Skip to main content

Theme: Capacity development

CIMMYT training courses play a critical role in helping international researchers meet national food security and resource conservation goals. By sharing knowledge to build communities of agricultural knowledge in less developed countries, CIMMYT empowers researchers to aid farmers. In turn, these farmers help ensure sustainable food security. In contrast to formal academic training in plant breeding and agronomy, CIMMYT training activities are hands-on and highly specialized. Trainees from Africa, Asia and Latin America benefit from the data assembled and handled in a global research program. Alumni of CIMMYT courses often become a significant force for agricultural change in their countries.

Government of Zimbabwe and CIMMYT to establish maize lethal necrosis (MLN) quarantine facility at Mazowe

A modern quarantine facility to safely import maize breeding materials to southern Africa, and to enable local institutions to proactively breed for resistance against Maize Lethal Necrosis (MLN) disease, will be established this year at Mazowe, just outside Harare in Zimbabwe.

The announcement was made on 3 August 2015 at the signing ceremony of a Memorandum of Agreement (MoA) between CIMMYT and the Government of Zimbabwe. Ringson Chitsiko, the Permanent Secretary of Agriculture, Mechanization and Irrigation Development, signed on behalf of the Government of Zimbabwe while BM Prasanna, Director of MAIZE CRP and CIMMYT’s Global Maize Program, represented CIMMYT.

“MLN is a reality that cannot be ignored. We have to work together to control its spread. We need to focus on finding practical solutions to tackle this complex challenge, including strengthening MLN disease diagnostic and surveillance capacity, while we continue with intensive inter-institutional efforts to develop and deploy improved maize varieties that incorporate MLN resistance. The commercial seed sector must also play a key role by producing and delivering MLN-free healthy seed to farmers,” said Prasanna during the MoA signing ceremony.

The MLN Quarantine Facility, the first of its kind in southern Africa, will be set up by CIMMYT before the end of this year at the Plant Quarantine Institute in Mazowe, Mashonaland Central Province, one of Zimbabwe’s important research facilities run by the Department of Research and Specialist Services (DR&SS).

MLN was first detected in Kenya’s Rift Valley region in September 2011, and has since been reported in Tanzania, Uganda, Democratic Republic of Congo, Rwanda and Ethiopia. It is caused by a double infection of maize plants by two viruses: maize chlorotic mottle virus and sugarcane mosaic virus. There is an urgent need to prevent the deadly disease from moving further south.

Prior to signing of the MoA, Joseph Made, Zimbabwe’s Minister of Agriculture, discussed with Prasanna and CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) senior staff how to strengthen maize research and development in Zimbabwe. “The Government of Zimbabwe is honored to be selected to host the new facility, which is important for stopping the spread and impact of MLN,” said Made.

After the signing ceremony, BM Prasanna, MAIZE CRP Director, shakes hands with Ringson Chitsiko, the Permanent Secretary of Zimbabwe’s Ministry of Agriculture. Looking on, is Mulugetta Mekuria, CIMMYT-SARO Regional Representative. Photo: Johnson Siamachira

To strengthen the phytosanitary work at the MLN Quarantine Facility, CIMMYT will also offer capacity building to DR&SS researchers through trainings, technical assistance, and advisory services, according to Prasanna. “This MLN Quarantine Facility, and the collaborative efforts between institutions of the Government of Zimbabwe, especially DR&SS and CIMMYT-SARO, are key in our efforts to prevent the possible spread of MLN in Africa,” said Prasanna.

Mulugetta Mekuria, CIMMYT-SARO Regional Representative said that the new collaboration to set up the MLN Quarantine facility in Zimbabwe would further enrich the long-standing and successful partnership between CIMMYT-SARO and DR&SS.

After the signing ceremony, officials from CIMMYT and DR&SS visited the site at the Plant Quarantine Institute at Mazowe where the MLN Quarantine Facility will be established, and discussed implementation arrangements, including steps for strengthening the national phytosanitary capacity.

SIMLESA-Mozambique learns more about conservation agriculture technologies in Brazil

Three agriculturalists from the Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA)–Mozambique made a training visit to Brazil on 3-13 June 2015.

The objective of the visit was for the three researchers to acquire conservation agriculture (CA) skills, with a special focus on soil health and climate change. The training sessions were also expected to give participants the opportunity to share their knowledge and experience with their Brazilian counterparts at Brazilian Corporation of Agricultural Research (EMBRAPA) sites.

“By visiting and interacting with farmers, observing trials and having discussions with CA advisors, researchers, policy makers and agriculture industry representatives, we gained new knowledge of CA technologies,” said team leader Domingos Dias, SIMLESA-Mozambique National Coordinator.

During the 11-day visit, participants were presented with real-life CA challenges so they could solve them interactively. Having learned the required theory and facts through demonstrations, question-and-answer sessions and multimedia presentations, they are now expected to apply these technologies in their respective countries.

Smallholder farmers in Mozambique are affected by the poor farming methods they practice, such as late weeding and inefficient residue application, and the lack of farm mechanization. The participants learned to use and maintain agro-machinery, such as direct seeders and rippers, as well as when to plant forage crops such as Brachiaria, which produces much biomass and whose deep root system plays a critical role in improving soil properties.

“We learned very useful practices and will test some of them under our conditions. The training in Brazil presented alternative uses of residues and rotations based on soil properties suitable for Southern African countries,” said SIMLESA-Mozambique participant Custodio Jorge.

Both farmers and extension staff who participated in the first phase of SIMLESA (2010-2014) lacked basic skills and knowledge of CA farming systems. The second phase of the project (2014-2018) is focused on filling this gap through training.

 

SIMLESA-Mozambique National Coordinator Domingos Dias observes Brachiaria ssp., an African grass that is rotated and intercropped with soybean, maize and wheat under conservation agriculture at EMBRAPA, Passo Fundo, Rio Grande do Sul. Photo: Custodio Jorge

CIMMYT farm mechanization project attracts wide coverage by Ethiopian media

It is not often that conservation agriculture, the subject of numerous scholarly articles and dissertations, gets wide coverage from the mainstream media in Ethiopia.

It is thus remarkable that the media gave particular attention to a training event held last June at the ILRI-Ethiopia campus and organized by CIMMYT through the USAID-funded “Africa Research in Sustainable Intensification for the Next Generation” project (Africa RISING project, www.africa-rising.net). A focus of CIMMYT’s work in Ethiopia and other countries of East and Southern Africa is to improve smallholder farming practices by exploiting the synergies between small-scale mechanization and conservation agriculture.

Lead trainer Joseph M. Mutua shows service providers how to drive a two-wheel tractor. Photo: Frédéric Baudron/CIMMYT

Reporters representing two major daily English language newspapers in Addis Ababa attended and wrote extensively about the five-day training event that the project organized for service providers from different states in Ethiopia with the objective of promoting farm mechanization and sustainable productivity.

The Ethiopian Herald gave the most coverage through a lengthy article titled “Advancing farming systems improve food, nutrition and income security.” The article describes the advantages of increasing smallholder production through the adoption of modern agricultural practices and proven new technologies such as the two-wheel tractor, which can help increase the efficiency of seed and fertilizer use, reduce labor, time and post-harvest losses, and improve grain quality and farm income. The article also recommends that “all stakeholders should identify the challenges of promoting mechanization and deliver appropriate technologies to farmers.”

The Monitor gave the story a prominent place under the headline “Two-wheel tractors to improve agriculture in Ethiopian highlands.” The story in particular mentions the role of the project in light of a draft national strategy developed in 2014 by the Ethiopian Agricultural Transformation Agency with the aim of increasing farm power available to Ethiopian farmers by as much as 10-fold by 2025.

The article also reports the testimonies of participating service providers on the suitability and ease of using two-wheel tractor technologies, vis-à-vis traditional tools. One farmer noted, “Compared with using traditional tools like oxen power… this machine will help increase my income while also saving my time.”

At the end, the article quotes FACASI project coordinator Frédéric Baudron, who noted that the trainees are expected to share their knowledge of two-wheel tractor technologies with their local communities to achieve more impact and productivity in the future.

It is worth noting that CIMMYT employs a range of methodologies to accelerate delivery of two-wheel tractor-based technologies to smallholders in selected sites in SSA countries, including: on-station and on-farm participatory evaluation of two-wheel tractor technologies; business model development; market and policy analysis; and establishment of a permanent knowledge platform as well as a common monitoring and evaluation system that includes gender-disaggregated data.

Show and tell: when technology adoption becomes farmer-driven

What does the CASFESA project have to show for two-and-a-half years in Kenya?

Many poor smallholder farmers in Africa bear the brunt of infertile soils. Research offers a partial solution: Conservation Agriculture (CA) helps farmers improve soil productivity through sustainable intensification.

show-and-tellPicture2
Farmers evaluating maize stand on the conventional versus conservation agriculture plots during field days organized in Embu.

Participants of the project closing workshop held on March 5, 2015.
And some smallholders in Africa are already reaping CA benefits. For example, the Conservation Agriculture and Smallholder Farmers in Eastern and Southern Africa (CASFESA) Project worked with farmers and other partners in Kenya and Ethiopia since 2012. CASFESA’s aim was to buffer small-scale farmers by enhancing farm resilience through better natural resource management in maize based systems.

In Kenya, CASFESA ran for two-and-a-half years in Embu County. At a summative closing workshop held at Embu on 5 March 2015, farmers shared their CASFESA experience. For some of them, the project transformed their farming with remarkable benefits, due to their commitment, as well as the commitment of other key actors in CA dissemination such as the Kenya Agricultural and Livestock Research Organization.

In Kenya, CASFESA promoted three main technologies targeting maize farmers. The technologies are maize and legume intercropping, residue retention and zero tillage with permanent furrows and ridges. Thirty farmers in 15 randomly selected villages volunteered their farms for demonstrations showcasing the three technologies in tandem. Practical demonstrations were done during farmer field days in the selected villages to compare the performance of maize and beans using conservation agriculture and using normal practice. Intercropping is not new and is already very common in the area.

Moti Jaleta, CASFESA Project Coordinator, observed, “From a quick adoption monitoring survey, we noticed about 60 percent of the sample farmers have tried at least some of these techniques with keen interest to continue. The success of the CASFESA Project in Embu has been in getting these technologies to the farmers through practical demonstration, and linking them with farm input suppliers. With this, I believe we have accomplished our task in supporting the smallholders to improve their crop management.”

Participants of the project closing workshop held on March 5, 2015.
Participants of the project closing workshop held on March 5, 2015.

Farmers evaluating maize stand on the conventional versus conservation agriculture plots during field days organized in Embu.

Indeed, a good number of farmers in the villages started using zero tillage with permanent furrows and ridges covered with maize residue. But there was a hitch: initially, adopting the full suite of sustainable-intensification practices appeared unpopular. And why was this? Not because of the practices themselves but because most farmers use maize residue for animal feed. This made residue retention for mulching and enhancing soil fertility a big challenge. So how did the farmers themselves – independent of the researchers – get around these unfavorable trade-offs? Let’s hear it from them.

One farmer, Nancy Mbeere, who adopted CA, harvested an additional eight bags of maize from her small farm. And she did not keep her new know-how to herself: “I have trained my three neighbors on this new technique and they have already started using furrows and ridges and residue retention in their maize shamba [farms].”

Nancy and her neighbors found a solution on animal fodder. “We agreed to have one in every three rows remain in the field as residue and use the other two as feed,” explained Nancy.

For Bethwel Kathiomi, another CA farmer, when his farm had two very good seasons, other farmers approached him for tips on his new-found farming technique. “People kept stopping by my farm to ask questions, and I was happy to share this information with them.”

At the closure workshop, farmers attending committed to continue sharing their experiences and successes, and to support each other through small groups to learn, and access inputs like fertilizers, herbicides and improved seeds. This community commitment should lead to greater CA adoption, given the attention CA benefits are drawing going by the experience of Bethwel and Nancy. It would therefore appear that in this particular case, CA has successfully moved from researchers to farmers, who are now the ones propagating CA practices. Good news indeed for impact, reach and sustainability!

Tech-savvy women in Haryana implement precision fertilizer application

The state of Haryana, India’s breadbasket, faces a major challenge due to the excessive use of nitrogen fertilizer (N: P: K = 27.2: 9.8: 1) in agriculture. The overuse of nitrogen fertilizer in the rice-wheat systems of Haryana has led to high production costs, low efficiency, environmental pollution and nitrate contamination of groundwater, which causes blue baby syndrome in young children.

Another challenge to agriculture in Haryana is that traditional ways of farming are no longer attractive to educated youth, which means that fewer young people are opting to become farmers. However, new innovations and technological advancements are making agriculture much more attractive to young people, especially women, and creating awareness and building capacity about these advancements is critical to make women see the potential in agriculture.

CIMMYT, under the CGIAR Research Program on Climate Change, Agriculture and Food Security, organized a day-long field training session for young female farmers in the climate-smart village of Bastada, Haryana, on the GreenSeeker, a hand-held sensor that measures nitrogen, assesses crop vigor and calculates a Normalized Difference Vegetation Index representing crop health. Nearly 20 young women from farm families in Bastada participated.

Farmers often lack training to interpret raw data from devices like the GreenSeeker. To address this problem, CIMMYT, the Indian Council of Agricultural Research and the Government of Punjab launched a mobile calculator application in January 2015 that allows farmers to precisely calculate the nitrogen in their fields right on their mobile phone, ensuring accurate nitrogen fertilizer application, which in turn raises crop yields and profits.

Mamta, a young woman of 23 who participated in the training session, mentioned that farmers faced a serious problem due to a shortage of urea during the winter 2014-15 wheat season. This problem is easier to avoid now that her cell phone has a GreenSeeker application that allows her to calculate the precise amount of nitrogen in her rice and wheat fields. “The application is very helpful in saving nitrogen to the tune of one bag of urea per hectare,” said Mamta.

CIMMYT plans to hold similar training sessions for young women and men throughout the states of Haryana, Punjab and Bihar, which will no doubt make them more likely to opt to become farmers and will go a long way towards ensuring adequate fertilizer application by farmers.

Trainees learn to use the GreenSeeker application on their cell phones, which used to be simple devices that could only send or receive calls and text messages.
Trainees learn to use the GreenSeeker application on their cell phones, which used to be simple devices that could only send or receive calls and text messages.

14 years of CA research on display

In 2002, ACIAR and Gansu Agricultural University initiated a rainfed conservation agriculture research project in Dingxi County, Loess Plateau, Gansu Province. Li Lingling and her team have religiously maintained this site, gathering data and training postgraduates, while quantifying the long-term impacts of CA in a very arid environment. CIMMYT-China, in close collaboration with GAU, is developing the site into an innovation platform to demonstrate and promote sustainable farming approaches in the region, which was demonstrated through a farm walk during China Science Week.

The research station has housed and trained 100 students at a time, and is home to 10-15 postgraduates during peak sampling periods. Refurbished laboratories, a collection of field tools and Li Lingling’s 14 years of research results were displayed during the farm walk.

That increased crop water use efficiency can be achieved in this arid zone was a key message from the wheat/pea rotation system under CA, whereas zero tillage with straw removal was one of the worst performing soil treatments. The farm walk effectively demonstrated soil-water interactions under CA, no till, straw removal and continuous grazing, highlighting the benefits of CA and its effectiveness in addressing local and regional resource management issues.

Activities culminated with a postgraduate research walk where the main presenters were two Ph.D. students from Ghana who are working on greenhouse gas emissions, among other subjects.

Fostering public-private partnerships for decentralized wheat seed production in Pakistan

Seed quality management training participants visit wheat trials at Pakistan’s Agricultural Research Institute (ARI), Tandojam, Sindh. Photo: Tando Jam/ARI
Seed quality management training participants visit wheat trials at Pakistan’s Agricultural Research Institute (ARI), Tandojam, Sindh. Photo: Tando Jam/ARI

To strengthen functional linkages between private seed companies and public sector institutions in Pakistan, CIMMYT and its national partners jointly organized four training sessions, one each in Punjab and Sindh and two in Khyber Pakhtunkhaw during March and April, 2015. Participants included 45 staff members from 10 private seed companies from those provinces.

Although private seed companies have a major share of Pakistan’s wheat seed market, they rely almost completely on public sector wheat breeding institutes for pre-basic and basic seeds. However, the public sector has limited capacity for producing adequate amounts of pre-basic and basic seed to support the deployment of new wheat varieties. In addition, a recent study on the private wheat seed sector in Pakistan suggests that around two-thirds of seed companies do not obtain the amounts of pre-basic/basic seed they require from public seed corporations.

Currently, only a few private seed companies obtain pre-basic or basic seeds from wheat research institutes based on personal relationships, but functional and institutional linkages between public and private sector organizations have yet to be established. CIMMYT identified this gap and is now working towards bridging it by engaging important actors from both sectors. The first step was to convince the public sector to provide pre-basic and basic seeds to private seed companies, particularly small companies in rural areas. Several of the public sector wheat breeding institutes responded positively to this call. Another important step is to develop the capacity of private seed companies to produce quality basic and certified seed by building trust between them and public sector institutions.

Seed quality management training participants discuss the parameters of basic seed production with breeders and seed quality inspectors in Mureedke, Punjab, Pakistan. Photo: Tando Jam/ARI
Seed quality management training participants discuss the parameters of basic seed production
with breeders and seed quality inspectors in Mureedke, Punjab, Pakistan. Photo: Tando Jam/ARI

The training sessions had an innovative curriculum focusing on the technical aspects of producing high quality basic seed and enhancing marketing skills and networking to develop profitable, sustainable seed companies able to produce seed of new varieties. Experts from public sector research institutions addressed subjects such as rouging, isolation distances, crop and varietal mixtures, weed management, post-harvest technologies, quality control procedures, and conservation agriculture. They also showed how contract growers and seed companies can reduce their production costs and improve their profit margins.

Representatives of the Federal Seed Certification and Registration Department (FSC&RD) highlighted protocols for pre-basic/basic and certified seed production and multiplication. The training sessions enhanced participants’ understanding of various aspects of the seed business, such as business plan development, market assessment, product pricing and using proper marketing channels.

The expectation is that 14 private seed companies will produce around 1,000 tons of basic seed of 12 wheat varieties, enough to plant more than 8,000 ha of seed plots. This would enable the production of more than 24,000 tons of certified seed for the rural areas of the three provinces, thus paving the way for decentralized production and marketing of basic wheat seed in Pakistan.

Seed improvement to prevent rust disease key to boosting wheat productivity

A new project in Ethiopia aims to improve the livelihoods of wheat farmers by encouraging the development and multiplication of high-yielding, rust-resistant bread and durum wheat varieties.

Photo: CIMMYT

High-quality seed is the key entry point for elevating farmer productivity in Ethiopia. As Norman Borlaug, the late Nobel Peace Prize laureate and wheat breeder who worked for many years with the International Center for Maize and Wheat Improvement (CIMMYT) wrote: “Rust never sleeps.”

Stem, leaf and yellow rusts choke nutrients and devastate wheat crops without recognition of political boundaries, making it essential that global action is taken to control all virulent strains of these devastating diseases to ensure food security.

At a recent workshop hosted by the Ethiopian Institute of Agricultural Research (EIAR) in the capital, Addis Ababa, 150 participants from 24 organizations discussed the project, which builds upon the successes of a previous EIAR and International Center for Agricultural Research in the Dry Areas (ICARDA) program funded by the U.S. Agency for International Development (USAID).

Bekele Abeyo points out that high-quality seed is critical in Ethiopia. Photo: CIMMYT

The purpose of the March workshop titled “Seed Multiplication and Delivery of High-Yielding Rust-Resistant Bread and Durum Wheat Varieties to Ethiopian Farmers” was to launch the three-year seed project, which has a budget of $4.75 million, and strengthen the involvement of stakeholders and key partners.

Aims include enhancing rust disease surveillance, early warning and phenotyping; fast-track variety testing and pre-release seed multiplication; accelerating seed multiplication of durable rust-resistant wheat varieties; demonstrating and scaling up improved wheat varieties; and improving the linkages between small-scale durum wheat producers and agro-industries.

To achieve these goals EIAR, CIMMYT and the University of Minnesota will implement project activities in collaboration with other key Ethiopian stakeholders, including agricultural research centers, public and private seed enterprises, the Ethiopian Agricultural Transformation Agency, the Ethio-Italian Development Cooperation “Agricultural Value Chains Project in Oromia” and the Ethiopia Seed Producers Association.

The project covers 51 districts in four major wheat-growing regions of Ethiopia. Milestones include the following: reaching 164,000 households with direct access to the new technology and having more than 2 million households benefiting from indirect access to high-yielding rust resistant cultivars; wheat yield increases of 25 percent for farmers with access to rust-resistant seed varieties; training for about 5,000 agricultural experts, development agents, seed producers and model farmers; more than 50 percent of the wheat area being sown to cultivars with durable resistance to current rust threats; an increased number of seed growers and associations participating in accelerated seed multiplication; and the increased participation of women farmers to lead accelerated seed multiplication and scaling up.

All partners will be involved in close monitoring and working groups related to the project.

At the workshop, a key topic was emphasizing to farmers that they must avoid susceptible rust suckers as they are pumping more spores on cultivars under production, which is one reason for the recurrent epidemics of wheat rusts and break down of resistant genes.

Delegates also engaged in discussions on the importance of cropping systems and variety diversifications. Fruitful deliberations and interactions occurred and important feedback was captured for project implementation and to ensure successful results.

A previous workshop on the surveillance, early warning and phenotyping component of the project was held at the Cereal Disease Laboratory in Minnesota.

Bekele Abeyo is a CIMMYT senior scientist based in Addis Ababa, Ethiopia. He will lead the seed improvement project.

“Our daily bread:” Maize farmers’ unwavering resolve despite poor harvests

Poor pickings: Peter Masaku’s premature maize crippled by poor rains. Photo: B. Wawa/CIMMYT
Poor pickings: Peter Masaku’s premature maize crippled by poor rains. Photo: B. Wawa/CIMMYT

Peter Masaku walks through his farm with a far-away nostalgic look as if reminiscing about some distant good old days. His maize fields are strewn with rich residue, which to the eye indicates a possible bountiful harvest. That is until Peter, a father of six, tells of a huge loss in yields he and many other farmers in a village called Kambi Mawe, a Kiswahili name, which loosely translates into ‘Rocky Camp’, in sun-scorched eastern Kenya’s Makueni County have suffered in the just-ended long rains. “I harvested maize just enough to fill one wheel-barrow from my one-acre farm,” Peter laments, as he leads the way to show his meagre yield drying outside his store. “This maize cannot even feed my family for a month,” he adds.

A few meters away, another farmer, Jane Ndawa, observes that Kambi Mawe has not received a good harvest for two consecutive years due to very low and poorly distributed rains. However, she is yet to meet a single household in her village that does not eat maize in one form or another. “And when things are bad like this season, we have to buy maize and maize flour for our daily food,” asserts Jane. Farmers normally take some of their maize to the local mill to be processed into flour for home use. Jane adds, “Any help farmers can get to harvest more maize is most welcome, since we will keep planting it regardless of the yield because we need maize.”

Disturbingly, the trouble faced by these two farmers is all too common in most drought-prone areas in Kenya. However, the bigger problem is that farmers are not benefiting from improved drought-tolerant (DT) maize varieties that have been developed – and are in the market – for such ecological areas to help them get better yields in a bid to beat drought.

Like Peter, most farmers plant local varieties obtained from fellow farmers or recycled from saved seeds that are highly susceptible to drought. It is probable that the general lack of awareness about the improved DT varieties in the market is probably one of the biggest hindrances to maize production.

Through the Drought Tolerant Maize for Africa (DTMA) Project, the International Maize and Wheat Improvement Center (CIMMYT, by its Spanish acronym) and its partners have released 14 high-yielding drought-tolerant maize varieties in Kenya alone. These include hybrids that yield on average 49 percent more grain than open pollinated varieties on-farm, and 15 percent more than current commercial hybrids. However, these varieties are not reaching farmers in need. “It is not enough to just develop improved varieties, we have to go beyond this and work to promote and distribute widely the released varieties to ensure farmers know, access and cultivate the seeds,” says Tsedeke Abate, DTMA Project Leader.

The meagre maize harvest from Peter’s one-acre farm. Photo: B. Wawa/CIMMYT
The meagre maize harvest from Peter’s one-acre farm. Photo: B. Wawa/CIMMYT

Ngila Kimotho is the Managing Director of Dryland Seed Limited, – a major supplier of DT seeds in the eastern region. Mr Kimotho agrees that farmers are yet to fully adopt the available varieties stocked by the company. “It takes time to wean farmers off the local seeds they are used to, despite poor yields. Though some farmers are aware of the existence of the improved DT varieties, they are yet to start planting them, and one reason they give for this is that the improved seeds are too expensive,” observes Mr Kimotho.

CIMMYT’s new project, Drought Tolerant Maize for Africa Seed Scaling (DTMASS), is working with seed companies in seven target countries across eastern and southern Africa to increase awareness on DT maize varieties, and thereby increase both seed supply and demand by reaching as many farmers as possible. “CIMMYT has developed and tested excellent DT varieties over the last decade, but the seed alone is not enough. Our goal now is to get production up and running through local seed companies, raise awareness among farmers and help them find and afford these new seeds,” says Kate Fehlenberg, DTMASS Project Manager.

BMI Research, a UK-based agency that provides global markets analyses, estimates that Kenya’s maize production in 2014–2015 will be 2.9 million metric tonnes, while consumption is expected to be 3.8 million tonnes. Consequently, the expected demand for imports is 900,000 tonnes. These grim statistics will most likely remain static in the coming years if concerted efforts are not made to sensitize farmers and increase adoption of the DT maize varieties in drought-prone regions.

Such efforts will change the lot and lives of farmers such as Jane and Peter, who represent a large proportion of farmers in Kenya’s drylands, which are a large swathe of the country’s farmlands.

Training on developing stress-resilient maize at CIMMYT-Hyderabad, India

A training course on developing stress-resilient maize for early-/mid-career maize breeders from national programs, agricultural universities and seed companies, especially small and medium enterprises (SMEs), was held at CIMMYT-Hyderabad, India, on 15 May 2015. The course was open to partners in the Heat Tolerant Maize for Asia (HTMA) project and members of the International Maize Improvement Consortium (IMIC-Asia). It covered key aspects of precision phenotyping, including enhancing precision of field trials, managing adequate levels of stress to express available genotypic variability, using advanced tools to capture data efficiently and precision in recording various traits in phenotyping trials.

At the outset, B.S. Vivek, Maize Breeder at CIMMYT-Hyderabad, introduced the course agenda and objectives and mentioned that participants would learn various aspects of stress phenotyping. C. Aditya, System Developer, and M.T. Vinayan, Maize Stress Breeder at CIMMYT-Hyderabad, discussed FIELD-LOG, the new android-based data-capturing software developed by CIMMYT. They explained the details of its software applications and the method used for recording data in the field and transferring them to a computer.

FIELD-LOG is an excellent user-friendly system that increases the efficiency of data capturing and processing, and at the same time significantly reduces the chances of human error. Participants received hands-on training on using FIELD-LOG to install, operate and record data in the field, and then transfer them to a computer. This was followed by a series of presentations by P.H. Zaidi, Senior Maize Physiologist, CIMMYT-Hyderabad, on various aspects of field-based precision phenotyping for abiotic stress, including site selection and characterization.

Training course participants.
Training course participants.

Seetharam, Project Scientist at CIMMYT-Hyderabad, discussed various plant traits and the proper way of capturing data in field phenotyping trials. Participants practiced recording data on various traits in heat stress phenotyping trials using the FIELD-LOG system. M.T. Vinayan explained the do’s and don’t’s in field phenotyping at various stages.

At the end, participants provided feedback on the course and thanked CIMMYT for organizing it. They also suggested adding other features to further enhance the usefulness of the FIELD-LOG system.

CIMMYT-Bangladesh showcase technology at national fair

Bangladesh’s Minister of Agriculture Motia Chowdhury (3rd from left) visited the CGIAR Pavilion while inaugurating the National Agricultural Technology Fair held in Dhaka on 5-7 April 2015. In the photo, Zia Uddin Ahmed, CIMMYT GIS and Remote Sensing Scientist, briefs her on the use of the Octocopter in agricultural research and development and other CIMMYT activities in Bangladesh. In her inaugural speech, the Minister mentioned CIMMYT’s role in maize production expansion and mechanization. “Since our land is fragmented, we need to focus on small but power-operated machines,” she said. She also asked organizations working in Bangladesh, such as CIMMYT, to think about how to use solar energy to operate agri-machines.

The Fair was organized by the Agricultural Information Service (AIS) of the Ministry of Agriculture. Five CG centers (CIMMYT, CIP, IFPRI, IRRI and WorldFish) and HarvestPlus participated in the CGIAR pavilion and received the award for the best pavilion at the Fair.

Fostering collaboration between Nepalese and Indian seed companies

Participants compare cob size of different hybrid maize varieties at Bioseed Company in Hyderabad. Photo: Narayan Khanal

A delegation of 15 Nepalese seed entrepreneurs learned about various business models and innovations for seed industry development on their first visit to India. The visit, sponsored by the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP), lasted from 1 to 10 June.

According to Arun Joshi, Country Liaison Officer, CIMMYT-Nepal, Nepalese seed companies are in their initial growth phase and constrained by the lack of research and development, low business volume, limited seed processing and storage facilities, and low seed capital. To help them overcome these challenges, CSISA-NP recently initiated a business mentoring initiative to build the capacity of small and medium enterprises engaged in wheat and maize seed production.

To read more about CSISA-NP sponsored visit and more about its work with seed companies in Nepal, view the full story here.

 

Rural21 features CIMMYT mechanization experts

Female welder at in a vocational training center in Hawassa, Ethiopia. Photo: Frédéric Baudron

CIMMYT Global Conservation Agriculture Program (GCAP) mechanization specialists, Frédéric Baudron, Timothy Krupnik and Jelle Van Loon shared their experiences on mechanization across the world in a recently published Rural21 feature. To view a summary of the successes and challenges to mechanization adoption discussed in Rural 21, view the article on Inside CIMMYT here. Further reading on mechanization in East and Southern Africa may be viewed here in Baudron’s recently released paper in Food Security.

Strengthening seed production capacity in Malawi

Tour of maize seed production fields at Chitedze Research Station. Photo: Kennedy Lweya/CIMMYT
Tour of maize seed production fields at Chitedze Research Station. Photo: Kennedy Lweya/CIMMYT

CIMMYT designed and gave an integrated maize seed systems training course for 32 seed technicians from the public and private sectors on 18-22 May at Chitedze Agricultural Research Station. The course is part of CIMMYT’s capacity building initiative to enhance maize seed production in Malawi, established after the successful launch of USAID Feed the Future’s Malawi Improved Seed Systems and Technologies project on 6 May 2015 in Liwonde, Machinga District.

Trainees gained a basic understanding of maize anatomy and physiology, hybrids, improved open-pollinated varieties, seed certification standards and testing, regulatory procedures and seed business management. They also learned to practice conservation agriculture, which was appreciated as an innovative practice that conserves soil and produces higher maize yields. It also cuts back on the time and labor that farmers, particularly small-scale farmers, dedicate to tedious practices such as tilling.

Participants tour Seed-Co Malawi’s seed processing facility. Photo: Kennedy Lweya/CIMMYT

“The involvement of women in all aspects of our seed business is not only a must-do activity but a goal that makes perfect business sense,” said Innocent Jumbe, Production Manager at Peacock Seeds. Given that over 52% of Malawi’s population are women, most of them small-scale maize producers, the need for gender inclusion at all stages of the maize value chain was an important take-home message for participants.

The highlight of the course was a tour of Seed-Co Malawi’s premier seed facility in Kanengo. Participants were impressed by the company’s state-of-the-art facility, including its sales offices and seed handling, processing and packaging plant. This is evidence not only that Malawi’s seed industry is ripe with investment opportunities but also that the country has an investor-friendly policy and regulatory environment.

“This ultra-modern seed facility is a testament to Seed-Co Malawi’s long- term commitment to offer value to our shareholders and quality seed to Malawi’s farming community and beyond,” said Derrings Phiri, Seed-Co Malawi’s Managing Director.

Participants in the integrated maize seed systems training course. Photo: Kennedy Lweya/CIMMYT
Participants in the integrated maize seed systems training course. Photo: Kennedy Lweya/CIMMYT

Course participants included representatives from the Maize Program of the Government’s Department of Agricultural Research and Services, agro-dealers and seed companies. Patrick Okori, the project’s Acting Chief of Party, and Carol Jenkins, Feed the Future USAID Project Manager, congratulated participants on successfully completing the training course and on their commitment to implementing what they learned in order to deliver high quality and affordable improved seed that will not only bring value to market players but also enhance the security and incomes of Malawi’s small-scale farmers.