CIMMYT training courses play a critical role in helping international researchers meet national food security and resource conservation goals. By sharing knowledge to build communities of agricultural knowledge in less developed countries, CIMMYT empowers researchers to aid farmers. In turn, these farmers help ensure sustainable food security. In contrast to formal academic training in plant breeding and agronomy, CIMMYT training activities are hands-on and highly specialized. Trainees from Africa, Asia and Latin America benefit from the data assembled and handled in a global research program. Alumni of CIMMYT courses often become a significant force for agricultural change in their countries.
Staff members of the Cereal Systems Initiative for South Asia (CSISA) are developing and implementing projects aimed at improving agricultural production and standards of living for farmers in South Asia, with excellent results. At their “Seed Summit for Enhancing the Seed Supply Chain in Eastern India” meeting in Patna, Bihar on 14-15 May they worked to design solutions to improve the delivery of high-yielding seed varieties in eastern India, a region that has traditionally suffered from lack of access to these varieties and low seed replacement rates. The meeting, which included over 60 seed experts from the government, research and private sectors, focused on topics such as better-targeted subsidies on seeds, improved storage infrastructure and stronger extension systems to increase accessibility and adoption of improved seed varieties.
The roundtable “Sustainable Intensification in South Asia’s Cereal Systems: Investment Strategies for Productivity Growth, Resource Conservation, and Climate Risk Management” was held on 19 May in New Delhi. It brought together 20 firms and entrepreneurs to build collaborative action plans and joint investment strategies under CSISA to identify new product tie-ins, joint ventures, technical collaborations and shared marketing channels in order to bring high-tech farming ideas to India’s risk-prone ecologies.
In India, CSISA seeks to increase crop yields through the provision of more accurate, location-specific fertilizer recommendations to maize and rice farmers with the “Crop Manager” decision-making tool. The web-based and mobile Android application uses information provided by farmers including field location, planting method, seed variety, typical yields and method of harvesting to create a personalized fertilizer application recommendation at critical crop growth stages to increase yield and profit.
CSISA-Nepal has initiated a series of participatory research trials in farmers’ fields, in order to promote maize triple cropping, the practice of planting maize during the spring period after winter crop harvesting, when fields would usually be fallow. The practice, while proven to be highly remunerative, is not widely popular. The trials seek to determine optimum management practices for maize in order to encourage triple cropping and to generate additional income for farmers.
Greater gender equality in agriculture is also an important goal of CSISA, supported through the creation of Kisan Sakhi, a support group to empower women farmers in Bihar, India by “disseminating new climate-resilient and sustainable farming technologies and practices that will reduce women’s drudgery and bridge the gender gap in agriculture.” A CSISA-Bangladesh project has already had a positive impact on the lives of rural women, providing new farming and pond management techniques that have helped them to greatly increase the productivity of their fish ponds and gain new respect within their families and communities.
CIMMYT, in collaboration with Wheat Research Institute Sindh (WRIS) and Pakistan Agriculture Research Council (PARC) supported by USAID, initiated pilot testing of a multi-crop bed planter for planting cotton and wheat in a cotton-wheat cropping system in Sakrand, Pakistan under the Agricultural Innovation Program (AIP) for Pakistan.
Dr. Imtiaz Hussain, cropping systems agronomist, explained how the multi-crop bed planter is used for planting various crops such as cotton, maize, pulses, rice and wheat on raised beds. This planter will help farmers cut farming operations and costs. It can be used to make beds, plant crop and apply fertilizer in one operation in a cotton-wheat cropping system.
A multi-crop bed planter is demonstrated during a recent AIP field day. Photo: Hira Khalid.
A field day was organized by WRIS on 27 August for the stakeholders to observe bed planted cotton, a demonstration of a bed planting operation, and discuss its use and performance. Over 150 new and aspiring farmers, agriculture extension workers, agriculture researchers and representatives from private seed companies observed the planting of mung beans using the multi-crop bed planter in the field.
Badar ud Din Khokahar, agronomist at WRIS, spoke about his experience with this new technology, noting the bed planted cotton had better germination and plant population in comparison with conventionally ridge planted cotton. The ability to apply fertilizer close to plant resulted in better crop growth.
The field day was followed by a discussion forum, where the participants expressed their interest in this new and emerging technology. During this session, farmers showed appreciation for the introduction of a multi-crop bed planter and showed their interest in using the planter for wheat crop next season. In response, Dr. Kareem Laghari, director at WRIS, recognized the efforts and cooperation of CIMMYT in the introduction of new technologies, and ensured that this technology will be transferred to the farmers for wheat and cotton planting.
Dr. Atta Somoro, director general Agriculture Research Sindh, acknowledged CIMMYT’s efforts in wheat research in the country and especially in the Sindh province. He recognized how CIMMYT’s work in the Green Revolution is highly valued. He also mentioned that the continuous inflow of germplasm and technologies from CIMMYT has helped to improve wheat productivity.
Dr. Shahid Masood, member of Plant Sciences within the Pakistan Agricultural Research Council (PARC), recognized how the efforts of CIMMYT and the support of the U.S. Agency for International Development (USAID) are very helpful in scaling up mechanized planting in this area, which will ultimately help to improve crop productivity, along with saving in water and improving fertilizer use efficiency.
Dr. Imtiaz Muhammad, country representative CIMMYT-Pakistan, informed the participants that AIP is focusing on improving the productivity of the wheat and maize through better germplasm, seed and better agronomy. The project focuses on increasing agricultural productivity and incomes in the agricultural sector across Pakistan, with more emphasis on smallholder farmers from provinces with less access to agricultural resources. This equipment will be tested and it will also be manufactured locally through this project, so that more and more farmers can benefit from these activities.
“If I have not touched ugali, I have not eaten,” said engineer Menjo Mosonik, the Bomet County official in charge of agriculture and infrastructure. The saying is from his community where ugali, a dish made from maize meal, is a staple food. This is true of many communities in Kenya, where maize is a staple food and a key ingredient in daily meals.
The maize lethal necrosis (MLN) disease, which can cause up to 100 percent yield loss on farmers’ fields, is threatening this source of food and livelihoods for many in the country. Because of this, 40 county officials, including County Executive Committee (CEC) officials who are responsible for agriculture in Kenya’s devolved government structure, visited the CIMMYT MLN Screening Facility in Naivasha, Kenya on 5 August.
The facility could hold the key to addressing this lethal disease, which was first recognized in 2011 and has affected maize cultivation in many counties. The facility is hosted by the Kenya Agricultural Research Institute (KARI) center for livestock research, which is also the Regional Centre of Excellence for Dairy Research for East and Central Africa.
“We work in partnership,” said CIMMYT’s regional representative for Africa, Dr. Wilfred Mwangi, as he welcomed the CECs. “To show our commitment to overcoming MLN, CIMMYT brought our specialists from China and Mexico to help identify the disease when it was first observed in Kenya.”
CIMMYT pathologist Dr. George Mahuku gives a guided tour of the MLN Screening Facility in Naivasha, Kenya. Photo by Florence Sipalla.
The Food and Agriculture Organization of the United Nations (FAO) organized the visit and is supporting training sessions on the disease in major maize growing areas. So far, they have trained 320 participants in eight counties. “We wanted policy-makers to appreciate work being done by national and international research organizations to address MLN,” said Dr. Wilson Ronno, head of crop production at FAO-Kenya. “We realized we need to inform policy-makers, as this is a very sensitive issue of food security,” said Ronno, adding, “we are putting up demonstration sites in Bomet to show farmers how to manage the disease through good agricultural practices.”
The county officials were given a guided tour of the facility by Dr. George Mahuku, CIMMYT pathologist. As he showed them around the facility, Mahuku explained the research being carried out by CIMMYT, in collaboration with KARI and partners from the public and private sectors, to screen germplasm and identify sources of resistance to MLN.
“We are screening germplasm from different places in the [East Africa] region,” said Mahuku, adding that germplasm from Mexico and the United States has also been screened at the facility. “Because this is a new disease, we are also developing protocols on how to handle the viruses and screen germplasm for resistance. These protocols will be shared with our partners through training so that we are all well-coordinated in addressing the problem,” he added.
“There is hope,” said Mahuku as he pointed at germplasm that is showing tolerance to the deadly disease. He explained that CIMMYT is going to screen the germplasm in multiple environments. “This is why we really value partnerships,” he added, emphasizing the important role partners play in the research process.
The role of extension workers in managing diseases such as MLN was discussed, as they are instrumental in disseminating information on how to manage the disease. “Management is very important and is going to play a key role in minimizing or averting the devastating effects of MLN,” said Mahuku.
“This was a learning experience. We will be able to tell farmers what we have seen,” said Purity Muritu, who is in charge of agriculture in Nakuru County. Muritu said she would also explain to farmers the importance of having a maize-free season to break the MLN cycle. The CECs suggested that county officials visit the MLN facility to be sensitized on MLN and how to manage it.
The University of Wisconsin students met smallholder farmers in Toluca to view their practices first-hand. Photos: Luis Castilla Zetina/CIMMYT
On 9 August CIMMYT-El Batán welcomed a group of 22 students and three teachers from the University of Wisconsin for a week-long stay. The students are enrolled in the university’s course for a Global Health Certificate, which introduces students to a preventive, population-level, interdisciplinary approach to health promotion. According to organizers, the trip to CIMMYT served to “open the eyes of the students to the importance of agriculture and nutrition.”
During the last six years, Dr. Sherry A. Tanumihardjo has visited CIMMYT with students to expose them to the realities of Mexican maize and wheat production systems, as well as how the Center’s research is helping smallholder farmers increase their productivity and improve their livelihoods. During the program’s first day, CIMMYT specialists presented the work being done at the Wellhausen-Anderson Plant Genetic Resources Center and the Seeds of Discovery initiative, as well as the objectives and strategies being pursued by the Maize, Wheat and Conservation Agriculture programs.
Genetic Resources Director Dr. Kevin Pixley led a discussion to help the students make sense of the different areas seen during the day and how they all work together to fulfill CIMMYT’s mission. On their second day, the group traveled to the Tlaltizapán experiment station, where Dr. Oscar Bañuelos explained the work being done in the Tripsacum ex situ conservation garden, while Thanda Dhliwayo described in detail the work that is being conducted with biofortified maize.
Later, the group travelled to Cuernavaca to learn about the work being done to reduce Mexico’s obesity and malnutrition problems by Dr. Salvador Villalpando, director of the National Institute of Public Health. On Wednesday, the group continued their cultural tour, visiting the National Museum of Anthropology and the Mexico City Historic Center. Previously, María Elena Campos had taken them to the pyramids in Teotihuacán so the visitors could get a better sense of Mexico, its origins and its rich history. The day ended at the Palace of Fine Arts (Palacio de Bellas Artes), where everyone had a chance to relax and enjoy a production of the Ballet Folklórico de México.
Óscar Bañuelos demonstrates maize pollination.
On Thursday, the students visited the Toluca experiment station and were welcomed by Fernando Delgado, senior station superintendent. After briefly explaining what CIMMYT does in Toluca, Delgado took them to meet local farmers, where the students had the opportunity to watch, listen and talk to some of the people that CIMMYT serves, and to gain a better understanding of their problems and needs.
On their last day, the group visited the Santa Catarina field with Arturo Reyes Ramírez and learned about the nixtamalization process from Estela Flores. The experience had a strong impact on the students, who learned first-hand about Mexican maize production and consumption processes, from the fields to the dining table. They left with a greater understanding of how important maize is, not only as food, but also as a cultural phenomenon. Visits like this raise awareness about the importance of the research and work being done at CIMMYT. The students from the University of Wisconsin take home a powerful memory of the work that CIMMYT does to help the world’s poor farmers.
Some of the CIMMYT partners who participated in a field day showcase fertilizer friendly maize in Kiboko, Kenya. Photo: Biswanath Das/CIMMYT
Many smallholder farmers in Africa can only afford to apply small amounts of fertilizer to their maize crop. Fertilizer-friendly maize, bred to more efficiently use the small quantities of fertilizer that farmers apply, is helping to address this challenge. On 8 and 25 July, the Improved Maize for African Soil (IMAS) project, led by CIMMYT, hosted two field days at Kiboko, Kenya, to showcase fertilizer-friendly pre-commercial maize hybrids and inbred lines. CIMMYT also held a similar field day on 4 March in Harare, Zimbabwe attended by 50 partners from the southern Africa region. The event was organized by CIMMYT breeder Dr Amsal Tarekegne.
Thirty-three partners representing seed companies, non-governmental organizations (NGOs) and national agriculture research systems (NARS) from Kenya, Tanzania and Uganda participated in the field days. They were able to evaluate and select IMAS pre-release hybrids and advanced inbred lines. “The focus of the IMAS line development pipeline is nitrogen use efficiency, which has been added to other adaptive traits relevant for Sub-Saharan Africa,” said Dr. Biswanath Das, breeder and co-leader of the IMAS project. “The germplasm is very diverse, incorporating nitrogen use efficiency from Latin American and temperate sources in the Africa-adapted materials,” said Das. Over 3,000 advanced inbred lines were on display at Kiboko for selection by partners.
The deadly maize lethal necrosis (MLN) disease has emerged as a primary challenge to maize breeding in the East African region. “The lines displayed at Kiboko are also being evaluated in parallel for their responses to MLN at the MLN Screening Facility at Naivasha,” said Das. The results from the trials at Naivasha will further help partners in making use of selected germplasm in their breeding programs.
“I gained insight into the work that IMAS is doing,” said Saleem Ismail, chief executive officer of the Western Seed Company. Ismail said that he had selected germplasm from this field day; “I plan to cross these materials with my testers for evaluation in western Kenya.” He added that he would like to see how the germplasm combines with early- and late-maturing materials.
“This germplasm is very useful,” said Wilson Muasya, a breeder with Kenya Seed Company. “You never see this kind of germplasm assembled in one place. We can diversify and improve our germplasm and our own varieties,” added Muasya. “We can also identify materials that can effectively fight the MLN disease.”
Philip Leley, a maize breeder with the Kenya Agricultural Research Institute (KARI), Muguga Station, said he wanted to introduce diversity into KARI’s maize breeding program, especially for traits such as nitrogen use efficiency and MLN tolerance.
Partners from BRAC, one of the largest NGOs in the world, and Nuru International, an NGO based in Kenya, also participated in the field visit. Shahadat Hossain of BRAC-Uganda and Peter Wangai of Nuru International were keen to identify hybrids that could be marketed to their target farmers. In 2013, Nuru International worked with 6,000 farmers in Kenya’s Kuria district, and plans to expand to 10,000 farmers by next year.
“We provide farmers improved seed and fertilizer for one acre of land,” said Wangai. “We also advise them on varieties to plant,” explained Wangai, who indicated that the organization is eager to identify maize varieties that can tolerate MLN. “We are discouraging farmers from planting maize in the short rain season because of MLN,” he said, explaining that part of Nuru’s extension service is to advise farmers on how to manage the spread of MLN.
BRAC provides integrated services in agriculture, health and microfinance in several countries in Africa, including Tanzania and Uganda. “Since 2000, we have trained more than 100,000 farmers in Uganda,” said Hossain. The NGO provides different types of seed to farmers including maize, rice and vegetables. “We have BRAC-branded maize open-pollinated varieties,” said Hossain. “We currently procure hybrids from a commercial seed company in Uganda but plan to put our own hybrids on the market in the future.”
“Organizations such as BRAC and Nuru International help to diversify the suppliers of CIMMYT’s improved maize germplasm. Together with other development partners in the region, they play a very important role in ensuring that thousands of smallholder farmers have access to new improved varieties, as well as information,” said Das.
As of April, farmers in the central Mexican state of Guanajuato are now receiving localized agriculture updates and decision-making advice on their mobile telephones thanks to a service launched by MasAgro Móvil. This new development in MasAgro Móvil’s service is part of Guanajuato’s plan to modernize agriculture with CIMMYT-developed technologies. MasAgro Móvil, a project of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, along with other MasAgro tools, received an investment of 10.4 million pesos (US$ 804,000) thanks to the support of Miguel Márquez Márquez, governor of Guanajuato, who seeks to promote sustainable agriculture in his state.
The head of CIMMYT’s GIS unit, Kai Sonder, demonstrating the use of GPS.
Javier Usabiaga Arroyo, Guanajuato’s secretary of agricultural development, announced on 31 May that approximately 755,000 farmers in Guanajuato will eventually have access to vital information through e-MasAgro, a virtual ecosystem that connects various agriculture-related information tools on one site, including MasAgro Móvil. Farmers “will receive technical information, recommendations, response to agricultural plagues and diseases and anything else they might need to improve their production,” he told the El Heraldo newspaper.
The regionalized service offered by MasAgro Móvil in Guanajuato has the potential to be a game-changer for smallholder and medium-scale farmers. After registering for the service, farmers receive short, simple, timely and free agricultural information on the most innovative and profitable conservation agriculture practices. Each message is compatible with the region´s agricultural cycle and provides information that is difficult for an average farmer to find. In the past few months, MasAgro Móvil has sent various messages specific to Guanajuato, focusing on fertilization and monitoring for diseases. It also began sending weekly weather forecasts, regionalized news and invitations to local events.
Photo: Guanajuato Communication Department
In the future, the service will add price alerts, crop health advice and more market-segmented information. The developers are also experimenting with messages that interact with the users, help retrieve user information and facilitate feedback. Abraham Menaldo, a consultant for MasAgro Móvil, said the feedback has been positive so far and farmers are eager to participate and interact. MasAgro Móvil’s goal is to expand this model to the rest of the country, which would replace the current service that sends information to each of MasAgro’s innovation centers, known as hubs.
Project leaders are developing collaborations to create parallel services in the states of Tlaxcala and Hidalgo. A communications campaign planned for autumn 2014 will encourage more farmers to use the system. Extension agents will identify places where farmers congregate, and visit in person to help them register on-site. The campaign will include a study of the target group’s perceptions of MasAgro, their livelihood and the future of farming. MasAgro Móvil’s website offers detailed information about services, future projects, program activities and CIMMYT’s partner-led mobile development projects around the world.
The site will eventually offer an online registration service to minimize some of the technological problems farmers have encountered, such as autocorrect mistakenly changing the spelling of a key word. MasAgro Móvil was recognized by the Inter-American Development Bank as an ideal tool to integrate farmers into the agricultural value chain in its report “The Next Global Breadbasket: How Latin America Can Feed the World: A Call to Action for Addressing Challenges & Developing Solutions.”
The Agricultural Innovation Project (AIP) for Pakistan, led by CIMMYT and funded by USAID, has accomplished a great deal since its inception in March 2013. Among this year’s most notable AIP achievements by partner institutions were numerous training sessions and workshops, important vaccine developments, progress in baseline surveys and advances in seed improvement and distribution.
In May, 25 stakeholders involved in dairy production received training on the seven rapid assessment (RA) tools developed and modified by the International Livestock Research Institute (IRLI). Another 25 stakeholders involved in small ruminant production were given training on the small ruminant value chain rapid assessment (SRVC RA) tools by scientists from the International Center for Agricultural Research in the Dry Areas (ICARDA). On 4 June, a wheat seed value chain workshop organized by CIMMYT in collaboration with the Cereal Crops Research Institute (CCRI) and the Pakistan Agricultural Research Council (PARC) was held at CCRI in Nowshera, Khyber Pakhtunkhwa Province (KPP).
Nearly 50 actors in the wheat seed value chain participated in the workshop, in order to analyze gaps and identify opportunities in the KPP wheat seed system. A “training of trainers” was organized by the International Rice Research Institute (IRRI) on developing and validating a local rice crop check system at Engro Eximp, Muridke, Sheikhupura for seven field staff of the private sector on 24 June.
The World Vegetable Center held a series of customized training workshops with its partners in order to identify gaps, exchange experiences and to further streamline the Center’s activities among public and private partners. Advances have also been made in improved maize seed under the AIP maize component, which evaluated the performance of about 220 recently introduced maize varieties against locally available checks in spring 2014. Preliminary results from the harvested sites show the good selection potential of introduced maize varieties, which consisted of early to intermediate maturity, climate-resilient and bio-fortified white and yellow kernel hybrids and open pollinated varieties.
Best or comparable varieties identified will be further tested to fulfill variety release procedures. With the help of ILRI, the production of the Peste des Petits Ruminants (PPR) vaccine in Pakistan will soon be improved. The version of the vaccine currently produced in Pakistan is thermo-stable at 35˚C, while the version of the vaccine produced by IRLI is thermo-stable at 45˚C and is therefore more resistant to damage and able to be kept at a wider variety of temperatures.
Dr. Jeff Mariner, a former ILRI employee, visited Pakistan in June and conducted a technical audit of the production process in the two laboratories that produce the PPR vaccine. An action plan that includes training and production of a first batch of vaccine based on ILRI’s vaccine composition was created based on this audit, and will be implemented in August in order to help Pakistan create a more heat-resistant variety of the PPR vaccine.
AIP staff members have also worked this year to address the issue of quality fodder for livestock in Pakistan by promoting the growth of spineless cactus on range-land. AIP Livestock, in collaboration with the Rangeland Research Institute (RRI) of the National Agricultural Research Council (NARC), held a farmer’s field day at NARC on 15 May to train farmers in the advantages and methodology of growing spineless cactus. Forty farmers participated, and many have since planted spineless cactus on their lands. IRRI, in collaboration with Engro Exemp, distributed 600 kilograms (kg) of certified, high-yielding Basmati-515 rice seed to 30 farmers in the Punjab region to scale up the adoption of this variety. Basmati-515 has good quality attributes and a comparatively short growing duration, and is an excellent supplement to super basmati, which has lost its yield potential and is also prone to damage by insects and diseases.
One hundred kg of high-yielding, salt-tolerant seed of low phytate rice variety NIAB IR-9 was also distributed to farmers in Usta Muhammad in Balochistan. In addition, IRRI is working to promote mechanized dry rice seeding in Pakistan; a method which uses significantly less water than rice cultivated using the conventional planting method and is much easier to harvest. IRRI scientists, with the help of local farm machinery manufacturer Greenland Engineering, have identified a proper seed drill for direct dry seeding, which they are popularizing through the creation of public and private partnerships.
In addition, AIP reports that baseline surveys for wheat and conservation agriculture as well as vegetables and mung bean value chains are in progress in Pakistan’s four provinces. A maize baseline survey will be launched in August, and will interview more than 500 maize growers. The CIMMYT socio-economics team is also preparing to initiate durum wheat value chain studies in Pakistan, which will target producers, millers, food processors, seed companies, dealers, consumers and restaurants. A total of US $82,829 in funding was awarded to 14 research and extension projects, including: three projects related to grape and mango processing from PMAS Arid Agricultural University, Rawalpindi; seven projects on citrus from a research group at Citrus Research International; and four projects focusing on mangoes from faculty at the Institute of Horticulture and Institute of Food Science and Technology at the University of Faisalabad.
UC-Davis and the AIP Perennial Horticultural Project in-country coordinator will conduct the first review of these funded projects in September. Looking to the future, AIP partners chaired by UC-Davis met in Islamabad in June and created a working group for vocational training, which collaboratively planned cross-institute vocational training activities. The top priorities are to implement a short course on proposal writing that will enable the collaborators to prepare highquality proposals for upcoming competitive grant submissions on AIP call, as well as statistics courses that cater to the specific needs of trials and breeders.
The International Wheat Information System (IWIS), curated by CIMMYT, contains data gathered from 1976 to the present, from multiple providers situated in countries throughout the world. International Wheat Improvement Network cooperators and partners have provided the genotypic and phenotypic data contained in IWIS.
Access to all phenotypic trait data summary tables, collected on germplasm contained in nurseries distributed by IWIN from 1998 – present, is available below. Access to data on other nurseries is available upon request. As new data is received and entered into IWIS, these phenotypic data summary tables will be updated on an approximately bi-month basis until “live” web-accessibility is available.
Data summary tables
Disclaimer
The data included herein are provided “as is.” CIMMYT makes no representation regarding the authenticity, suitability, accuracy, or completeness of any data contained herein. CIMMYT EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. In no event shall CIMMYT be liable for any actual, indirect, incidental, consequential, special, or exemplary damages arising from the use and/or reliance on such data.
CIMMYT International Wheat Improvement Network (IWIN) international nurseries are sent to cooperators with unique, paper field books for each nursery set (or occurrence). Today, many cooperators also prefer to receive field books in electronic formats. This web page enables recipients of IWIN international nurseries to download these unique recipient-specific field books in Excel™ format of Microsoft Office, version 95.
Please do not change the unique file name(s) of download field books if you wish to return data to IWIN using these electronic files. Data should be sent to Efren Rodríguez (e.rodriguez@cgiar.org), or mailed to:
Efren Rodríguez
Seed Inspection and Distribution Unit
CIMMYT, Int.
Apdo. Postal 6-641
06600 Mexico, D.F.
MEXICO
Several columns (e.g. Cross Name, Selection History, Origin, Plot) in the downloaded field book worksheets are “data protected” to prevent data change. This protection is essential if the files will be used to return to CIMMYT cooperator-collected phenotypic data. If you wish to extract data from these protected columns for manipulation in a spreadsheet, or import into a separate database, use the Edit-Copy-Paste routine in Excel.
Yield trials are sent using uniquely randomized second replications. The first replication of all yield trials is uniform, in entry order, for all sets (or occurrences). The second replication, however, is uniquely randomized per occurrence. It is therefore crucial that sets of seed and the accompanying fieldbooks are not interchanged, because each set has a specific 2nd replication randomization layout and, therefore, a specific fieldbook.
Each individual set of seed for a trial is given an “occurrence” or set number. Occurrence number refers to the number used to identify the seed set assigned or distributed to each cooperator and links to each specific randomization used. Thus if a cooperator sows more than one set at the same location, these sets will have the same location code, but a different occurrence number. Assure that the occurrence on the fieldbook matches the number on the seed envelopes. In case of a lost fieldbook, IWIN will generate a new one (on paper and electronic form) giving the same set or occurrence number that appears on the nursery seed packets.
Barley fieldbooks in IWIS were included with the cooperation of the ICARDA/CIMMYT Barley Improvement Program
CIMMYT, CIBIOGEM and the North Carolina State University (NCSU) transgenics and society group joined together at CIMMYT headquarters on 24 July for the symposium “Transgenics and Society: Towards a constructive dialogue that contributes to policies and regulatory frameworks.” The event was organized to highlight the importance of scientific and moral considerations surrounding individuals’ and hence society’s perspectives about transgenic crops and other emerging technologies.
Secretary for Information and Research Support of CIBIOGEM Dr. Laura Tovar Castillo, welcomed participants on behalf of Dr. Sol Ortiz García, Executive Secretary of CIBIOGEM, and highlighted the importance of this symposium and of achieving constructive dialogue about transgenic technologies. Nearly 1 billion people are suffering from hunger and poverty worldwide, according to the Food and Agriculture Organization (FAO) of the United Nations.
Photo: CIMMYT
Kevin Pixley, director of the CIMMYT Genetics Resources Program, opened the event with a quote from Megan Clark, CEO of Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO): “In the next 50 years we will need to produce as much food as has been consumed over our entire human history.”
Climate change, depleted natural resources and overpopulation are just a few of the problems contributing to worldwide food insecurity. Pixley noted that this requires us to make a difference worldwide. “How are we going to help these people survive?” asked CIMMYT director general Tom Lumpkin in his welcome to participants. “CIMMYT is in favor of the technology of genetically modified organisms (GMOs). Though I do say that with words of caution, because we do want to support the developing world with access to this technology, but it is possible to make a bad GMO. I’ve traveled all around the world and seen lax handling of GMOs.”
The discussion was separated into two sessions. CIMMYT staff can view the presentations on InSide CIMMYT. The first session was led by Fred Gould, NCSU professor of entomology and transgenics. Gould’s presentation was titled “The Past, Present and Future of Genetic Engineering Technologies,” and discussed the past marketing of genetically engineered products, new technologies and the possibilities of many new GM technologies. Jennifer Kuzma, co-director of the Genetic Engineering and Society Program at NCSU, finished the first session with a discussion on the governance of genetically engineered organisms and how they are regulated in different countries. “We need to find a middle approach to incorporate values and science in the governance of genetically engineered organisms,” said Kuzma in a wrapup of her presentation.
The second half of the symposium presented the perspective of professionals who have deep ties in Mexican agriculture and also are concerned about the personal and moral issues that influence perceptions about GMOs. Presenters included: Concepción Rodríguez Maciel, associate researcher and professor at the Colegio de Postgraduados; Javier Becerril, professor of economics at the Universidad Autonoma de Yucatán; and Carolina Camacho, principal researcher in the CIMMYT Socioeconomics Program. The theme that ran through these presentations was the need for transgenic crops in Mexico compared with the difficulty of fully explaining the benefits and concerns of transgenic crops to small-scale farmers. Rodríguez Maciel said: “As a country, we have spent way too much time discussing biotechnology issues. It’s time to integrate all the different types of agriculture to face the challenges that climate change will bring. We do need to remember that we are talking to normal human beings and we need to speak their language.”
Jason Delborne, associate professor of science, policy and society at NCSU, rounded out the discussion with his presentation on how to conduct a productive and informative dialogue on transgenic research. He has developed a five-step process that is designed to facilitate a formal discussion regarding transgenic research and ease the general public into a conversation about transgenics that leads to productive action. Building on the foundations of this symposium, CIMMYT hopes to contribute to discussions in Mexico and elsewhere that generate better understanding of the scientific and personal perspectives that societies must acknowledge and address in developing their policies about transgenics (and next generations of technologies).
As highlighted by Jason Delborne, the most important step is often asking and addressing the right question, which in many cases during this symposium participants learned was not actually about transgenics. Instead, the right questions might be about conserving biodiversity, enhancing the ecological sustainability of agricultural practices, preserving the right to save grain for planting next crops, offering technologies that are affordable to resource-poor farmers or about how humankind will produce as much food in the next 50 years as has been consumed over the entire history of humanity.
Silvano Ocheya is no stranger to the challenges developing countries face in improving agricultural production.
A native of Kenya, Ocheya’s interest in agricultural science started at an early age, growing up on a small farm that his mother ran by herself after his father’s death. “I saw how people back home are struggling, and their lack of knowledge, and thought if we can impact here, we will have an effect on a great number of families, and that is how the country can develop. We can’t think of industrialization until we have enough to feed our families,” said Ocheya.
Now, thanks to his excellent training and education in agricultural science and plant breeding as well as internships and research completed at CIMMYT, Ocheya is gaining the tools he will need to realize his dream of giving back. Ocheya received an undergraduate degree at the University of Nairobi, followed by an internship at CIMMYT-Kenya where he researched maize under his mentors, Dr. Dan Makumbi and Dr. Alpha Diallo. This research would eventually form the backbone of the thesis for his M.Sc. in genetics and plant breeding at the same university. Ocheya is currently pursuing his Ph.D. at Texas A&M University and is a member of Monsanto’s Beachell-Borlaug International Scholars Program, working with CIMMYT to research drought tolerance in wheat and resistance to wheat streak mosaic virus.
Photo: Smit Dhakal
After earning his degree he hopes to utilize the skills he has gained to help improve agriculture in a developing country, perhaps his native Kenya. “That’s where I feel I am most relevant. I’ll make more impact if I apply the knowledge I’ve learned in a developing country, to make a difference in the lives of farmers and their families.” For Ocheya, the biggest challenges to agricultural production in Kenya are drought and disease, made even worse by climate change. These challenges inspire him to work to develop drought-resistant seed varieties that also give farmers high yields.
Ocheya also considers lack of information to be a setback for farmers in developing countries, especially for women. “We need to empower women by giving them information. There is a great deal of information out there but it is not accessible, including information like the right seed or amount of fertilizer to buy. Unless we empower them with that information, I think it will be very difficult to make a breakthrough in agricultural productivity,” said Ocheya. He cited the influx of mobile technology in developing countries as a potential platform to build agriculture-based apps that can be translated into local languages, providing a possible solution to this information gap. When asked about his plans for the future,
Ocheya mentioned that in addition to continuing his research he would also like to train young people using the knowledge he has gained. “If you look at the success of Norman Borlaug, for example, he trained thousands of scientists, and that’s how his impact was felt across the developing world. While he wasn’t able to do it himself (in Africa), he had people he could help and he trained them, and I think that’s the approach I will take.”
When traveling from Chimoio to Tete along one of the main roads in central Mozambique, one inevitably passes through Malomue, a small rural village in Báruè District. Since 2008, conservation agriculture (CA) technologies and improved drought-tolerant maize varieties have been promoted to farmers through various donor-funded projects, including a USAID-funded Feed the Future initiative.
In the past, farmers in the area would cultivate their land, clear the surface of all protective cover and burn the residue from the previous cropping season. The main food security crop in the area is maize, and due to lack of access to improved seed, lowyielding landraces were often planted. The introduction of improved agriculture technologies developed and tested by the Platform of Agriculture Research and Innovation (PARTI) and the Collaborative Research Support Program (CRSP) of the Sustainable Agriculture and Natural Resource Management Lab (SANREM) at Virginia Polytechnic Institute and State University (Virginia Tech) implemented in collaboration with the University of Tennessee, have brought significant change to Malomue. Farmers have been exposed to improved seed, fertilizers, improved weed management practices and more sustainable planting techniques based on conservation agriculture principles and practices.
Josè Leuane Dicane, a rural farmer from the community with approximately 15 hectares of cultivated land, said, “The first lesson I learned is that no fire should enter my plots, and I have managed to avoid burning grass from my neighbors.” Dicane also appreciates the reduced labor required when chemical weed control options and direct seeding techniques are used, as well as the increased moisture retention and fertility increases when legume crops are rotated and crop residues are kept on the soil surface. Improved drought-tolerant maize varieties, developed by CIMMYT and extended through Mozambican private seed companies, have further increased the yields on the fields of farmers such as Dicane. Dicane and his large family have become food self-sufficient. He has planted a garden where he produces higher value horticulture crops under small-scale irrigation, and has become an emerging commercial farmer by successfully selling his produce at a profit in the nearby town of Catandica.
The project has identified him as one of the most visionary and successful farmers in central Mozambique, worthy of sharing his experiences with others in the world. With support from USAID, Dicane and his wife were invited to go to the United States to attend a meeting of SANREM/CRSP. On 16 May, Dicane and his wife Judisse boarded an airplane on their way to the U.S. Neither had ever flown, stayed in a hotel or seen the world outside of Mozambique. This was the experience of a lifetime for them. During the SANREM/CRSP meeting on 20 May, they shared their new farming expertise with other participants and farmers. They spoke as if they had presented to an audience many times. Their very impressive report on the lives of rural farmers from Mozambique made a difference to many of the participants. The farmers from Malomue have been given a voice and the opportunity to describe the gradual changes in their lives. The changes might be small, but viewed through another lens, they are also groundbreaking.
In late June, while the great majority of the conservation agriculture community converged on Winnipeg, Canada, in the Northern Hemisphere, Dr. Francelino Rodrigues, a CIMMYT post-doctoral fellow in precision agriculture in the Biometric and Statistics Unit of the Genetic Resources Program, and Dr. Jack McHugh, a CIMMYT cropping systems agronomist in the Global Conservation Agriculture Program, ventured into the much colder Southern Hemisphere to take part in the Digital Rural Futures Conference at the University of Southern Queensland (USQ) in Toowoomba, Queensland, Australia.
Although the conference itself held considerable incentive to visit Australia, it was the National Centre for Engineering in Agriculture (NCEA) at USQ that was of greater interest, because of the possibilities for future collaborations in precision farming research and development (R&D). The NCEA was established in 1994 and specializes in engineering research relevant to the agribusiness sector and the natural resource base it utilizes. The center promotes research through extension, training and commercialization. Having worked at NCEA prior to CIMMYT, McHugh thought there were benefits in closer collaboration between CIMMYT and NCEA to take advantage of the precision agriculture R&D being conducted there.
Prior to the conference, Rodrigues and McHugh presented their work from Mexico and China, respectively, to NCEA staff. The discussion highlighted the complementary nature of the two organizations in the areas of precision agriculture, field monitoring, smart technologies and remote sensing. A tour of the NCEA ‘smart farms’ was the highlight of the conference for McHugh, who was able to see that much of his earlier work had been developed into significant applied instrumentation.
Rodrigues commented on the versitile multi-proximal sensor platform developed by McHugh at the NCEA: “The platform [on a motorbike] allows simultaneously on-the-go measurements of apparent soil electro-conductivity and the normalized difference vegetation index (NDVI), which gives a tremendous advantage compared with stop-and-go measurements. It’s something we started to do with a wood sled in the past year at CIMMYT’s experiment station in Obregón, but the motorbike would definitely create a new opportunity for fast and efficient measurements during crop growth.”
According to the NCEA, the farming system of the future will have robotic sensing systems and decision support tools that interface seamlessly with commercial on-farm operations to optimize resource usage. The NCEA is working on components of this, but much of what the CIMMYT researchers saw could be applied immediately to current farming systems and already includes considerable integration. Some of the systems displayed were controlled remotely by tablets and interfaced on large screen monitors that displayed real-time feedback of sensors, machinery and field activities including the following: smart weed spot sprayers that are able to differentiate crops from weeds based on reflectance and leaf shape; aerial vehicles with multispectral and thermal sensors; and irrigation monitoring for water scheduling.
Smart weed spot sprayer working with reflectance and leaf shapes to differentiate crops from weeds.
Other sensors on display included NDVI sensor platforms, automated cone penetrometers, sensor-equipped bee traps and automated adaptive control of furrow irrigation systems. Of particular note was the augmented reality (AR) for real-time interactivity with on-farm devices and information. AR automatically filters information from online sources based on the user’s current location and viewing perspective, using the camera in a tablet or smartphone. AR markers in the ‘real-world’ (e.g., weather stations, pumps, field sensors, crops and more) can be discovered and online information can be retrieved. The data is merged into the device’s real-world observation, and the user can interact with the content to control and configure machinery. The next step is to build collaboration between both institutes. McHugh and Rodrigues are looking forward to the identification and application of the NCEA technology through future research exchanges and project development.
Hari S. Gupta was selected as the second Director General (DG) of the Borlaug Institute for South Asia (BISA) in India and assumed his new position on August 7th. BISA, named to honor Dr. Norman E. Borlaug (1914-2009), world-renowned agricultural scientist and 1970 Nobel Peace Prize Laureate, is helping to meet food security and sustainable productivity growth in both irrigated and rain-fed production areas by adapting wheat and maize systems to the emerging challenges of climate change, natural resource scarcity and market demands. While working at CIMMYT and its predecessor organization, Borlaug’s development of high-yielding, dwarf varieties of wheat helped trigger the Green Revolution in the 1960s. BISA was established in 2011 to catalyze agricultural research for development (AR4D) in South Asia and is a non-profit international agricultural research institute founded by the Indian Council of Agricultural Research (ICAR) and CIMMYT, and managed by the latter.
According to Thomas A. Lumpkin, CIMMYT Director General, who also served concurrently as the first DG of BISA, “The challenge today is to increase yields of staple crops in South Asia despite the fact that climate change, population growth, dietary changes and natural resource degradation all pose enormous challenges to agriculture.” BISA was created to “address the challenges head on,” added Lumpkin. Providing food and nutritional security is “a daunting task” and the region needs “a dedicated, world-class effort focused entirely on these problems.” Lumpkin stated, “To lead BISA’s work on those problems, Dr. Gupta was chosen from a field of very qualified candidates. We anticipate that he will be a very strong DG for BISA and will lead it into its next phase.”
Photo: Courtesy of Indian Agricultural Research Institute
Prior to joining BISA, Gupta served for almost five and one-half years as Director and Vice Chancellor of the Indian Agricultural Research Institute (IARI), one of the largest agricultural research institutes in Asia. With 10 centers spread across India, IARI is the flagship research institute of ICAR and is known globally as the institution that was instrumental in spreading the Green Revolution across India. During the Green Revolution, Borlaug and regional scientists, policymakers and farmers in South Asia took India and Pakistan from near-famine in 1965-1966 to food self-sufficiency. Dr. Borlaug’s work in AR4D is credited with saving 1 billion people from hunger and malnutrition, and many were in South Asia. However, Borlaug correctly predicted that the Green Revolution boost in food production could not last, and was only a reprieve for humanity to adapt more sustainable systems and policies for managing population growth and use of natural resources.
Describing the goals he will focus on as DG of BISA, Gupta stated, “In order to usher a second Green Revolution in South Asia, improving crop productivity in conjunction with efficient use of natural resources – especially of soil and water – will be my top priority. In addition, reducing the vulnerability of South Asian agriculture to climate change will be addressed with an emphasis on reducing greenhouse gas emissions.” Climate change, ever-increasing population, persistent poverty, chronic malnutrition and declining annual crop yield gains are retarding human development across South Asia.
Despite notable progress over the past several decades, South Asia is still home to more than 300 million undernourished people (35 percent of the global total). Food price spikes exacerbate these issues and make the lives of South Asia’s poorest even more difficult. Because of these issues, Gupta said, “Increasing the system productivity per unit area and time with conservation of natural resources is BISA’s guiding principle. Development of technology for rain-fed areas will receive priority whereas sustaining the gains made in irrigated areas will help in meeting the region’s short-term needs for food and feed.” He continued, stating, “In order to make agriculture more efficient in South Asia, mechanization – particularly using renewable sources of energy in farm operations – will be pursued vigorously. My experience at IARI will help me to work with others to implement the programs rapidly and efficiently.” Prior to joining IARI, Gupta worked for a number of agricultural research organizations, including serving as: director, Vivekanand Institute of Hill Agriculture, or VPKAS (2000-09); principal scientist and head of the Division of Plant Breeding, ICAR Research Complex for NEH Region (1989-99); senior scientist, ICAR Research Complex for NEH Region (1983-89); and scientist, Central Potato Research Institute (1978-83). Gupta earned his M.Sc. in genetics at GB Pant University of Agriculture & Technology in Pant Nagar, India. He earned his Ph.D. at the Indian Institute of Technology, Kharagpur, West Bengal.
Among the highlights of his post-doctoral research are: Rockefeller Foundation Career Fellow in 2003 and 2006 at Washington State University (WSU) on the genetic engineering of rice for increasing starch biosynthesis; visiting scientist at WSU, working on the induction of early flowering in crop plants in 1993-94; and Commonwealth Scholar in the Department of Life Science at the University of Nottingham (UK) on plant regeneration from protoplast and protoplast-mediated genetic manipulation in rice in 1987-88. Among the honors and recognition that Gupta has received during his career are: President, Indian Society of Genetics and Plant Breeding (2011-13); Sardar Patel Outstanding Institution Award to IARI during his tenure (2011); ICAR’s Team Award for Outstanding Multidisciplinary Research (2010, 2008 and 1997); Dr. AS Cheema Award for Outstanding Contribution to Indian Agriculture (2010); Outstanding Institution Award to VPKAS (2008 and 2001) during his tenure as director; ICAR “Hari Om Ashram” Trust Award (2007); NRDC’s Meritorious Invention award (2006); ICAR National Professor (2006); Dr. Rajendra Prasad Award for Best Book in Crop Sciences (2004); and Rockefeller Foundation Career Fellowship (2000). Gupta belongs to numerous professional societies, including: Indian Society of Genetics and Plant Breeding; Fellow, National Academy of Agricultural Sciences; Fellow, Indian Society of Genetics and Plant Breeding; Fellow, Indian Society of Agricultural Biochemists; founding member, Society for Plant Biochemistry and Biotechnology; and life member of the Indian Societies of the Biological Chemists, Genetics and Plant Breeding, Hill Agriculture and Seed Science.
About BISA
BISA is developing a state-of-theart agricultural research platform, technology transfer centers and training facilities. BISA’s focus is on holistic, interdisciplinary and collaborative approaches to breeding, conservation agriculture and socioeconomics for wheat- and maizebased cropping and food systems. BISA’s facilities and formal institutional partnerships can create a world-class research infrastructure and lead to strategic collaborations among regional and international scientists, as well as public and private stakeholders across the region’s agricultural value chains.
The Institute closely coordinates and synergizes with CIMMYT and other international centers such as the International Rice Research Institute and the International Crops Research Institute for the Semi-Arid Tropics, with national institutions such as ICAR, the Pakistan Agriculture Research Council and the Nepal Agriculture Research Council and the private sector within the region. BISA currently has three sites in India – Ludhiana in Punjab State, Pusa in Bihar State and Jabalpur in Madhya Pradesh State. Each of the states contains varied agro-ecological zones allowing BISA and its partners to test a variety of maize and wheat cultivars suited to the equally varied environments of South Asia. BISA also has site commitments from Nepal and Pakistan and is in discussion with Afghanistan and Bangladesh for sites in those countries. Through BISA, CIMMYT and several national agricultural research systems (NARS) have taken a key step towards sustainable food and nutritional security.
CIMMYT has a long, successful history of partnerships in South Asia, playing an important role with regional partners in catalyzing the Green Revolution. The NARS have demonstrated their commitment to regional food and nutritional security, and recognized the contribution that BISA, an independent, non-profit organization with broad international backing, can make to strengthen existing efforts in the region. BISA’s role in strengthening South Asia’s food and nutritional security focuses on leveraging and accelerating efforts rather than duplicating or competing with existing institutions. BISA fills the most critical gap in present efforts in South Asia – an impartial coordinating platform for discovery and sharing information and technologies.
BISA’s primary focus is to strengthen capability-sharing through the collaborative execution of AR4D projects. This increase in resource productivity should increase food and nutritional security, environmental protection and economic development. BISA is also strengthening the links between national and international efforts, building capacity in the region’s scientific community and introducing the best seed, agricultural technologies and information to improve the productivity and profitability of the region’s smallholder farmers and agricultural value chains.
Thomson Reuters, a media and information firm, recently released the 2014 list of Highly Cited Researchers, updated for the first time since 2001. Dr. Rajeev Varshney, Research Program Director, Grain Legumes and Director, Center for Excellence in Genomics (CEG), was recognized for his work with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Varshney was associated with CIMMYT from 2007-2013 through the CGIAR Generation Challenge Programme, and so his research papers are associated with both ICRISAT and CIMMYT.
The list was formerly based on total citations, a system which favored senior researchers and could also be skewed by a single popular paper. This year, Thomson Reuters analyzed papers published in science journals between 2002-2012 and ranked them field-by-field using Essential Science Indicators (ESI). Analyzing papers in the top 1 percent by both field and year removed the advantage of older papers that have more time to accrue citations. Researchers who ranked in the top 1 percent by total citations in each ESI field were included in the final list of Highly Cited Researchers. Varshney is recognized in the category of Plant & Animal Science.
The total list of 3,215 researchers can be reviewed and searched by field at HighlyCited.com.