CIMMYT training courses play a critical role in helping international researchers meet national food security and resource conservation goals. By sharing knowledge to build communities of agricultural knowledge in less developed countries, CIMMYT empowers researchers to aid farmers. In turn, these farmers help ensure sustainable food security. In contrast to formal academic training in plant breeding and agronomy, CIMMYT training activities are hands-on and highly specialized. Trainees from Africa, Asia and Latin America benefit from the data assembled and handled in a global research program. Alumni of CIMMYT courses often become a significant force for agricultural change in their countries.
Haryana is traditionally an agrarian state where many farm operations are undertaken by women; however, in this male-dominated farm society, decision-making does not involve women folk. Under CIMMYT-CCAFS, we developed a farm budgeting booklet that was distributed to women and men farmers in climate-smart villages (CSVs) and got very good response from young educated women farmers. To further empower them, we have been training women farmers in these CSVs to make them confident farmers so that in this world of changing climate, they are knowledge-empowered and able to increase their family income and develop stable rural livelihoods by actively contributing to decision-making.
During training, women farmers are taught technical aspects of agriculture such as how to sow direct-seeded rice and the importance of fertilizer management and crop yield.
They also become acquainted with a farm lekha jokha book, which is an accounting and farm management tool that allows farmers to understand and compare farm expenses that, though important, are commonly neglected. This book was designed keeping in mind the situation of women farmers in Haryana. Keeping a record of farm practices makes women more knowledgeable, thereby escalating their decision-making authority at home. Their decision-making is supported by their understanding of technological interventions that help them manage their farms more efficiently and reduce the errors of current farm practices by analyzing data which they record in this book.
Training makes women farmers realize that their knowledge is not only technical but valuable. We hope this realization will lead them to consciously explore, strengthen and share the expertise they have acquired.
Direct sowing of rice (DSR) in Unchasaman village, Haryana. Photo: CIMMYT
Course participants learning about the experiences of Mexican farmers who practice CA. Photo: Gabriela Ramírez
Nele Verhulst, Strategic Research Coordinator of the Global Conservation Agriculture Program (GCAP), led CIMMYT’s 21st International Training Course on Conservation Agriculture from 25 May-26 June 2015. A total of 132 people have taken the course since its inception. This year, participating researchers from Guatemala, Peru, Ecuador and Mexico were trained in sustainable technologies and conservation agriculture (CA).
Field tour in the central valleys of Mexico. Photo: Gabriela Ramírez
“During the course, we encountered different situations that…will allow us to better recognize the challenges and opportunities we will face when we return to our home countries,” said José Vásquez from Guatemala, who gave the closing speech during the course’s graduation ceremony. He added that the five weeks of the course are extremely relevant for successfully carrying out extension work in their countries.
GCAP International Training Course on Conservation Agriculture (CA) graduates hold certificates, which authorize them to teach and train others on CA practices, during the Course’s closing ceremony. Photo: CIMMYT
A particular challenge of CA, according to Vazquez, is that “one size” does not fill all, and precepts must be adapted to local settings, with involvement of all actors, including farmers. “This implies that we will have to be extremely creative when listening to farmers and interpreting what they say, and even more so when asking them to adopt the technologies we have to offer,” said Vásquez.
CIMMYT Director General Martin Kropff explained CIMMYT’s role as a research organization and highlighted the crucial part it plays as a capacity building NGO.
CIMMYT Director General Martin Kropff addresses course graduates during closing ceremony. Photo: CIMMYT
“This role is indispensable for creating links with the different national systems, and for CIMMYT it is essential to share the knowledge it acquires. That is why we would like to propose a new project, CIMMYT Academy, which will bring together all the short-, medium- and long-term training activities available,” Kropff said.
Kropff concluded by reminding each participant of the role they have as CIMMYT ambassadors to their own countries and expressed his hope for continued collaboration in the future. Further reading on the course may be found here on Inside CIMMYT.
A delegation of 15 Nepalese seed entrepreneurs learned about various business models and innovations for seed industry development on their first visit to India. The visit, sponsored by the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP), lasted from 1 to 10 June.
Participants learning about methods for maize seed germination test at Kaveriseed Lab, Hyderabad. Photo: Narayan Khanal
According to Arun Joshi, Country Liasion Officer, CIMMYT-Nepal, Nepalese seed companies are in their initial growth phase and constrained by the lack of research and development, low business volume, limited seed processing and storage facilities, and low seed capital. To help them overcome these challenges, CSISA-NP recently initiated a business mentoring initiative to build the capacity of small and medium enterprises engaged in wheat and maize seed production.
A team of CSISA-NP experts assessed the potential and challenges of Nepalese seed companies and established a good relationship with them. “After the assessment, 15 Nepalese cereal seed production entrepreneurs from Nepal’s hills and Terai (plains) were identified for a ten-day visit to India,” reported Dilli K.C., Monitoring and Evaluation Specialist, CIMMYT-Nepal.
During the visit, the Nepalese delegation observed many Indian seed business components including research and development programs, seed processing facilities and government farms at four major seed enterprise centers: Delhi, Kashipur, Hyderabad and Elluru.
The entrepreneurs received first-hand information on ways to link contract farmers with private companies, how to set up linkages for hybrid seed production, and how to enhance maize seed germination through cob drying. “We have to establish demos of our products and maintain good relations with seed producers and consumers,” said entrepreneur Tikaram Rijal, Managing Director, Global Agri-Tech Nepal Limited, after the visit.
Participants compare cob size of different hybrid maize varieties at Bioseed company in Hyderabad. Photo: Narayan Khanal
The participants also learned how smaller seed companies that work with open-pollinated varieties can maintain seed quality and market their brand. “For our growth and sustainability, R&D activities should be promoted even in open-pollinated seeds,” said one of the participants, Subhas Upadhaya, Chairperson, Lumbini Company.
India’s private sector shared the strategies they had adopted to manage challenges during their growth period and showed a willingness to help build the capacity of Nepalese seed enterprises through internships, short-term training and collaborative research.
During discussions with the National Seed Association of India (NSAI), the visitors learned about the role seed associations play in the growth of a country’s seed industry and in implementing seed policies. A memorandum of understanding was signed between NSAI and Seed Entrepreneurs Association of Nepal (SEAN) to foster better collaboration between seed companies from both countries.
“The visit and participants’ interaction with Indian seed companies helped them realize the importance of having a clear strategy both for SEAN and their individual businesses in order to be more successful,” added Joshi. CSISA-NP will continue to strengthen its collaboration with seed enterprises and guide them in developing their business plans, according to Andrew McDonald, Project Leader, CSISA-NP.
During Science Week (15-18 June) held at CIMMYT headquarters in El Batán, Mexico, scientists from around the world gathered to share the successes and review the activities of different CIMMYT programs. Attendees sought to find solutions to help meet global food needs related to basic cereals, as well as combat poverty and face the challenges posed by climate change.
CIMMYT staff from around the world came together to discuss key points and identify new opportunities for improving work quality, learn-change processes, work plans for the coming decades and CIMMYT’s role in science and development.
“The main objective of this Science Week is to take CIMMYT to a higher level of quality and create more impacts,” said CIMMYT Director General Martin Kropff, who welcomed scientists from all over the world. Kropff highlighted the importance of research to learn change processes for the next decades and reaffirm CIMMYT’s goals while interacting with external partners.
For Kropff, Science Week is an opportunity to develop better communication channels so that the ideas of all participants can help formulate a new strategy that fosters better cooperation among the different CIMMYT programs in order to achieve the best impacts.
Kropff also mentioned the importance of CIMMYT’s genetic breeding work, the work done in our germplasm banks and of strategies aimed at achieving sustainable intensification of cereal production worldwide.
Science Week 2015 participants at welcome and introduction ceremony. Photo: CIMMYT
“CIMMYT is a great institution and has grown very quickly, so it is necessary to put all our scientists to work and develop new plans, new projects and new ways of making future impacts,” said Kropff.
In his final remarks, the Director General said he was very happy to be part of CIMMYT because of the great scope for improvement that events like Science Week provide. “This is the best start one could have, to know all CIMMYT staff worldwide and that they know me, so we can communicate more openly,” Kropff said.
Though its name implies science fiction, Skywalker’s results have been incredibly real. A small, unmanned aerial vehicle equipped with remote sensing devices, Skywalker flies over maize fields collecting images and data. It is able to measure several hundred plots in one take. Spectral reflectance and thermal imagery cameras on its wings allow scientists to conduct non-destructive screening of plant physiological properties such as crop growth and water use, at enough resolution to obtain information at plot level.
Under a competitive grant from the MAIZE CRP, the ‘Affordable Field Based HTPP’ or Skywalker project seeks to make state-of-the-art, but affordable, aerial phenotyping platforms available to National Agricultural Research Systems (NARS) to develop new varieties that are tolerant to drought, heat and low nitrogen. It is being developed in collaboration by researchers from the University of Barcelona, Spain; Crop Breeding Institute (CBI), Zimbabwe; Instituto Nacional de Innovación Agraria, Peru; AirElectronics; and Sustainable Agricultural Institute of the High Research Council, Spain.
Charles Mutimaamba, Chief Research Officer and Maize Breeder at CBI and Collaborating Scientist with the Skywalker project, as well as Jill Cairns and Mainassara Zaman-Allah, CIMMYT maize physiologists, recently took the time to provide updates on the project’s challenges and successes thus far.
Q: Why was the Skywalker project initially developed?
Jill: The project was developed to bridge the gap between expensive phenotyping platforms being developed at agricultural research institutes and plant breeding institutes in regions of the world where increasing yields is critical for food security.
Q: What, in your opinion, are the project’s main achievements so far?
Mainassara: The development of an affordable phenotyping platform that is able to deliver spatial field variability and secondary trait data that can be used to increase breeding gains and enhance NARS awareness of the technological innovation opportunities for research and capacity building that can be gained by partnering with organizations such as CIMMYT.
Q: What has been the greatest challenge?
Charles: The multi-stakeholder involvement in the project has been a little challenging in terms of the geographical distances involved, but one benefit is that you get people with diverse skills involved.
Charles: Yes, it did. When we submitted our award nomination, one key activity that we mentioned was embracing and making use of the latest technologies available, specifically the Skywalker, to make our research more precise. The organizers took serious note of that.
Q: The project started out as a small pilot grant of the CRP, yet in just a few years, breeders’ interest in the project has greatly increased. What do you think caused this?
Mainassara: Several programs such as the Global Conservation Agriculture Program, visiting NARS from Zambia, private companies from South Africa and colleagues from India have expressed interest in the platform. Breeders are primarily focused on yields; they run many plots across multiple locations and require fast data turnaround for planning the next season. Therefore, they will only take up a new tool if it can reduce their workload and increase gains, and that is what Skywalker does.
Q: As a NARS, what do you believe has been the biggest benefit of partnering with the MAIZE CRP and with CIMMYT on the Skywalker project?
Charles: One big benefit has been the provision of resources, which for NARS can sometimes be a big challenge and serious problem. Then there are benefits from the CRP such as the opportunity to network with institutions such as the University of Barcelona and QuantaLab in Spain. Our view is that it has opened doors for us as an institution, which will allow us to strengthen our skills and expertise so that in the long run the project is sustainable.
Q: What do you see as the future of remote sensing technology such as the Skywalker in agriculture?
Jill: This technology has great potential to be used to curb the spread of maize lethal necrosis (MLN). Screening for MLN currently involves visual ratings of disease severity, which is time consuming and subjective. In addition, these measurements have to be taken many times in many fields over a short period of time. Based on the success of the Skywalker project, it was decided that remote sensing could be used to rapidly and quantitatively measure the severity of MLN symptoms in individual plots. The MAIZE CRP recognized phenotyping for MLN as a research gap and there is now a new MAIZE strategic grant to apply this technology in the development of MLN tolerant maize germplasm with the Kenya Agricultural and Livestock Research Organization and the University of Barcelona.
Please click here for more information on the Skywalker and other aerial remote sensing devices.
Charles Mutimaamba, Chief Research Officer and Maize Breeder at the CBI, pauses for a photo with the Skywalker in a field. Photo: Thokozile Ndhlela
Hands-on field work. Photo: Monsif-ur-Rehman/CIMMYT
The Wheat Productivity Enhancement Program (WPEP) in Pakistan, led by CIMMYT and funded by the United States Department of Agriculture (USDA), is working to enhance and protect wheat productivity in Pakistan by supporting research leading to the identification, adoption and optimal agronomic management of new, high yielding, disease resistant wheat varieties.
The objective of the first Wheat Improvement Training Course, conducted from 1 March–24 April 2015, was to build the capacities of 20 early- and mid-career scientists and Ph.D. scholars from across Pakistan. Organized in collaboration with the Wheat Research Institute (WRI) and the Ayub Agricultural Research Institute (AARI) in Faisalabad, Punjab province, this unique learning opportunity included lectures, field demonstrations and lab work focusing on conventional and molecular breeding methodologies, plus wheat pathology, physiology and quality.
Participants visiting the food technology laboratories. Photo: Monsif-ur-Rehman/CIMMYT
Another objective was to acquaint participants with new and improved wheat germplasm including both CIMMYT introductions and WRI local germplasm.
Specialists in wheat breeding, pathology, agronomy, physiology, statistics, entomology and quality shared their experiences with the participants, who also received hands-on training on emasculation and pollination procedures in wheat and barley; rust and Karnal bunt inoculation procedures in the field; varietal release procedures; the varietal release program; aphid identification; and rejection and selection criteria used in wheat trials.
The course was followed by a loose smut eradication campaign in AARI fields in Faisalabad, Punjab province. The participants also visited food technology laboratories where they observed various activities and equipment used for assessing protein and starch content, gluten tolerance and baking quality.
The Bangladesh Agricultural Research Institute (BARI) and CIMMYT organized a training course on developing stress tolerant maize at BARI facilities in Gazipur, Joydebpur, Bangladesh, on 21 April 2015. The course, part of CIMMYT’s Heat Tolerant Maize for Asia (HTMA) project supported by the United States Agency for International Development under its Feed the Future initiative, gave maize scientists the opportunity to learn the principles, tools and techniques involved in developing high yielding maize hybrids with enhanced tolerance to major abiotic stresses such as drought and heat, as well as how to effectively deploy them.
Ensuring that high yielding, improved varieties continue to be developed in Bangladesh is vital for smallholder farmers to have reliable seed that can thrive despite these abiotic stresses. “Stress tolerant maize hybrids are important to ensure sustainable food security in Bangladesh, especially in view of climate change effects, as our country is identified as one of the most vulnerable zones,” said Mohammad Amiruzzaman, BARI Chief Scientific Officer and Plant Breeder.
Attending the course were nearly 30 participants (11 female scientists among them), including maize breeders, agronomists and physiologists from BARI and three other research stations working on maize in Bangladesh. During the course, P.H. Zaidi, CIMMYT Senior Maize Physiologist and HTMA Project Leader, gave lectures on developing stress tolerant maize hybrids, on maize phenology and physiology, and on how maize responds to heat stress; he also provided the technical details of precision phenotyping and the selection criteria used for heat stress breeding. A.R. Sadananda, CIMMYT Maize Seed System Specialist, gave a talk on testing and deploying selected hybrids.
Participants in the course on developing stress-resilient maize. Photo: Bangladesh Agricultural Research Institute
“Maize is one of the important crops for the food security of Bangladesh,” said Md. Jalal Uddin, BARI Director of Research in his concluding remarks. He added that the course was a great opportunity for maize researchers to learn many useful aspects of maize improvement and thanked CIMMYT and USAID for the support provided to the Bangladesh Maize Program.
The International Conference on MLN Diagnostics and Management in Africa, held on 12-14 May 2015 in Nairobi, Kenya, is the second meeting CIMMYT has organized this year on maize lethal necrosis (MLN), coming soon after an MLN diagnostics and screening workshop held in March. This points up how important the disease is to the entire CIMMYT fraternity in Africa.
Officials at the opening of the MLN international conference in Nairobi. Left to right: George Bigirwa (AGRA), Stephen Mugo (CIMMYT), Joe DeVries (AGRA), Felister Makini (KALRO) and Gary Atlin (Bill & Melinda Gates Foundation). Photo: CIMMYT
The conference, organized jointly with the Alliance for a Green Revolution in Africa and the Bill & Melinda Gates Foundation, in collaboration with the Kenya Agricultural and Livestock Research Organization (KALRO), brought together critical players in the maize sector, particularly seed companies, to discuss how to effectively control seed transmission of MLN pathogens by ensuring the production, distribution and cultivation of non-contaminated commercial seed, which is a major concern for CIMMYT.
B.M. Prasanna, Director of CIMMYT’s Global Maize Program, explained the urgency of this concerted effort, “This is a complex challenge that requires multi-institutional and multi-disciplinary synergies. It’s not just about developing and deploying MLN-resistant varieties, but also understanding how the disease is transmitted, the factors underlying its rapid spread and ways to control its spread to unaffected countries while limiting its damage.”
The role of seed companies in MLN-endemic countries of East Africa is particularly critical for limiting seed contamination and curbing further spread through infected seed. However, like farmers, seed companies are suffering massive production losses, increased production costs and reduced sales due to MLN. Therefore a balanced approach is very important.
CIMMYT and KALRO continue to support seed companies and national research programs by screening their germplasm at the MLN screening facility in Kenya. During the conference, seed company representatives visiting the facility were invited to send their germplasm for screening during the current cropping season. It is clear that seed companies need more support to train their staff to recognize early infection; they must also adopt best practices for monitoring, diagnosing and managing MLN.
Conference participants view experimental maize hybrids at the MLN screening facility with explanations from CIMMYT staff. Photo: CIMMYT
Ongoing research to develop MLN-resistant varieties is at the core of the work CIMMYT does in Africa in close partnership with the public and private sectors, including seed companies.The Africa RISING Project and the CGIAR Research Program on MAIZE also support these efforts. However, there are no quick solutions, and developing and disseminating MLN-resistant maize varieties will take several years.
Two recent CIMMYT publications MLN Pathogen Diagnosis, MLN-free Seed Production and Safe Exchange to Non-Endemic Countries and Distribution and Impact of MLN in Kenya gave the participants very useful information and the best practices for managing MLN in both endemic and non-endemic countries. The latter, a study on MLN incidence, distribution, severity and impact in Kenya, gives a head start to future studies in endemic East African countries by helping to fill the current information gap.
During the conference, specific recommendations were made to prevent MLN spread, reduce virus infections and efficiently screen seed lots.
Postgraduates discussing and preparing the CA runoff demonstration with Professors Li Lingling and Zhang at Dingxi Research Station in preparation for the workshop. Photos: Jack McHugh/CIMMYT
An international conservation agriculture (CA) workshop to be held during China Science Week (30 June–4 July 2015) will bring CIMMYT CA researchers, colleagues and national researchers together with the objective of building agro-ecological capacity among researchers in western China. At the workshop, hosted by CIMMYT-China, participants will discuss subjects such as CA successes and the science and practical agronomy underpinning CA, and will view field displays of CA benefits.
The workshop will advance international exchange and future collaboration through CIMMYT-China’s Global Conservation Agriculture Program (GCAP). China, a vital component of GCAP, plays an ever-increasing role in agricultural development across Asia and Africa. For example, GCAP-China collaborator Zhang Anping from the Nanjing Research Institute of Agricultural Mechanization recently returned from a 12-month machinery development program in Zimbabwe sponsored by the Chinese Government. Zhang will be hosting CIMMYT-GCAP on an agricultural machinery tour in Shandong Province following China Science Week.
Internationally renowned experts will be joined by CIMMYT’s GCAP team who will provide training and present CA research, development and extension practices, and share their expertise on CA issues that arise across Africa, Latin America and South Asia. Danny Decombel, Crop Nutritionist who has lived and worked in China for 27 years, will provide insights on nutrient and plant management and monitoring systems. Carl Timler of Wageningen University will provide hands-on training on the use of Farm DESIGN computer models and other farming system analytical tools. Farm DESIGN is a product of Wageningen University’s Farming Systems Ecology group.
National scientists will discuss new technologies, scientific advances and scholarly publications in China. Representatives from Gansu Agricultural University, The Grassland Institute of Lanzhou University, Gansu Academy of Agricultural Sciences and local agronomy consultants, in partnership with GCAP-China, will also be organizing the event.
Common farming practices on the Loess Plateau near Dingxi to be visited during the workshop.
In addition to the workshop, a participatory learning field day will be held at Dingxi Research Station in Gansu Province. During the field day, participants will learn about challenges to CA adoption, and will view demonstrations of conventional vs. CA treatment of water-holding capacity, infiltration, runoff, soil strength, plant nutrition levels and crop water use.
CIMMYT representatives attending will include Bruno Gerard, GCAP Director; M.L. Jat, Senior Cropping System Agronomist; Frederic Baudron, Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) Project Leader; Santiago Lopez Ridaura, GCAP Systems Agronomist; and Tim Krupnik, Systems Agronomist.
Also in attendance will be professors John Bennett (University of Southern Queensland Australia), Enamel Haque (Murdoch University Perth Australia) and Jeremy Whish (CSIRO Australia). National representatives include Yang Changrong, expert in agro-ecology; Lan Yubin, leading expert in precision agriculture at South China Agricultural University; Pan Genxing, expert in soil biology and amendments at Nanjing Agricultural University; and Wang Yingkuan, Editor-in-Chief of the International Journal of Agricultural & Biological Engineering and Vice Secretary General of Chinese Society of Agricultural Engineering.
Kanchan explaining the 2×2 dimensional matrix being adopted for selecting sites for the study. Photos: Sunil Shakya
A workshop to select case studies in Nepal for the Global Study on Gender Norms and Capacities for Agricultural Innovation was hosted by CIMMYT on 3 June 2015. This was the first meeting held by CIMMYT-Nepal since the devastating earthquake that hit the country in April, reaffirming staff commitment to continuing research despite the challenges and losses being faced across the country.
The workshop aimed to identify villages in Nepal that could become part of the Study’s South Asia case selections on gender norms and agency in agriculture and natural resource management in South Asia. It was organized by the CGIAR in collaboration with CIMMYT and Tahseen Jafry, Professor at Glasgow Caledonian University. Sixteen workshop participants representing the Nepal Agricultural Research Council (NARC), non-governmental organizations, Biodiversity International and CIMMYT gave their input and suggestions as to which communities to target.
Participants in the workshop hosted by CIMMYT-Nepal.
Thousands of young Nepalese men—1,500 a day, by some estimates—migrate every week to work as laborers in the Persian Gulf, India or Malaysia, leaving women to head households and manage smallholder farms in remote areas. According to a World Bank study, this has a negative impact on the level of labor market participation by women from those households. Women make up 62% of the agricultural work force in Nepal, but only around 8% of female laborers receive equal pay for their work.
Strain on infrastructure due to the earthquake is putting even more pressure on vulnerable communities, especially in the countryside. This makes the Global Study even more important to better understand the gender dynamics in rural Nepalese communities and identify what the CGIAR can do to improve livelihoods.
Workshop participants in discussion at CIMMYT-Nepal.
A framework that provides guidance for considering both economic and gender dimensions was used in the case selection process, followed by a discussion to set criteria for identifying sites when looking at gender in wheat and maize in Nepal. Participants adopted three criteria for analyzing potential districts, including identifying: (1) potential wheat and maize producing districts in Nepal; (2) districts falling under the Study’s economic and gender dimensions; and (3) one district each for the four maize and wheat segments used to determine a location’s dimensions in terms of economic status vs gender gap. After successfully identifying potential districts in Nepal for the Global Study, participants suggested that the study team contact district officials to arrange detailed selection and field visits with farmers’ groups.
The event was opened and closed by Arun Joshi, CIMMYT-Nepal Senior Wheat Breeder, and facilitated by Kanchan Lama, Gender Specialist with Women Organizing for Change in Agriculture and Natural Resource Management (WOCAN), and Suman Dhakal, Assistant Lecturer, Institute of Agriculture in Rampur, Nepal, and resource person for the Nepal Global Study team. Also participating in the workshop was K.C. Dilli, CIMMYT-Nepal Monitoring Officer.
Hands of the participants in the Machinery Jamboree at Chuadanga, Bangladesh. Photos: Abdul Mabud, CIMMYT
Twenty-two scientists, engineers, technicians and local manufacturers of agricultural machinery working in and with CIMMYT participated in an Agro-machinery Professionals’ Jamboree held in Jhenaidah District, Bangladesh, 27-30 April 2015. The objective of the Jamboree was to acquaint participants with agro-machinery such as seeders and reapers and develop their troubleshooting and operating skills. Participants shared their experiences and the challenges they face in the field, and brainstormed solutions together.
During the Jamboree, mock challenges similar to complications commonly found in the field were presented so participants could try to solve them. They learned the necessary theory and facts through demonstrations, question-and-answer sessions and multimedia presentations. Participants also described difficulties they commonly face in the field and found the best possible solutions through interactive discussions.
Participants working on a machine part.
“It was a wonderful workshop where we shared our real-life experiences to help farmers achieve common goals,” said Jamboree participant Mohammad Hasanuzzaman.
Facilitators Arshadul Haque, Senior Scientific Officer, and Rezaul Karim, Scientific Officer, both from the Engineering Division of Bangladesh Agricultural Research Institute, called upon the participants to become change leaders in Bangladesh’s agricultural machinery revolution. Team leader Abdul Momin, CSISA-CIMMYT Cropping System Agronomist, emphasized the need to hold this type of event at least once before every cropping season to continue to build staff capacity.
The International Winter Wheat Improvement Program (IWWIP) held its 2015 International Winter Wheat Traveling Seminar in Azerbaijan and Georgia on 24 May. More than 40 participants from 18 countries attended the seminar, which covered more than 1,000 kilometers in four days.
Beyhan Akin, CIMMYT Wheat Breeder, and Mustafa Kan, IWWIP Turkey Coordinator, taste bread baked from new varieties during the welcome ceremony.
Winter wheat is a major food crop in Central and West Asia, where it covers 14 million hectares. IWWIP, a cooperative program between CIMMYT, Turkey’s Food, Agriculture and Livestock Ministry and the International Center for Agricultural Research in the Dry Areas (ICARDA), develops germplasm for Central and West Asia and serves as a mechanism for global winter wheat germplasm and knowledge exchange.
Every two years, IWWIP conducts international traveling seminars to assess progress in the development, adoption and impact of new varieties and gather feedback from partners. Previous seminars have been conducted in Turkey, Ukraine, Uzbekistan, Bulgaria and Romania. This year’s seminar was funded by Turkey’s Food, Agriculture and Livestock Ministry and by FAO’s Central Asia Office, which also provided technical support and supported three participants.
IWWIP winter wheat varieties and spring wheat varieties from international centers occupy more than 70% of Azerbaijan’s total wheat area and contribute substantially to food security through their high yields and resistance to stripe rust, a disease prevalent in the region.
Participants gathered in Baku then went on to visit Azeri Research Institute of Farming, the Genetic Resources Institute, and Gobustan and Terter Experiment Stations. “Participants were very impressed by the experimental and breeding work at all sites visited,” said Alexey Morgounov, Head of IWWIP. “There is an established system of wheat germplasm screening, selection of superior germplasm, official testing and release, multiplication and promotion.”
Alexei Morgounov, CIMMYT Wheat Breeder, discusses germplasm performance with scientists from Kazakhstan, Kyrgyzstan and Uzbekistan. Photos: H.Mammadova, Azeri Research Institute of Farming.
In Georgia, the group participated in a field day at Lomtagora Farm, where new winter wheat varieties were identified and promoted. The group also visited the Georgian National Research Center experiment station and reviewed the crop research being conducted there. Lomtagora Farm hosted a summary meeting featuring several key presentations on food security, application of new genomic tools and fast multiplication and promotion of new varieties. Recommendations for future IWWIP activities discussed at the meeting included expanding and improving current breeding and germplasm exchange activities and focusing on training young wheat breeders in Turkey.
“An important outcome of the seminar was the establishment of personal connections between participants, as well as building formal ties,” said Morgounov. “The group was highly impressed by the new generation of young, intelligent and driven wheat breeders and researchers in Azerbaijan and Georgia, and we look forward to a successful seminar in 2017.”
The CGIAR Research Program on MAIZE, CIMMYT and IITA are pleased to announce that effective 1 June 2015, MAIZE will be led by a dedicated CRP Director, who is spearheading the international maize research agenda of CGIAR. The CIMMYT Board, upon endorsement of the MAIZE Stakeholder Advisory Committee (StAC), has agreed to the CIMMYT Director General appointing Dr. B.M. Prasanna as MAIZE CRP Director.
The international training workshop “Approaches for integrated analysis of agricultural systems in South Asia: Field, to farm, to landscape scale,” jointly organized by CIMMYT and the Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute (CSSRI), was held at Karnal, Haryana, India, during 18-23 May. The workshop targeted farming systems and agricultural development researchers in South Asia and provided an overview of the approaches and tools used to assess agricultural systems.
Workshop participants and facilitators. Photo: CIMMYT
Compared to the rest of the world, South Asia’s natural resources are 3-5 times more stressed due to population and economic pressures. Several agricultural technologies and practices have been developed to address resource management challenges. However, researchers need to conduct specialized analyses of complex farming systems to find out which technologies are appropriate for farmers.
The training workshop allowed participants to share their experiences in the field and create better methods to ensure successful interventions. P.C. Sharma, Head of the Crop Improvement Program, CSSRI, commenced the workshop and greeted the participants, who comprised 30 young researchers from national research institutions and universities in India, Nepal and Bangladesh. Santiago López Ridaura, CIMMYT Global Conservation Agriculture Program Systems Agronomist, presented workshop objectives, which included introducing participants to integrated farming systems analysis as well as to modeling tools and technology designed for specific farming communities.
“This course is the first of its kind in the region,” emphasized M.L. Jat, CIMMYT Cropping Systems Agronomist. “It is unique, demand-driven and organized to strengthen the capacity of young researchers in the region so that they may more effectively help build livelihood security for smallholder farmers.”
D.K. Sharma, CSSRI Director, stressed the need for systems research in the region and how partnerships with centers ike CIMMYT have helped to successfully implement conservation agriculture, sustainable intensification and other practices. Sharma also described CSSRI’s farmer participatory model, which provides farmers with land for cultivation against their annual compensation, thereby improving livelihoods.
A book on sustainable intensification was released. Photo: CIMMYT
Workshop attendees participated in modeling, analysis and participatory exercises that helped them to better understand the challenges of technology adoption in the field. Participants also visited farms, where they learned farmers’ needs first-hand and observed the complexity of different farming systems.
The workshop was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the Cereal Systems Initiative for South Asia (CSISA) and the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project of the Australian Centre for International Agricultural Research’s (ACIAR). Other attendees included Mahesh Gathala, CIMMYT Cropping Systems Agronomist and SRFSI Project Leader; Jeroen Groot, Wageningen University Farming Systems Modeling Specialist; David Berre, CIMMYT Farming Systems Agronomist; Timothy Krupnik, CIMMYT Agronomist; and Alison Laing, Cropping Systems Modeler at ACIAR CSIRO Climate Adaptation Flagship.
Seed certification officer introducing certified seed production, Swabi District, KP Province. Photo: Bashir Ahmed/Programme of Agriculture Research System in KP Province
The Wheat Productivity Enhancement Program (WPEP), led by CIMMYT and funded by the United States Department of Agriculture (USDA), held technical training sessions on wheat seed production from March to May 2015 for farmer enterprise groups (FEGs) in Pakistan’s Khyber Pakhtunkhwa (KP) Province. The training was held in collaboration with the Outreach Programme of the Agriculture Research System in KP Province, which formed the FEGs, each comprising 30-35 persons including farmers, seed dealers and seed company representatives.
Wheat ranks first among the food crops of KP Province and is grown mainly on a rainfed area covering 0.729 to 0.776 million hectares. Compared to the rest of Pakistan, KP Province has low yields due to water scarcity, weak extension services and low adoption of recommended technologies, including improved varieties. The public seed sector produces only 5-8 percent of all wheat seed planted in the province, leaving a large gap for private sector investment in wheat seed production and improvement.
More than 92 percent of farmers plant their own wheat seed, which is of inferior quality. Farmers need to be trained to produce quality seed to plant in their own fields and share with neighboring farmers. In response, WPEP has engaged all wheat breeders at KP partner institutes and seed regulatory agencies to enhance production of early generation seed of both advanced lines and released varieties. WPEP also carries out seed demonstrations and variety popularization trials in farmers’ fields to create awareness about new varieties and production technologies.
Training participants at the Agriculture Research Institute Tarnab, Peshawar. Photo: Bashir Ahmed/Programme of Agriculture Research System in KP Province
Five training courses were held at the Cereal Crops Research Institute (CCRI), Pirsabak, the Agriculture Research Stations at Buner and Mansehra, and Bamkhail-Swabi and Tarnab-Peshawar Research Institutes. The training enabled FEGs to learn of quality seed and update their knowledge on seed production, seed laws, seed storage, the most recent high-yielding varieties, available seed sources and varietal identification. They also learned about wheat stem rust disease and rust resistant varieties that have been planted in KP by public and private seed companies and also on farmers’ fields. Other subjects included varietal testing and evaluation, the release, registration and approval system, variety maintenance, and production of pre-basic and basic certified seed.
Trained FEGs are expected to become registered private or public sector seed growers in the future. Building the capacity of FEGs will strengthen farming communities, improve farmers’ incomes and increase wheat productivity throughout the KP region.