Skip to main content

Theme: Capacity development

CIMMYT training courses play a critical role in helping international researchers meet national food security and resource conservation goals. By sharing knowledge to build communities of agricultural knowledge in less developed countries, CIMMYT empowers researchers to aid farmers. In turn, these farmers help ensure sustainable food security. In contrast to formal academic training in plant breeding and agronomy, CIMMYT training activities are hands-on and highly specialized. Trainees from Africa, Asia and Latin America benefit from the data assembled and handled in a global research program. Alumni of CIMMYT courses often become a significant force for agricultural change in their countries.

Interview with CIMMYT Director General Martin Kropff in Pakistan

Martin-Pakistan-Visit-Group-Photo_Pakistan_2015From 23 – 26 August, 2015, CIMMYT’s Director General Martin Kropff visited Pakistan to attend the Agricultural Innovation Program’s (AIP) annual conference in Islamabad. Following the conference Kropff met with the CIMMYT team to talk about his observations, suggestions and way forward for continued impact in Pakistan.

Q: Is there room for improvement in the agricultural sector in Pakistan?

A: With an average wheat yield of nearly three tons per hectare, Pakistan’s agricultural sector is in a good position but there are still many opportunities to grow. As highlighted by the Federal Minister for National Food Security and Research, Sikandar Hayat Khan Bosan, technologies such as precision agriculture and hand-held technologies for soil testing, to increase yields present new opportunities. Many farmers’ I met at this year’s AIP conference are not using these improved technologies, and AIP can help ensure they have access.

Q: What is the role of public-private partnerships in agricultural development?

Kropff talking to CIMMYT-Pakistan team. Photo: Awais Yaqub/ CIMMYT

A: The private sector is essential for scaling up new technologies. CIMMYT, United States Agency for International Development (USAID), and heads of international and national companies in Pakistan and other AIP partners are discussing opportunities for future collaborations. This won’t be just a project on maize or wheat – but a full systems approach incorporating the entire value chain.

Q: How can we improve the seed industry’s capacity?

A: When I was Director at Wageningen University, we established an African Agribusiness Academy.  Ambassadors from the university would organize groups of young entrepreneurs from across Africa to innovate and learn from our scientists, and vice versa. This type of partnership and co-learning could help AIP improve the industry and farmers’ lives as well as build relationships with the private sector.

Q: What has been your experience with Pakistani scientists and how can they continue to grow?

CIMMYT-Pakistan team photo with CIMMYT Director General Martin Kropff and former CIMMYT Director General Thomas Lumpkin (front row, fourth and fifth from the left, respectively). Photo: Awais Yaqub/ CIMMYT

A: Pakistani CIMMYT scientists are at a really good level. At CIMMYT we are not just conducting research but also applying it in the field, and we need to keep innovating with Pakistan’s national centers and scientists. We also need to continue training and mentoring Pakistan’s future scientists – students from national universities that are an incredible asset to future development.

Towards inclusive and sustainable grain marketing

To build an adequate strategy for marketing basic grains that includes incorporating small- and medium-scale farmers into the market, it is important to consider aspects such as sustainable production and farm organization and the information farmers may have on these subjects. But how can we help farmers organize themselves, plan their work, determine their group requirements, and access timely information for strategic decision making? How much additional value does a supplier or group of suppliers that are efficient, sustainable, and reliable bring to agro-industries or other grain buyers? To answer these and other questions, the MasAgro program organized its first forum on grain marketing titled “Towards Inclusive and Sustainable Grain Marketing” at CIMMYT headquarters on 9 November.

Víctor López Saavedra, leader of MasAgro Productor, welcomed the participants and highlighted the impacts that the MasAgro initiative has had up to now in Mexican farmers’ fields. He also said that the concept of inclusive and sustainable commercial relations is at the core of MasAgro’s interventions in the area of marketing. The event included three panels that provided a space for representatives of the different sectors involved in maize production systems and grain marketing to exchange knowledge and experiences.

The first panel titled “Strategies for improving farmers’ market linkages” was led by María del Pilar Alcacio, SDAyR Guanajuato; Mayte Reyes, Consultative Group on Agricultural Marketing -GCMA; and Marco Antonio Cabello, FIRA. This panel discussed adequate strategies for fostering and strengthening the associations among farmers, factors that help them use contract agriculture schemes, as well as the best mechanisms for doing so.

The second panel, “Market opportunities for grain production systems based on sustainable production intensification,” highlighted the advantages of sustainable production and smart information access and use as ways of linking farmers to markets. Adolfo Ruiz, agricultural operations manager at PepsiCo, and Greta Villaseñor, executive director of the Business Council of the Maize Industry and Derivatives, talked about the concrete opportunities that their businesses provide for including small- and medium-scale farmers in their supply chains. Other panel participants were Vinicio Montiel, producer from the Farmer Association of Río Fuerte Sur-AARFS AC, and Roberto Rendón, academic from the University of Chapingo-CIESTAAM.

The third panel presented cases of farmers who had successfully linked up with markets. Invited farmers shared their experiences and marketing organization strategies, as well as the challenges they faced when seeking new marketing channels. Farmers who took part in this panel were Enrique Abadía, from the Innovative Farmers Group of Espinal, state of Morelos; Marcelino Vázquez Ramírez, lead farmer of Agro-productores Dobladenses SPR, and Urbano Godoy, barley producer from the state of Hidalgo. The panel discussion was closed by Amado Ramírez Leyva from Itanoní, who described how native maize landraces can become market niches.

To wrap up the event, Bram Govaerts, leader of Sustainable Intensification for Latin America, summarized the conclusions reached, which were regarded as recommendations to follow. It was agreed that since adoption of sustainable technologies directly affects the quality and competitiveness of farm production, it is absolutely essential to promote it. The need to strengthen the association among farmers and stimulate their market linkages, and to focus more public and private resources on improving the impact on key actors was mentioned. It was also noted that although large-scale marketing is necessary, it is not the only possible solution: local marketing can also be a desirable and successful strategy.

It is expected that concrete tools that foster environments that favor incorporating farmers into the market and establishing more inclusive and sustainable linkages will continue to be disseminated through this type of fora. This first forum was a definite step towards achieving this goal.

Of maize farmers, coming calves, waxing oxen, and comely camels

Valeria and her daughters and part of their bountiful maize harvest from ‘ngamia’ seed. B. Wawa/CIMMYT
Valeria and her daughters and part of their bountiful maize harvest from ‘ngamia’ seed. B. Wawa/CIMMYT

About her last maize harvest in August 2015, Valeria Pantaleo, a 47-year-old wife and mother of four from Olkalili village, northern Tanzania, waxes lyrical: “I finally managed to buy a calf to replace my two oxen that died at the beginning of the year due to a strange disease.” Valeria relies on the oxen to plow her two-acre land.

Valeria beams as she looks at her newly acquired calf. From her joy, one would be forgiven for assuming that the village enjoyed a good season. More so since Valeria had a handsome harvest that gave her a surplus four 50-kilogram bags of maize which she sold to buy the calf.

But nothing could be further from the truth. Farmers from her village suffered from exceptionally low rains during the main planting season in January–February 2015. To make matters worse, the rains were very late and poorly distributed. And as Olkalili is semi-arid, scanty rains are the biggest challenge for farming. “The rains came in late February, fell for just one day and only came back towards end of March for a few days,” laments Valeria.

For this reason, many farmers did not anticipate any substantial harvest even from an improved new maize variety – HB513 – introduced to them by Anthony Mwega, a community leader. The variety is locally known as ngamia, Kiswahili for ‘camel’, a testimonial moniker coined by ngamia suppliers, Meru Agro Tours and Consultant Limited, to symbolize the variety’s proven resilience during drought, compared to other varieties.

A boon in drought

“We heard about this new seed from Mwega who also sells hybrid seeds. But since it was my first time to use it, and given that the rains were really low, I did not expect much,” explains Valeria. “This of course was a big worry for me and my family,” she adds.

However, despite the patchy rains, Valeria managed to harvest 10 bags of 50 kilograms each from the one acre on which she planted 10 kilograms of HB513 seed – half of her farm. “I got so much harvest and yet I planted this seed very late, and with no fertilizer,” exclaims Valeria. What is special about HB513 seed is that it is both drought-tolerant and nitrogen-use efficient (see Kenya equivalent). So, compared to other varieties, it not only yields more during moderate drought, but also utilizes what little nitrogen there is in the soil more efficiently. HB513 is one of the 16 hybrid varieties developed for Tanzania by the Drought Tolerant Maize for Africa Project. Besides giving farmers the benefit of nearly 49 percent more grain during moderate drought, this hybrid seed offers them an opportunity to make best use of what little fertilizer they can afford to apply.

More enriching than just meat, and reaching more

For Valeria, it means that her family has enough maize to last them until February 2016. And a ‘meaty’ more: at sowing and growing time, since Valeria did not anticipate such a good harvest given the devastation drought portends, she resolved to work extra-hard in her small grocery business to raise enough money for the calf. “Even then, it would have taken me at least nine months to raise enough money for the calf,” she recalls. “But thanks to my unexpected bonus maize harvest, I got the calf within five months! This was such a huge relief and a blessing to me. Now I will have the much-needed help to plow my land in the next planting season.”

Through partnership with the Improved Maize for Africa Project, in 2015 alone, Meru Agro produced and sold 427 tons of ngamia seed. The result? Approximately 65,000 smallholder farmers across major maize-growing areas in northern, southern highland, central and northwest regions of Tanzania including Valeria’s village have benefited from this variety. And the good news is that the plan is to reach even more farmers in the coming years with the ‘gospel’ of ngamia.

What is the bigger picture for Tanzanian maize farmers? Meru Agro has committed to increase production of ngamia seed in 2016. “We foresee a much higher demand for ngamia because farmers are now more aware of this seed. Our plan is to produce more than 1,000 tons,” says Chacha Watanga, Meru Agro Managing Director.

Meru Agro will not be working alone. CIMMYT, through its Drought Tolerant Maize for Africa Seed Scaling (DTMASS) Project, will continue to partner with Meru Agro and other small- and medium-scale seed companies to increase production of improved maize varieties such as ngamia to reach 2.5 million people in seven target countries across eastern and southern Africa (Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia). “Within its three-year lifespan, DTMASS will support production of about 12,000 metric tons of certified seed to reach smallholders who need this seed to overcome the big challenge of drought,” adds Tsedeke Abate, DTMASS Project Leader. Watch this space!

Further reading:

Scorecard as a marathon maize project winds up after eight years
Improved Maize for African Soils
Drought Tolerant Maize for Africa
About Drought Tolerant Maize for Africa Seed Scaling

Not all maize makes good tortillas

Tortilla dough industry partners evaluating nixtamalized kernels during the workshop “From empirical knowledge to technical tools.” Photo: Natalia Palacios/CIMMYT.
Tortilla dough industry partners evaluating nixtamalized kernels during the workshop “From empirical knowledge to technical tools.” Photo: Natalia Palacios/CIMMYT.

With more than 600 food products derived from maize, Mexico is the fifth largest maize consumer globally, and the only country where more than 70% of the maize produced is used for direct human consumption. Farmers in Mexico grow maize mainly for home consumption, the nixtamalized flour industry, and the tortilla dough industry. The product’s end-use quality is greatly determined by the quality of the maize grain. Therefore, for the Mexican market, as well as for processors and consumers, grain quality is crucial.

Since the beginning of MasAgro, special emphasis has been placed on monitoring the quality of improved maize varieties to ensure that they meet the needs of Mexico’s traditional and industrial nixtamalization processes. Continuous exchanges of scientists with millers and tortilla dough entrepreneurs have been crucial for developing robust and cost-efficient analytical methods that different actors in the maize value chain can use to monitor grain quality. Offering analytical tools to the tortilla dough industry so it can move from empirical to analytical knowledge will help to optimize and professionalize its business.

Continue reading

Small farmers sow maize with a push row planter in Khyber Pukhtunkhwa Province, Pakistan

Farmer Jalees Ahmed planting maize with a push row planter in Nowshera, Pakistan. Photo: Ansaar Ahmed
Farmer Jalees Ahmed planting maize with a push row planter in Nowshera, Pakistan. Photo: Ansaar Ahmed

In Pakistan, maize is planted on 0.97 million hectares, of which 0.42 million are located in the province of Khyber Pakhtunkhwa (KP). The maize crop in KP is sown predominantly by hand and farmers practice a variety of methods such as broadcast and line sowing. Small farmers broadcast the maize seed and then do a shallow cultivation; however, seed is wasted with this method.

Maize is also line-planted, which involves placing rope or string lengthwise with marks at specific distances. The maize seed is then planted with a hoe in what is known as the Thapa method, which is very labor intensive.

Continue reading

Training on quarantine pests of wheat in Ethiopia

Trainees observe fungal, bacterial, and viral diseases of wheat in quarantine fields. Photo: Terefe Fitta
Trainees observe fungal, bacterial, and viral diseases of wheat in quarantine fields. Photo: Terefe Fitta

Ethiopia’s loose quarantine system permits the introduction of foreign pests, which attack crops and hurt yields and farmer incomes, making understanding how to identify new pests vital; strengthening the national quarantine system is thus key to protecting crops.

To address these challenges, CIMMYT-Ethiopia hosted a training session on the quarantine of wheat pests in Ethiopia from 13-15 October at Holetta Agricultural Research Center, where seeds of the most commonly introduced germplasm are inspected before they are planted and further evaluated for foreign pests at isolation sites throughout the country. Attending the session were 13 trainees from Holetta and six other research centers, including Sinana, Kulumsa, Adet, Mekele, Werer, and Ambo.

Temesgen Desalegn, Holetta Agricultural Research Center Director, welcomed participants and delivered an orientation session about the center, staff, and the crop and livestock research conducted at the site. The center is the oldest quarantine site to receive and inspect seeds of introduced germplasm for foreign pests by further planting and evaluating at isolated sites, Desalegn said, explaining that his aims for the training included exploring various aspects of regulatory issues.

Bekele Abeyo, wheat breeder and country representative at CIMMYT’s Ethiopia office, highlighted the role of wheat in the Ethiopian economy, describing major growing regions and production trends. He also described the challenge of recurrent rust epidemics that cause significant yield losses, and how such losses affect the country’s growth and transformation plan aimed at achieving food security. Due to the significant yield losses caused by the rust epidemics, CIMMYT and its national counterparts, the Ethiopian Institute of Agricultural Research (EIAR) and Regional Agricultural Research Institutes (RARIs), developed a project, now in its first year, titled “Seed Multiplication and Delivery of High Yielding Rust Resistant Bread and Durum Wheat Varieties to Ethiopian Farmers.”

The project, which targets 51 districts in four regions, has two sub-components, five specific objectives, and several activities under each objective. It supports small-scale farmers with an emphasis on women, encourages private sector partners, and links farmers with industries. It also aims to build the capacity of national programs by acquiring field and laboratory equipment and conducting various types of short-term trainings sponsored by the U.S. Agency for International Development (USAID) and the CIMMYT/EIAR seed project.

Eshetu Derso, Deputy Director of crops research at EIAR, offered praise for such training and the long-lasting relationship and support CIMMYT has provided. He mentioned that CIMMYT staff are forging change by helping Ethiopia identify and bridge gaps. Eshetu detailed various components of phytosanitary/regulatory issues regarding quarantine and pests in Ethiopia, including recent phytosanitary proclamations in the country. Finally, he noted that awareness will be created and vigilant phytosanitary action taken to ensure no new foreign pests are introduced. All plant materials introduced into Ethiopia will be inspected by quarantine officials at international airports or seaports by establishing separate “plant quarantine counters” and a scanning system.

Training participants at Holetta Agricultural Research Center, Ethiopia. Photo courtesy of Bekele Abeyo
Training participants at Holetta Agricultural Research Center, Ethiopia. Photo courtesy of Bekele Abeyo

The government is trying to keep out quarantine diseases such as ergot, late potato blight, and Karnal bunt, Eshetu said, mentioning other risky diseases such as the wheat rusts, white rot in garlic, maize lethal necrosis, yellow mosaic virus in papaya, ginger bacterial leaf wilt, and fruit spot of citrus. All these diseases have either been introduced into Ethiopia or have the potential to be introduced, he said.

CIMMYT pathologist Monica Mezzalama conducted an introductory training course on seedborne diseases of wheat, including detection methods, diagnosis, epidemiology, and management of fungi, bacteria, and viruses. She coupled descriptions with hands-on practice observing fungal, bacterial, and viral diseases of wheat in quarantine fields; leaf sampling and sample preparation; and laboratory work on isolation techniques (leaf and seed). She also covered MLN, the major threat to maize production in recent years.

Mohammed Dawd, Head of quarantine at EIAR, and Bekele Kassa, plant pathologist at Holetta Agricultural Research Center, offered insights and conducted training on pests and quarantine diseases in Ethiopia.

Participants raised many concerns related to the skills gap that hinders proper handling of quarantine services, limited training opportunities, and the lack of guidance from senior scientists and management. They emphasized the importance of keeping up expertise on threats and risks posed by quarantine pests and concluded that current weak quarantine enforcement in Ethiopia should be bolstered by strictly implementing rules and regulations to prevent the introduction of unauthorized and uncertified germplasm.

CIMMYT empowers a new generation of maize breeders in Zambia

Photo: Participants in the maize breeding course in Zambia. Photo: Cosmos Magorokosho/CIMMYT.
Photo: Participants in the maize breeding course in Zambia. Photo: Cosmos Magorokosho/CIMMYT.

CIMMYT recently conducted an intensive three-week training course in Zambia for 38 young maize breeders–including 12 women–to provide them the knowledge and skills needed to apply modern maize breeding methods in their agricultural research and development programs. Participants from national programs and private seed companies from 12 African countries and Pakistan attended the course.

Moses Mwale of the Zambia Agricultural Research Institute (ZARI) officially opened the course, and said the training was critical as agriculture contributes over 40% of Zambia’s gross domestic product and provides 70% of all employment in Africa; up to 80% of the African population lives in rural areas and is heavily dependent on agriculture for their livelihoods.

According to Mwale, “Despite its immense potential, maize has underperformed in Africa in recent years. The major cause is lack of investment, reliance on rainfed agriculture, low usage of improved seed, and the lack of adequate agricultural research and development, resulting in low production, productivity, and high transaction costs in agribusiness ventures.”

For the first time, a significant part of the course was devoted to the subjects of crop management and gender mainstreaming in maize research and development.

CIMMYT agronomist Isaiah Nyagumbo presented the crop management practices recommended to boost yields, productivity, and income, and to conserve natural resources. He emphasized that investments in maize breeding pay off when crop management on farm is improved. Nyagumbo also demonstrated new land preparation equipment recommended for use with conservation agriculture, including jab planters, dibble sticks, Li seeder or planting hoe, and animal traction rippers.

Vongai Kandiwa, CIMMYT gender specialist, spoke about “Leveraging Gender Awareness in Maize Breeding and Seed Deployment.” Revealing existing evidence of gender gaps in technology awareness and adoption, she highlighted the importance of developing maize technologies that meet the needs of both men and women farmers. Kandiwa also shared insights on gender-responsive approaches for conducting on-farm trials and building awareness, especially of newly released varieties.

During the training course, CIMMYT physiologist Jill Cairns briefed participants on preparing and making effective presentations––a challenge for both distinguished and new scientists.

Several scientists highlighted recent developments in maize improvement such as the use in maize breeding of doubled haploids, molecular tools, transgenics, and precision phenotyping. Key themes included advanced phenotyping by CIMMYT physiologist Zaman Mainasarra, who demonstrated the use of unmanned aerial vehicles for digital imaging and fast, cost-effective, and accurate phenotyping data collection.

Other subjects included theoretical conventional breeding, breeding for abiotic stress in line with climate change, breeding for biotic stresses with emphasis on preventing the spread of maize lethal necrosis (MLN) disease, and breeding for improved nutritional quality (quality protein maize and pro-vitamin A maize). Max Mbunji of HarvestPlus gave a presentation on Zambia’s progress on developing and delivering pro-vitamin A maize over the past seven years.

Variety release and registration, seed production, and seed business management in Africa were also featured during the course. Trainees learned how to scale up breeder seed to certified seed, maintain genetic purity and quality, and support upcoming seed companies, while complying with existing seed legislation, policies, and procedures in different countries.

Participants went on a field trip to HarvestPlus, where they learned more about pro-vitamin A analysis. They also visited ZARI’s Nanga Research Station to observe drought screening and seed production activities conducted by Zambia’s national maize breeding program.

At the end of the course, one of the participants, Annah Takombwa, acting technical affairs manager at Zimbabwe’s National Biotechnology Authority, said, “Many thanks for affording me the opportunity to take part in GMP’s New Maize Breeders Training. It was a great honor and privilege. I am already applying the skills and knowledge gained in my day-to-day activities.”

CIMMYT Global Maize Program (GMP) maize breeders Cosmos Magorokosho, Stephen Mugo, and Abebe Menkir of the International Institute of Tropical Agriculture (IITA) organized and coordinated the course. Participants were sponsored through various GMP projects, including Drought Tolerant Maize for Africa, Drought Tolerant Maize for Africa Seed Scale-up, the Doubled Haploids project, Water Efficient Maize for Africa, Improved Maize for African Soils, USAID Heat project, MLN project, HarvestPlus, and private seed companies ZAMSEED and SEECDCO.

Big data for development research

Both private and public sector research organizations must adopt data management strategies that keep up with the advent of big data if we hope to effectively and accurately conduct research. CIMMYT and many other donor-dependent research organizations operate in fund declining environments, and need to make the most of available resources. Data management strategies based on the data lake concept are essential for improved research analysis and greater impact.

We create 2.5 quintillion bytes of data daily–so much that 90% of the data in the world today has been created in the last two years alone. This data comes from everywhere: sensors used to gather climate information, drones taking images of breeding trials, posts on social media sites, cell phone GPS signals, and more, along with traditional data sources such as surveys and field trial records. This data is big data, data characterized by volume, velocity, and variety.

Twentieth century data management strategies focused on ensuring data was made available in standard formats and structures in databases and/or data warehouses–a combination of many different databases across an entire enterprise. The major drawback of the data warehouse concept is the perception that it is too much trouble to put the data into the storage system with too little direct benefit, acting as a disincentive to corporate-level data repositories. The result is that within many organizations, including CIMMYT, not all data is accessible.

Today’s technology and processing tools, such as cloud computing and open-source software (for example, R and Hadoop), have enabled us to harness big data to answer questions that were previously out of reach. However, with this opportunity comes the challenge of developing alternatives to traditional database systems–big data is too big, too fast, or doesn’t fit the old structures.

Diagram
Diagram courtesy of Gideon Kruseman

One alternative storage and retrieval system that can handle big data is the data lake. A data lake is a store-everything approach to big data, and a massive, easily accessible, centralized repository of large volumes of structured and unstructured data.

Advocates of the data lake concept believe any and all data can be captured and stored in a data lake. It allows for more questions and better answers thanks to new IT technologies and ensures flexibility and agility.However, without metadata–data that describes the data we are collecting–and a mechanism to maintain it, data lakes can become data swamps where data is murky, unnavigable, has unknown origins, and is ultimately unreliable. Every subsequent use of data means scientists and researchers start from scratch. Metadata also allows extraction, transformation, and loading (ETL) processes to be developed that retrieve data from operational systems and process it for further analysis.

Metadata and well-defined ETL procedures are essential for a successful data lake. A data lake strategy with metadata and ETL procedures as its cornerstone is essential to maximize data use, re-use and to conduct accurate and impactful analyses.

WPEP enhances the capacity of national researchers and ensures quality wheat seed production in Pakistan

Imtiaz Muhammad addresses the opening session. Photo: CIMMYT-Pakistan.
Imtiaz Muhammad addresses the opening session. Photo: CIMMYT-Pakistan.

The Wheat Productivity Enhancement Program (WPEP) held a training course on national seed technology, organized by CIMMYT in partnership with Pakistan’s Federal Seed Certification and Registration Department (FSC&RD), on 10-12 September 2015 in Islamabad.

During the opening session, CIMMYT Country Representative Imtiaz Muhammad informed the participants on the WPEP’s mandate for accelerated wheat seed multiplication of rust resistant varieties including stem rust resistant varieties with a focus on Ug99, its constraints, and early generation seed multiplication of newly released varieties.

The training covered variety maintenance including head rows, progeny rows, progeny blocks, breeder seed production, variety registration, seed multiplication of pre-basic, basic, and certified seed, plant breeders’ rights, seed enterprises and up-scaling of varieties resistant to Ug99 and other rusts.

Training participants. Photo: CIMMYT-Pakistan.
Training participants. Photo: CIMMYT-Pakistan.

The course was attended by 60 participants including seed certification officers, seed analysts, and seed growers, as well as representatives of public and private seed companies, agriculture training institutes, the agriculture extension department, and research institutes. Also in attendance were women seed analysts from the seed regulatory department.

Accelerated seed multiplication of pre-release varieties is needed to produce seeds of varieties resistant to Ug99 and other rusts and deliver them to the farming community. WPEP facilitates the screening of wheat breeding lines for both seedling and adult plant resistance to Ug99. This training will enable the participants to better assist wheat breeders during variety maintenance activities and accelerated pre-basic seed multiplication and will provide a sound base for multiplying basic and certified seed. Participants also held extensive discussions on quality seed production, improved agronomic practices, seed diseases, seed storage, and seed handling during transport.

Secretary-Ministry-of-National-Food-Security
Seerat Asghar, Federal Secretary, Ministry of National Food Security and Research, and Director General FSC&RD with the training participants. Photo: CIMMYT-Pakistan.

CIMMYT-WPEP has already provided pre-basic and basic seed to public seed corporations, private seed companies, and farmers throughout the country in order to have large quantities of quality seed available, with the expectation that seed certification will be arranged locally. This training will facilitate testing of crop and seed purity, which is required for crop and seed certification.

At the closing, Seerat Asghar, Federal Secretary, Ministry of National Food Security and Research, and FSC&RD Director General Shakeel Ahmad Khan acknowledged CIMMYT’s continuous contributions and its cooperation in holding such a valuable training course in Pakistan. These types of courses create awareness of variety maintenance and early generation seed multiplication, which are essential for achieving sound certified seed production in Pakistan.

Global conference underscores complex socio-economic role of wheat

plant-specimensSYDNEY, Australia, October 9 (CIMMYT) – A recent gathering of more than 600 international scientists highlighted the complexity of wheat as a crop and emphasized the key role wheat research plays in ensuring global food security now and in the future.

Specialist scientists and other members of the global wheat community attended two back-to-back wheat symposiums stretching over nine days from September 17 to 25 in Sydney, Australia. The first, a workshop hosted by the Borlaug Global Rust Initiative (BGRI), focused on Ug99 wheat rust disease. At the second, the five-day International Wheat Conference, which is held every five years, scientists dissected topics ranging from the intricate inner workings of the wheat genome to nutritional misrepresentations of wheat in the popular media.

Hans Braun, head of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Wheat Research Program, delivered a keynote presentation focused on new research, which shows that about 70 percent of spring bread and durum wheat varieties released in developing countries over the 20-year period between 1994 and 2014 were bred or are derived from wheat lines developed by scientists working for the CGIAR consortium of agricultural researchers. On a global basis, more than 60 percent of the released varieties are related to CIMMYT or International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm.

Benefits of CGIAR wheat improvement research, conducted mainly by CIMMYT and ICARDA, range from $2.8 billion to $3.8 billion a year, he said, highlighting the economic benefits of international collaboration in wheat improvement research.

“Investment in agricultural research pays a huge dividend,” said Martin Kropff, CIMMYT’s director general, during a keynote address. “Investment in public research is a ‘triple win,’ leading to more food and income for the rural poor, lower prices for the urban poor, and extra stability and income for farmers in developed donor countries such as Australia, where gains are tens of millions a year.”

Bram Govaerts, who heads sustainable intensification efforts for CIMMYT in Latin America and leads the MasAgro project, demonstrated how minimal soil disturbance, permanent soil cover, and crop rotation can simultaneously boost yields, increase profits and protect the environment. Under MasAgro, some 400,000 hectares have been planted using improved technologies and agronomic practices; more than 200,000 producers are involved, of which 21 percent are women.

Sanjaya Rajaram, former CIMMYT wheat program director and 2014 World Food Prize laureate, described how wheat production must increase from the current 700 million metric tons a year to 1 billion metric tons a year by 2050 in order to keep up with population growth. Wheat currently provides 20 percent of calories and 20 percent of protein in the global human diet, he said, adding that the world’s food supply also faces the threat of climate-change related global warming.

“To date, scientists have been unable to sufficiently increase yields to meet demand through hybridization,” Rajaram said. “It’s time to invest in biotechnology to ensure yields can provide nourishment for an ever-hungrier planet. Simultaneously, we must maintain balance in the food chain and restore depleted carbon in the soil. Such concerns as disease resilience, seed diversity, water management and micronutrient imbalance must also be tackled.”

Ethiopia-based CIMMYT scientist David Hodson provided a retrospective on 10 years of Ug99 stem rust surveillance, while Kenya-based CIMMYT scientist Sridhar Bhavani provided an overview of progress made in breeding durable adult plant resistance to rust diseases and combining rust resistance in high yielding backgrounds over the past decade.

The Ug99 virulent disease threatens food security as it creeps steadily from its origin in Uganda towards the breadbasket regions of Asia.

“Technology can help us fight Ug99 stem rust, but we’re always going to need good field pathologists and researchers on the ground,” said Hodson, who also runs the Rust Tracker website.

Despite efforts to develop wheat that is resistant to damaging stem, stripe, and leaf rusts, these diseases, which have existed for 10,000 years, will continue to thwart scientists, said Philip Pardey, a professor in the Department of Applied Economics at the University of Minnesota, adding that the annual global investment in wheat rust research should be $108 million a year in perpetuity.

Pardey determined in a recent study that global losses from all three rusts average at least 15.04 tons a year, equivalent to an average annual loss of about $2.9 billion.

Jessica Rutkoski, a quantitative geneticist who works as an adjunct associate scientist at CIMMYT and an assistant professor at Cornell University, discussed the implications of new technologies for more durable resistance to rust.

Wheat physiology was also under discussion, with CIMMYT physiologists Matthew Reynolds and Gemma Molero delivering presentations on phenotyping, pre-breeding strategies, genetic gains, and spike photosynthesis. Their work also involves the use of ancient landraces, which may hold the secret to creating wheat resilient to global warming caused by climate change.

CIMMYT’s Alexey Morgunov demonstrated how a number of ancient landrace genotypes grown by farmers in Turkey have shown signs that they are resistant to abiotic and biotic stresses, which could help in the development of heat and disease resistant wheat varieties.

CIMMYT’s Zhonghu He discussed progress on wheat production and genetic improvement in China, while Sukhwinder Singh described his work characterizing gene bank biodiversity and mobilizing useful genetic variation – pre-breeding – into elite breeding lines. Bhoja Basnet covered hybrid wheat breeding at CIMMYT.

A session on nutrition and wheat targeted some of the myths swirling around wheat and gluten. CIMMYT’s Velu Govindan gave an update on his research into breeding and delivering biofortified high zinc wheat varieties to farmers. Zinc deficiency limits childhood growth and decreases resistance to infections.

Kropff also delivered a keynote presentation on wheat and the role of gender in the developing world, which preceded the BGRI Women in Triticum Awards, presented by Jeanie Borlaug Laube, daughter of the late Nobel Peace Prize laureate and CIMMYT wheat breeder Norman Borlaug.

Kropff explained that each component of the strategy for research into wheat farming systems at CIMMYT includes a gender dimension, whether it is focused on improving the evidence base, responding to the fact that both women and men can be end users and beneficiaries of new seeds and other technologies, or ensuring that gender is considered part of capacity-building efforts.

Bekele Abeyo, CIMMYT wheat breeder and pathologist for sub-Saharan Africa, won a $100 prize in the BGRI poster competition for his poster explaining the performance of CIMMYT-derived wheat varieties in Ethiopia.

A team of Kenyan scientists were recognized for their contribution to the protection of the global wheat supply from Ug99 stem rust disease. Plant pathologist Ruth Wanyera and wheat breeders Godwin Macharia and Peter Njau of the Kenya Agriculture and Livestock Research Organization received the 2015 BGRI Gene Stewardship Award.

CSISA wheat breeders plan for future gains in South Asia

Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle
Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle

The growing interest of national agriculture research system (NARS) of South Asia in genetic gains and seed dissemination work in Cereal Systems Initiative for South Asia (CSISA) objective 4 (wheat breeding), 50 scientists from Bangladesh, Bhutan, India and Nepal assembled at Karnal, India on September 2-3, 2015 for the 7th Wheat Breeding Review Meeting of this project. The meeting was organized by CIMMYT’s Kathmandu office with support from CIMMYT-Delhi/Karnal office and led by Dr. Arun Joshi. Dr. Ravish Chatrath, IIWBR provided strong support as local organizer.

The other CIMMYT participants were Etienne Duveiller, Uttam Kumar and Alistair Pask. Participants included representatives of: the Wheat Research Centre of Bangladesh (Dinajpur); Bangladesh Agriculture Research Institute (BARI), Ghazipur; India’s Directorate of Wheat Research (DWR), Karnal and Shimla; the Indian Agricultural Research Institute (IARI), Delhi and Indore; Punjab Agricultural University, Ludhiana; Banaras Hindu University, Varanasi; the University of Agricultural Sciences, Dharwad; Uttarbanga Krishi Vishwa Vidyalaya, Coochbehar, West Bengal; Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur and Powarkheda; Govind Vallabh Pant University of Agriculture and Technology, Pantnagar; Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, Distt. Nadia, W. Bengal; Nepal’s National Wheat Research Program (NWRP), Bhairahwa; Nepal Agricultural Research Institute (NARI); Khumaltar of Nepal Agricultural Research Council (NARC) and Renewable Natural Resources (RNR), Research and Development Centre (RDC), Bajo, Bhutan.

The CSISA meeting began with remarks by the chief guest, Dr. Indu Sharma, Director, IIWBR, Karnal along with Dr. Md. Rafiqul Islam Mondal, Director General, BARI; Etienne Duveiller, CIMMYT, Delhi and Arun Joshi, CIMMYT, Kathmandu. Within a wider framework of discussing issues concerning wheat improvement, the CSISA meeting reviewed the progress of the 2014-15 cycle, and established work plans for the coming crop cycle. Arun Joshi presented a summary of the achievements in wheat breeding over last 6 years and highlighted the impressive results obtained in varietal release, seed dissemination and impact in farmer fields. Dr. Etienne informed he challenges of climate change and the ways our program should be shaped to handle these issues. Dr. Mondal expressed his happiness that CSISA wheat breeding has been very successful in contributing to enhancement of wheat production and producitity in Bangladesh and other countries through a vigourous wheat breeding and seed dissemination with strong linkage with national centres.

Dr. Indu Sharma highlighted the significance of collaborative research with a regional perspective and told the audience about the successes being achieved by CSISA in wheat research especially in handling rust resistance and heat tolerance in south Asia. She expressed his appreciation for new research efforts under CSISA and said that “the South Asia-CIMMYT collaboration is paramount to the food security and livelihood of the farmers.” She also said that seeing new challenges there is much more need for such collaborative research efforts for the economic prosperity and good health of agriculture sector in south Asia.

Four review sessions were conducted, chaired by NARS colleagues Dr. Indu Sharma, Dr. Mondal, Dr. Ravi Pratap Singh and Dr. S.P. Khatiwada. Three sessions were used to present review reports and work plans from the 10 research centers, while two other sessions discussed progress in physiology, spot blotch and strengthening linkage of wheat breeding with seed dissemination and capacity building in South Asia. A major discussion was held to devise strategies to strengthen research to handle future threats to wheat such as yellow rust, early and late heat stress, water scarcity and to enable environment for fast track release of varieties so that new seed can reach to farmers as soon as possible.

Arun Joshi also highlighted major achievements in CSISA wheat breeding through very able collaboration by national centres in South Asia. He emphasized that breeding for biotic and abiotic stress tolerance gained momentum through CSISA by developing varieties with faster grain filling and flexibility to adapt to a range of sowing dates. Not only these new varieties were developed, improved networking with public and private sector seed hubs enabled fast track inclusion of these varieties in seed dissemination chain. The increase germplasm flow from CIMMYT, Mexico enriched Indian gene bank with a large reservoir of diverse set of genotypes for current and future used. The continued inclusion of resistance to Ug99 and other rusts in wheat lines kept diseases at bay and safeguarded farmers. There is increased use of physiological tools for heat and drought tolerance and stronger links were established between breeders, seed producers and farmers. Another significant achievement was strengthened capacity building in the region.

A talk on wheat research as Borlaug Institute for South Asia (BISA) was delivered by Uttam Kumar, CIMMYT. Likewise progress on CRP project on spot blotch was presented by Shree Pandey and Ramesh Chand, India. A talk on wheat breeding at Bhutan was presented by Sangay Tshewang. He was happy to inform that through this networking and collaboration with CIMMYT, Bhutan was able to release three new wheat varieties after a gap of 20 years.

On the 2nd day, a visit to IIWBR was organized. Dr. Indu Sharma and her team of scientists led by Dr. Ravish Chatrath facilitated this visit. The participants were taken to different laboratories and current research activities were explained. The participants from Nepal, Bangladesh and Bhutan expressed desire for increased exchange visits among research institutions of countries in south Asia.

The review meeting enabled CSISA wheat researchers to measure their achievements compared to the challenges being encountered and enabled an environment to discuss future strategies to augment research activities better tuned to future targets in the region. The participants were of the view that strong linkage and coordination between the national research program, the CIMMYT team and other stakeholders especially those in seed business is needed to achieve comprehensive progress towards increasing food availability and better livelihood of masses.

Transforming maize farming failures to successes in Kenya’s drylands

“I got over three bags of 50 kilograms each this season [despite drought] from my one-and-quarter-acre farm. This is amazing! I have never harvested anything beyond one-and-a-half bags in the past.”

Sarah’s smile is due to KDV4 drought-tolerant maize. Her first-time ‘drought insurance’ venture has paid off, and she’s harvested more despite the drought than she normally does even in good years. Photo credit: B. Wawa/CIMMYT
Sarah’s smile is due to KDV4 drought-tolerant maize. Her first-time ‘drought insurance’ venture has paid off, and she’s harvested more despite the drought than she normally does even in good years. Photo credit: B. Wawa/CIMMYT

Drought is one of the biggest challenges that rain-dependent farmers in Africa face. As a result, millions of smallholders and their families become increasingly vulnerable to crop failure that leads to hunger and deeper poverty. What options do smallholders have in the face of drought?

For Mrs. Sarah Nyamai, a farmer from Kalimoni Village in Machakos County, Kenya, maize farming was not a priority until three years ago. She did not take maize farming very seriously – despite the fact that maize has been a staple food in her home for a long time – largely because of very poor yields often blamed on the unforgiving climate that characterizes eastern Kenya.

However, harsh climate is not the only problem that Sarah and hundreds of other farmers in her locality are grappling with. Poor-quality seed makes a bad situation much worse. This means that the likelihood of harvesting enough for the family table is very low. And this, despite the considerable time and resources farmers invest in working the land.

The pain when there is no gain… and the “insurance” DT maize offers in bad years

“There is nothing as bad as buying food when you can grow it in your farm. Money needs to be used to buy other necessities but not food. Not when you can grow and harvest to feed your family,” Sarah observes.

The planting season in Kalimoni Village falls during the March–May long rains. This year, the rainfall was not only very low but also poorly distributed, spelling doom for any good harvest.

Despite this bleak outlook, there is hope for farmers who took preventive measures. Sarah’s face lights up as she harvests a healthy maize cob on her one-and-a-quarter-acre farm. She planted – for the first time – a drought-tolerant (DT) maize variety called KDV4. Her ‘drought insurance’ venture paid off, and she has much to smile about. “I got over three bags of 50 kilograms each this season from my one-and-quarter-acre farm. This is amazing! I have never harvested anything beyond one-and-a-half bags in the past. This is very good seed! And it tastes better too!” Sarah enthuses.

A picture of robust health and vitality: like most other improved DT maize varieties, KDV4 truly comes into its own in drought, and does even better when there is no drought. Photo credit: B. Wawa/CIMMYT
A picture of robust health and vitality: like most other improved DT maize varieties, KDV4 truly comes into its own in drought, and does even better when there is no drought. Photo credit: B. Wawa/CIMMYT

KDV4 is one of the DT varieties sold in Kenya’s eastern drylands alongside other improved varieties, developed by the Drought Tolerant Maize for Africa (DTMA) Project in close partnership with public and private partners including local seed companies in Kenya.

Sarah purchased a three-kilogram packet of the KDV4 variety from Dryland Seeds Limited (DSL), the main supplier of DT maize seed in the eastern region. Besides KDV4 maize – an open pollinated variety – DSL also stocks a number of hybrid varieties tailored especially for this region. One such hybrid is DSLH103, locally known as Sawa, a Kiswahili name that loosely translates into ‘the good one’.

Mr. Joseph Mulei is one of the farmers who has planted Sawa. “Sawa has very good yield. I like it particularly because it matures early. If we get good rains in the first two weeks, I am assured of very good harvest from Sawa,” explains Mulei.

Sawa statistics, the story is spreading, but much more remains to be done

Statistics too stand by and reaffirm the Sawa label. On average, hybrids like Sawa give farmers up to 49 percent more grain than open pollinated varieties, and 15 percent more than hybrids currently on the market.

Both Joseph and Sarah have taken the initiative to educate their fellow farmers on the benefits of certified DT seed. Mulei has been particularly influential in his capacity as a leader of 25 farmers in the area. They both concur that it is important for more farmers to plant the improved varieties since they are a guarantee to improving food security.

Yet despite this assurance, improved varieties in the eastern region are still not widespread according to Mr. Ngila Kimotho, the Managing Director of DSL. “More collaborative effort is needed to create awareness on the improved DT varieties, and more importantly, to ensure that the seeds are available for the farmers,” adds Ngila. The company has conducted several awareness campaigns including field demonstrations and radio programs in a bid to reach as many farmers as possible.

What is CIMMYT doing to spread DT maize?

Through its new project Drought Tolerant Maize for Africa Seed Scaling (DTMASS), CIMMYT is working with seed companies like DSL to meet the current demand and improve access to good-quality DT maize. DTMASS plans to produce close to 12,000 metric tonnes of certified seed for approximately 400,000 households – or 2.5 million people – in seven countries in eastern and southern Africa (Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia).

DTMASS will make determined efforts to reach as many farmers as possible as an integral part of project goals. Consequently, many more farmers will enjoy the benefits of good yields even in the moderate droughts so common in most of Africa’s maize belt.

Changing the pace of maize breeding in Africa through doubled-haploid technology

Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT
Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT

Two words – accelerated breeding – are synonymous to doubled-haploid (DH) based maize breeding. This was the core message shared with 56 maize breeders from 10 African countries who recently participated in a two-day training workshop organized by CIMMYT’s Global Maize Program (GMP) in Nairobi, Kenya, from September 23–24, 2015. The breeders benefited from the knowledge and experience of resource persons from public and private institutions in France, Germany and USA who have dedicated years of research on the DH technology that is changing the pace of maize breeding.

The resource persons for the training workshop included Tim Cupka (AgReliant Genetics, USA), Thomas Lubberstedt (Iowa State University, USA), Wolfgang Schipprack (University of Hohenheim, Germany), Dominic Marc and Regis Brassart (Limagrain, France), and CIMMYT’s B.M. Prasanna, Vijay Chaikam, Yoseph Beyene and Sotero Bumagat.

The DH technology shortens the breeding cycle significantly by developing 100 percent homozygous lines within 2–3 seasons compared to conventional breeding that takes at least 7–8 seasons to develop inbred lines with 98–99 percent homozygosity. While tracing the evolution of DH technology in maize, B.M Prasanna, Director of both GMP and the CGIAR Research Program MAIZE remarked, “This is a significant reduction of time, labor and important resources. There is a great opportunity for maize breeders in Africa to modernize the breeding programs using DH technology, coupled with molecular markers. It is particularly important to enhance genetic gains while effectively dealing with an array of stresses crippling maize production in sub-Saharan Africa.”

While commercial seed industries across the world have benefited significantly from this technology, the uptake among the institutions of the national agricultural research systems (NARS) and the small- and medium-scale enterprise (SME) seed companies in sub-Saharan Africa (SSA) is significantly low. This is due to various reasons, particularly lack of awareness about the power of DH technology.

To address this challenge, CIMMYT in partnership with Kenya Agricultural and Livestock Research Organization (KALRO) established the maize DH facility – the first of its kind in SSA – at the Kiboko Maize Research Station in Kenya in September 2013. The facility offers DH development service to NARS and SME seed companies – with financial support from Bill & Melinda Gates Foundation.

“Establishing and operating such a facility requires significant technical know-how and is not an easy task,” said Prasanna. “It is more practical for our NARS and SME seed company partners to utilize the facility at Kiboko to develop DH lines with diverse genetic backgrounds through the DH development service offered by CIMMYT, make effective selections, and use well-selected DH lines in hybrid breeding programs. The purpose of the training workshop is to make breeders aware of the tremendous opportunities to integrate DH lines in maize breeding programs”.

Sure-footed progress – Africa’s maize breeding on the right path

It is estimated that about 70 to 80 percent of new maize hybrids being produced currently by major seed companies in the world, especially in North America and Europe, contain one or more doubled-haploid lines, with DH-based maize hybrids covering about 40 to 50 million hectares worldwide.

Tim Cupka, a highly experienced maize breeder at AgReliant Genetics, USA, emphasized that DH technology has changed the face of maize breeding in his organization. “The developed world is intensively practicing DH-based maize breeding. There is so much value that can be created through this technology not just for public and private maize breeding programs and seed companies in Africa, but ultimately for the farmers,” noted Tim.

For farmers and breeders, the greatest value is that DH technology reduces the amount of time (by one-third) it takes to create new commercial hybrids. “Instead of taking 12 years to develop a superior hybrid, we are now developing new hybrids within 6 to 7 years, which means we can get superior genetics to the farmers much faster than ever before! This is key to strengthening the livelihood of millions of farmers across the world. That is our success as breeders,” Tim concluded.

GMP in Africa has effectively integrated DH and molecular marker technologies in its product development pipeline. More than 92,000 DH lines have been developed so far from CIMMYT bi-parental populations at the DH facilities at Kiboko and Agua Fria, Mexico. In addition, significant contributions have been made over the last few years by Monsanto and DuPont Pioneer in developing DH lines in CIMMYT’s Africa-adapted maize genetic backgrounds through the Water Efficient Maize for Africa and Improved Maize for African Soils projects. “CIMMYT has so far released 32 DH-based maize hybrids in Kenya, Uganda, Tanzania, and South Africa between 2012 and 2015.These hybrids showed excellent performance under optimum, drought and low-nitrogen stress conditions,” reported Yoseph Beyene, a CIMMYT Maize Breeder based at Nairobi, Kenya. He also added that the five DH lines have been recently identified for release as CIMMYT maize lines.

In addition, more than 5,000 DH lines have been screened by CIMMYT for maize lethal necrosis (MLN) disease under artificial inoculation at the MLN Screening Facility at Naivasha, Kenya; promising lines have been identified offering tolerance to the disease. Therefore, DH technology can be a powerful tool to accelerate development of MLN-tolerant maize hybrids for sub-Saharan Africa.

Participants at the workshop got an opportunity to visit the DH facility at Kiboko in Makueni County, Kenya, where they saw the DH breeding process. The tour was facilitated by Sotero Bumagat, Maize DH Facility Manager, CIMMYT–Kenya. “This is a new experience and a very enriching one,” remarked Lwanga Kasozi from the Agricultural Research Institute in Tanzania. “I have seen and understood DH-based breeding both in theory as well as practice. It is my desire to see our organization in Tanzania embrace this technology. I will play my part to share this experience and knowledge.”.

Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT
Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT

The Alliance for a Green Revolution in Africa (AGRA), also nominated its scientists to participate in the training workshop. In addition, AGRA sponsored the participation of nine maize breeders from different NARS institutions in SSA to participate in the workshop.

5th International Cereal Nematode Initiative Workshop

Photo: Participants signing in at the registration desk. Photo: Deliang Peng
Photo: Participants signing in at the registration desk. Photo: Deliang Peng

The 5th International Cereal Nematode Initiative (ICNI) Workshop was held in Ankara, Turkey, on 12-16 September 2015. During the opening ceremony, 70 representatives from 21 countries were welcomed by Ali Osman Sari, Deputy Director General, Directorate of Agricultural Research and Policies, Turkish Ministry of Food Agriculture and Livestock (MFAL), Birol Akbas, Plant Health Department Head, MFAL, and Alexey Morgounov, Head, International Winter Wheat Improvement Program and CIMMYT-Turkey CLO.

During his opening speech, Sari gave a general presentation on MFAL and expressed his full support for workshop participants who tackle problems caused by cereal nematodes. Morgounov welcomed the participants and thanked donors for supporting the workshop. An invited speaker, Hafiz Muminjanov from FAO, gave a talk on FAO’s plant production and protection activities in Central Asia. Beverley Gogel, another invited speaker, presented the statistical analyses used in Australia to understand genotype by environment interaction in field and glasshouse experiments and determine the resistance of varieties to Pratylenchus. The next day, the third invited speaker, Hakan Ozkan, gave a presentation on using DNA molecular markers for disease resistance in plant breeding.

Workshop proceedings edited by Abdelfattah A. Dababat, Hafiz Muminjanov, and Richard Smiley were designed and printed by FAO and cover such subjects as biological management of nematodes, molecular techniques for nematode identification, cereal nematode biology and development, gene expression, and resistance. The quality of the scientific program and the participation of nematologists from various countries made for a highly successful meeting.

Cereal-Nematode-Initiative-Workshop2
Photo: Participants in the 5th International Cereal Nematode Initiative Workshop, Ankara, Turkey. Photo: CIMMYT–Turkey.

The conference was coordinated and organized by Abdelfattah Dababat, CIMMYT-Turkey nematologist, as part of the ICARDA CIMMYT Wheat Improvement Program (ICWIP), and funded by CIMMYT, MFAL, DuPont, Bisab, Dikmenfide, GRDC and Syngenta as the main donor.

The 6th International Cereal Nematode Symposium will be held in Morocco in 2017. The date and place will be posted on CIMMYT’s home page in the coming months. For more information, please contact Abdelfattah A. Dababat (a.dababat@cgiar.org) or Fouad Mokrini (fouad_iav@yahoo.fr.), local organizer of the 6th Symposium in Morocco.

India visit: Dr. Martin Kropff, Director General, CIMMYT

Photos courtesy of Anu Raswant

From 28 September to 2 October, CIMMYT Director General Martin Kropff visited different research sites in several states of India. The following reports detail his visit.

CIMMYT Emeritus Director General Dr. Tom Lumpkin receives prestigious 8th MS Swaminathan Award

Dr. Tom Lumpkin receiving the M.S. Swaminathan Award from Dr. M.S. Swaminathan and Dr. Raj Paroda, Chair, Trust for Advancement of Agricultural Sciences. Dr. Martin Kropff, CIMMYT DG, attended the award ceremony.

Dr. Tom Lumpkin, former CIMMYT Director General, received 8th MS Swaminathan Award for Leadership in Agriculture in a glittering ceremony organized by the Trust for Advancement of Agricultural Sciences (TAAS) at the Indian Agricultural Research Institute (IARI), New Delhi, on September 28. This year’s award was a special occasion as the award was presented by Dr. Swaminathan himself. The Award is conferred on individuals “who have done outstanding research work in the field of agriculture, animal sciences, and fisheries.” The first award was given in 2005 by the President of India, Dr. A.P.J. Abdul Kalam, to Dr. Norman E. Borlaug, Nobel laureate who led the development and spread of high-yielding wheat varieties in the developing countries during 1960s and 70s, which culminated in Green Revolution that saved billions of people from starvation.

On this occasion, Dr. Lumpkin said, “I’m humbled and greatly honored by this award. Swaminathan and Borlaug were visionaries who worked together and made their case courageously to the political leaders to get appropriate technologies into farmers’ hands. We must do the same, if South Asia is to provide nutritious food for more than 1 billion people who will live here in 2050, without further degrading land or depleting groundwater.”

While addressing the gathering, Dr. Swaminathan praised the work of Dr. Lumpkin in strengthening wheat and maize research in India and lauded his efforts in establishing the Borlaug Institute for South Asia.

CIMMYT-India Office Inaugurated by Dr. Martin Kropff, CIMMYT Director General, and CIMMYT Senior Management

CIMMYT DG inaugurating the renovated regional office of CIMMYT in India.

Dr. Martin Kropff, along with Drs. John Snape, Tom Lumpkin, Marianne Banziger, H.S. Gupta, Etienne Duvellier and B.S. Sidhu inaugurated the renovated CIMMYT-India office on September 30, 2015 by cutting a ribbon and unveiling a commemorative plaque. A large gathering of the staff from CG centers and ICAR along with Dr. S. Ayyappan, ICAR Director General, were present. Strategically located in the National Agricultural Science Center (NASC) complex, the renovated office can now accommodate 25 staff and has improved facilities. At the gathering, Kropff reiterated the importance of working as ‘One CIMMYT’ and ‘One CG’ to achieve food security in South Asia.

Visit to BISA Research Center at Ladhowal, Punjab

CIMMYT DG inaugurating the solar-powered micro-irrigation system at Ladhowal center of BISA.

CIMMYT DG Dr. Martin Kropf, accompanied by Drs. John Snape, Board Chair CIMMYT; Thomas A. Lumpkin, Ex-DG, CIMMYT; Marianne Banziger, DDG, CIMMYT, Etienne Duveiller, Director Research, CIMMYT-South Asia, and Dr. B.S. Sidhu, Commissioner, Agriculture, Punjab Government, visited BISA’s research center at Ladhowal on October 01, 2015. They were received by Dr. H.S. Gupta, BISA DG, and BISA staff members at the farm. They were taken around to see the research activities. The visiting team was impressed with the state-of-the-art facilities at the farm and the research work being conducted. Dr. Kropff and visiting dignitaries inaugurated a solar-powered micro-irrigation system installed with financial support from the Government of Punjab.

The visiting team evinced keen interest in the experiments on subsurface irrigation in the water-smart block where farmers can save 50-60% water without yield penalty. Kropff was pleased to learn that the latest technology in phenotyping in collaboration with Kansas State University is being used at BISA

DG CIMMYT with staff members of BISA at Ladhowal farm in Ludhiana

and that wheat lines with a 15-17% yield advantage have been selected and passed on to national partners under GWP. This will help increase the overall productivity of wheat in India in general and Punjab state in particular.

Dr. H.S. Sidhu, Senior agricultural engineer, showed various agricultural implements that have been developed at BISA center and have contributed to the adoption of conservation agriculture. Some of them are in great demand not only in India but in neighboring countries like Pakistan and many countries of Africa. At the end of the visit, a presentation summarized the development of Ladhowal farm since it was handed over to BISA. Dr. Kropff commented, “I am impressed with the facilities and high quality of research being conducted at BISA.”

Visit to Farmers’ Fields near BISA’s Ladhowal Center

CIMMYT DG Dr. Martin Kropff and Commissioner, Agriculture, Govt. of Punjab, Dr. B.S. Sidhu interacting with farmers in a climate-smart village near Ladhowal.

During visit to BISA Research Center at Ladhowal, Dr. Martin Kropff, along with CIMMYT’s senior management team, visited farmers’ fields near Ladhowal village and talked with farmers about climate-smart agricultural practices. The farmers showed use of the Green Seeker in rice crop and briefed the team on the conservation agriculture practices adopted by them. Dr. B.S. Sidhu, Commissioner, agriculture, Govt. of Punjab, shared that Punjab Govt. subsidizes the purchase of the Green Seeker so that farmers are encouraged to buy this instrument and save nitrogen.

DG Martin Kropff and Senior Management Visit Punjab Agricultural University, Ludhiana, Punjab

CIMMYT DG visiting rice fields with Dr. B.S. Dhillon, Vice Chancellor, Punjab Agricultural University, Ludhiana.

Dr. Martin Kropff, along with Drs. John Snape, Tom Lumpkin, Marianne Banziger, H.S. Gupta, Etienne Duvellier, and B.S. Sidhu, visited Punjab Agricultural University, Ludhiana, on October 1, 2015. He was received by the Vice Chancellor, Dr. B.S. Dhillon, who took the delegation around the farm and showed the research being conducted at this premiere university of India that was one of the major players in ushering the Green Revolution in India.

Directors of research and extension briefed the team on research on cereals, pulses, oilseeds, and horticultural crops. Dr. Kropff and members of the team showed keen interest in the quality research being pursued at the University.

Visit to Climate-Smart Villages in Haryana, India

CIMMYT DG visiting climate-smart villages in Karnal, Haryana, India.

Dr. Martin Kropff, CIMMYT DG, visited the CIMMYT-CCAFS participatory strategic research and learning platform in Taraori, Haryana, along with Drs. John Snape, Board Chair CIMMYT, Dr. Thomas A. Lumpkin, former CIMMYT DG, Marianne Banziger, DDG, CIMMYT, H.S. Gupta, BISA DG, and Etienne Duveiller, Director of Research, CIMMYT-South Asia, on October 02, 2015. Dr. M.L. Jat, Senior Cropping System Agronomist and Coordinator of CCAFS South Asia, explained the research portfolio of CIMMYT’s Sustainable Intensification Program in northwest India. He explained how layering of resource-efficient technologies can help in adaptation to frequent climate and biological changes under a particular set of agroecological conditions. During the visit to the climate-smart villages, the overall approach of developing, adapting, and scaling CSA through innovation and learning platforms in a participatory mode involving youth and women was highlighted. The portfolios of CSA interventions (water, energy, carbon, nutrient, weather and knowledge based) are chosen to suit local agroclimatic conditions and are being implemented through innovative partnerships with farmers and farmer cooperatives, to build resilience to climate change, and increase productivity and income. Dr. Martin Kropff sent a message to Dr. Bruce Campbell, CCAFS Director, saying:

“Dear Bruce, I just visited the climate-smart village project of M.L. Jat of CIMMYT in Haryana. Very impressive and a great enthusiasm with the farmers. Really exceptional work. I hope we can keep up the good work in the new phase of CCAFS.” In his immediate response, Bruce said, “Hi, Martin, I agree. It is great work.”

CIMMYT DG Martin Kropff and CIMMYT Senior Management Meet the Honorable Chief Minister, Government of Punjab

CIMMYT DG apprising the Hon’ble Chief Minister, Govt. of Punjab, about the research activities undertaken at BISA Center in Ladhowal.

Dr. Martin Kropff, CIMMYT DG, accompanied by Drs. John Snape, Board Chair; Thomas A. Lumpkin, former CIMMYT DG; Marianne Banziger, CIMMYT DDG, and H.S. Gupta, BISA DG, paid a courtesy visit on the Hon’ble Chief Minister of Punjab Shri Parkash Singh Badal on October 02, 2015. Dr. Kropff apprised the Hon’ble Chief Minister about the infrastructure development and research activities going on at the Ladhowal center of BISA. The Chief Minister expressed keen interest in the activities of BISA and urged CIMMYT management to take the technology developed at BISA farm to farmers’ fields.

While thanking the team for sparing time to visit him, the Chief Minister promised full support to BISA and hoped that BISA will prove to be a milestone in heralding a second Green Revolution in India.

Visit to the Research Platform at CSSRI, Karnal, Haryana, India

CIMMYT DG visiting the research platform at ICAR’s Central Soil Salinity Research Institute, Karnal, Haryana.

The team, comprised of Drs. Martin Kropff, DG, CIMMYT, John Snape, Board Chair CIMMYT, Thomas A. Lumpkin, former CIMMYT DG, Marianne Banziger, CIMMYT DDG, H.S. Gupta, BISA DG,  and Etienne Duveiller, Director of Research, CIMMYT-South Asia, visited the CSSRI-CSISA Research Platform at Karnal, Haryana, on Oct. 2, 2015. Dr. D.K. Sharma, Director, ICAR-CSSRI, welcomed CIMMYT’s new DG and senior management and highlighted the CIMMYT/CSSRI partnership and how important it is in relation to salinity and food security under the emerging climate change scenario. He stressed sustainable intensification and climate-smart agriculture for efficient resource management to address issues such as soil quality, labor shortages, water, and energy in the current changing climate in Indian IGP. He suggested to Dr. Kropff that the research platform on sustainable intensification initiated under CSISA at CSSRI should be continued for the next few years through support from CIMMYT because this platform acts as a production observatory to monitor the long-term changes and helps to give future research direction. Dr. H.S. Jat, CIMMYT senior scientist and platform coordinator, explained the outputs of CIMMYT’s on-going research activities being carried out in collaboration with CSSRI, Karnal.