form part of CIMMYT’s IFAD-funded project on “Sustainable Intensification of Smallholder Maize-Livestock Farming Systems in Hill Areas of South Asia” and the MAIZE CGIAR Research Program (CRP).

There were 69 participants in total, including scientists, extension agents (KVKs), and students from BAU; key officials from the state department of agriculture National Food Security Mission (NFSM); and scientists from IPNI, the International Livestock Research Institute (ILRI), and CIMMYT. The workshop was inaugurated by BAU vice chancellor M.P. Pandey, while sessions and break-out group discussions were facilitated by Kaushik Majumdar, director of IPNI’s South Asia Program; JS Choudhary, state NFSM director; AK Sarkar, dean of the College of Agriculture at BAU; ILRI scientist Nils Teufel; CIMMYT scientists M. L. Jat and Surabhi Mittal; and IPNI deputy director T. Satyanarayana.

The workshop was made up of presentations on key topics, break-out group discussions, and a brainstorming session. The overall key themes were: (1) current status, constraints, and opportunities in different regions of Jharkhand , (2) conservation agriculture in maize and wheat systems, (3) approaches for crop-livestock integration, (4) integrated farming systems for food and nutritional security, (5) optimizing nutrient management for improved yield and profitability, and (6) approaches for inclusive growth for Jharkhand.

The five break-out groups discussed conservation agriculture (CA); site-specific nutrient management (SSNM); integrated farming systems and crop livestock interactions; enabling policies; and knowledge gaps, partnerships, networks and scaling-out strategies. The discussion outcomes were particularly focused on technology targeting and enabling environments and policies.

Agriculture in Jharkhand is at very low cropping intensity (~114%), despite good rainfall in most districts. The most critical issues include: rolling topography with very small holdings, leading to severe erosion due to lack of appropriate rainwater harvesting; soil acidity; lack of high-yielding stress-tolerant cultivars; very limited mechanization; and poor farmer access to inputoutput markets, coupled with resource poverty.

Building on the experience of CIMMYT’s hill maize project in the state, the participants agreed that optimizing cropping systems deploying CA practices could alleviate many of these problems, and sustainably increase crop production and productivity. Integrating CA with SSNM has shown promising results in improving nutrient use efficiency, currently another bottleneck in productivity gains due to inappropriate nutrient use. Crop-livestock integration is also key, as animals dominate farming in Jharkhand.

To implement these technologies and practices on a large scale, policy support is crucial. The outcomes of the workshop are being documented to serve as a policy paper for prioritization and implementation of technologies by the state, with the goal of arresting land degradation, improving crop productivity, and improving resource use efficiency and farm profitability.

Jharkhand8