CIMMYT training courses play a critical role in helping international researchers meet national food security and resource conservation goals. By sharing knowledge to build communities of agricultural knowledge in less developed countries, CIMMYT empowers researchers to aid farmers. In turn, these farmers help ensure sustainable food security. In contrast to formal academic training in plant breeding and agronomy, CIMMYT training activities are hands-on and highly specialized. Trainees from Africa, Asia and Latin America benefit from the data assembled and handled in a global research program. Alumni of CIMMYT courses often become a significant force for agricultural change in their countries.
Rabia Akram receiving her certificate for successfully attending the training course. Photo: Awais Yaqub/CIMMYT
ISLAMABAD — CIMMYT in collaboration with Pakistan’s National Agricultural Research Center conducted a training course on maize breeding program management and statistical data analysis from 23-27 May 2016 in Islamabad, Pakistan. The training was attended by nearly 40 participants nominated from agricultural universities, public and private institutions across the country. It was the first in its kind to address breeding program management and introduce current software to analyze various phenotypic and genotypic data. This hands-on training will help scientists select varieties suitable for use by Pakistani farmers based on multi-environment datasets.
“Today, crop improvement techniques are getting advanced in each passing day and countries that are investing in cutting-edge science and state-of-the-art technologies not only are self-sufficient, but are leading exporters of their surplus products,” said Chairman of Pakistan’s Agricultural Research Council, Nadeem Amjad.
Participants of maize breeding program management and statistical data analysis training held in Islamabad from 23-27 May 2016. Photo: Amina Nasim Khan/CIMMYT
Amjad emphasized the need to build the capacity of scientists dedicated to fields such as crop modeling, bioinformatics and advanced agricultural statistical software to modernize and enhance agricultural productivity in Pakistan. He thanked CIMMYT for addressing the need that can help maize and wheat researchers to grow in these fields and improve their work.
“Thanks to this training I have analyzed all my data in just two hours. Before this it would have taken me months as I was using less efficient, less user friendly and very old software. This is a real support from CIMMYT and my tasks are greatly simplified,” said Rashad Rashid, a representative from Rafhan Maize Products private company.
Together with CIMMYT Pakistan scientists, the training was conducted by Mateo Vargas Hernandez and Alvarado Beltran Gregorio, consultant and senior data analyst from CIMMYT’s Biometry and Statistical Unit respectively, who are part of the team that developed the software used during the training.
“Sharing statistical software and training of researchers by the very people who were involved in developing the software makes this training unique,” according to Muhammad Azeem Khan, Director General of National Agricultural Research Center, who closed the ceremony.
Stocks of maize seed have been certified for quality and are now ready to be distributed to farmers in drought-affected districts. Photo: Tadele Asfaw/CIMMYT
As the Rio 2016 Olympics draw near, team managers are rushing to recruit their best sportspeople from all over the country, put them through fitness tests, and get them to various stadiums before the starter’s gun goes off.
The team working on the Emergency Seed Support for Drought Affected Maize and Wheat Growing Areas of Ethiopia initiative is facing a similar challenge. But instead of recruiting long jumpers and marathon runners, they are tasked with procuring quality seeds of elite maize, wheat, and sorghum varieties and distributing them to farmers before the start of the main planting season to increase food security in regions devastated by recent droughts.
Dry conditions are not uncommon in Ethiopia, but the 2015-2016 El Niño – the strongest on record – has led to the worst drought in a decade. Harvests across Ethiopia were affected, leaving 10.2 million people – more than 1 in 10 Ethiopians – in need of emergency food assistance.
Food security status across Ethiopia. Source: Fews.Net
Planning for a food-secure future
The government of Ethiopia and international organizations are working to provide food aid for people facing immediate shortages, but Bekele Abeyo, senior wheat breeder and pathologist at the International Maize and Wheat Improvement Center (CIMMYT) for sub-Saharan Africa and leader of the emergency seed project, is focusing on a more sustainable future.
“Relief efforts will provide sustenance today, but we need to ensure there is also food on plates tomorrow,” says Abeyo. “With the large crop losses experienced in 2015, farmers were not able to save seed for planting in 2016 and did not have sufficient income to purchase more. Unless these farmers are able to access seed, we may face further shortages in 2017.”
CIMMYT, with support from the U.S. Agency for International Development, is working with partners to supply over 2,700 tons of seed to more than 226,000 households across 71 woredas (districts) in four regions of Ethiopia. CIMMYT will work with both the formal seed sector and farmers’ cooperatives to source quality seed from within Ethiopia and make sure it reaches the farmers who need it the most. These high-yielding, drought resistant varieties are being supplied along with agronomic advice to further increase farmers’ resilience.
Together with Ethiopia’s Agricultural Transformation Agency (ATA), a primary partner in the project, CIMMYT organized workshops in each of the target regions –Amara, Oromia, Southern Nations, Nationalities, and People’s Region (SNNPR), and Tigray – to engage stakeholders and collectively finalize the workplan. Based on participant feedback, some sorghum will now also be supplied to selected regions, in addition to maize and wheat.
“It is important to consider the needs of the individual communities and regions,” says Yitbarek Semeane, director of ATA’s Seed Systems. “ATA has very strong links with the regions and government institutions so is able to provide feedback on farmers’ needs and preferences. As weather patterns in Ethiopia are becoming increasingly unpredictable, many farmers are changing their farming practices, or even switching crops.”
Seed is being distributed to 240 drought-affected farmers in the kebele of Ubobracha. Photo: E. Quilligan/CIMMYT
A race against time
With the main planting season rapidly approaching, the team is racing to source, procure, certify, transport and distribute seeds.
“The success of this project will depend on us procuring enough quality seed and distributing it to farmers before the main planting season,” says Tadele Asfaw, CIMMYT-Ethiopia program management officer and member of the project’s Seed Procurement Committee.
By mid-April, the team had successfully procured almost all the required maize and sorghum seeds and were navigating the complex logistics to get the requested varieties to each woreda. Agreements are also being signed with farmers’ cooperatives to ensure that wheat seed can be purchased without disrupting the normal seed system.
According to Ayele Badebo, CIMMYT scientist and wheat seed coordinator for the project, CIMMYT does not have the capacity to collect seed from individual farmers within each woreda, but this is something the cooperatives are ideally placed to do. They have the trust of both CIMMYT and farmers, and through the previous seed scaling project, they know which farmers were given seed to multiply and will now have it available for sale.
At the end of March, the seed procurement team traveled to eastern Oromia – one of the areas most affected by the 2015 drought – to meet with Chercher oda bultum, a farmers’ cooperative and seed supplier. The team was very satisfied to see that the supplier had sufficient stock of Melkassa2 and Melkassa4, locally-adapted drought resistant maize varieties that had already been certified for germination and moisture by another collaborator, Haramaya University. This same process is now underway for wheat seed.
Ethiopia’s Bureaus of Agriculture and Natural Resources are also working with woreda representatives to ensure that the seed will be distributed to those farmers who need it most, and who have sufficient land and agronomic tools to benefit from this initiative.
“Working with local enterprises and partners enables us to procure and deliver seed to drought-affected farmers as quickly as possible,” says Abeyo. “In combination with CIMMYT’s longer-term efforts in the region, we hope that we can foster a more robust seed system and increase food security for 2016 and beyond.”
The meeting room at ATA was a hive of activity as farmers’ unions met to negotiate transport of emergency seed. Photo: Emma Quilligan/CIMMYT
Partnering for success
While CIMMYT has the knowledge, networks and experience in Ethiopia to spring into action, the cooperation of partners such as the Agricultural Transformation Agency (ATA), farmers’ unions and Ethiopia’s Bureaus of Agriculture and Natural Resources is vital.
Established in 2010, the ATA is acting as a catalyst to spur the growth and transformation of Ethiopia’s agriculture sector. With funding from the Bill & Melinda Gates Foundation, ATA is working with the Ministry and Regional Bureaus of Agriculture and Natural Resources to coordinate the collection, cleaning, packing, labeling and distribution of quality seed to drought-affected farmers, as well as help train development agents and raise farmer awareness.
NARC’s maize team receiving a certificate of appreciation from AIP. Photo: M. Waheed Anwar/CIMMYT
ISLAMABAD — CIMMYT’s Agricultural Innovation Program (AIP) held its annual maize working group meeting on 10-11 May with over 20 representatives from public and private seed companies and higher learning institutions in attendance. The working group evaluated AIP partners’ progress in deploying CIMMYT-derived maize hybrids and varieties to farmers.
Maize productivity in Pakistan has increased almost 75 percent since the early 1990s thanks to the adoption and expansion of hybrid maize varieties. However, the seed that spurred this growth is largely imported at an annual cost of $50 million. Since AIP’s launch in 2013, however, more than 80 CIMMYT-derived maize hybrids and open-pollinated varieties have been adapted to Pakistan’s diverse ecologies. Currently, 21 public- and private-sector companies are testing and deploying these locally-adapted cultivars to smallholder farmers across the country.
In his opening statement, Pakistan Agricultural Research Council (PARC) Chairman Nadeem Amjad cited AIP as the best example of sustainable development projects and said that one of its invaluable contributions is “sharing of valuable parental lines and breeder seeds.” He added that CIMMYT hybrids can help “resource-poor maize farmers have affordable maize seeds at their doorstep.”
Participants in AIP’s annual maize working group meeting, 10-11 May 2016, Islamabad, Pakistan. Photo: Amina Nasim Khan/CIMMYT
At the meeting, partners reported on their progress producing parental seed and described how they planned to deliver quality seeds to farmers. They also identified key challenges in Pakistan’s maize seed value chain and recommended potential solutions during the group discussion.
In his concluding remarks, Pakistan’s National Agricultural Research Center (NARC) Director General Muhammad Azeem Khan said that it was only thanks to AIP innovations and interventions that NARC was able to start producing seed of biofortified hybrid maize, a first in the history of Pakistan.
Certificates of appreciation were presented by AIP to NARC for jump-starting hybrid seed production in Pakistan and hosting various national maize events in 2015, as well as to Tara Crop Sciences (Pvt.) Ltd. for conducting the best maize trials evaluated by AIP maize partners during the 2015 traveling maize seminar.
CIMMYT is collaborating with national partners in Nepal to support the expansion of registered hybrid maize and to help increase the crop’s productivity throughout the country. Photo: Ashok Rai/CIMMYT
Maize is the second most important food crop in Nepal, after rice. It contributes approximately 25 percent of Nepal’s food basket and occupies around 26 percent of the total cropped area. Maize productivity (2.3 tons per hectare) in Nepal is still quite low compared to the global average of 5.5 tons per hectare (t/ha).
Growing demand from Nepal’s poultry industry cannot be met by growing only open-pollinated varieties. Because of their high productivity, quality and profitability, higher-yielding hybrids have become increasingly popular among farmers. However, most maize hybrids are only approved for sale and cultivation in the central and eastern Terai, east of the Narayani River. To meet market demand, farmers in many areas, especially in western Nepal, sometimes purchase non-approved hybrid seeds. These hybrid seeds are not registered at Nepal’s Seed Quality Control Centre and are traded through informal channels.
Not wishing to risk a government penalty for violating the seed policy, traders have not distributed many high-performing hybrids, thereby restricting their local production, fair distribution and widespread availability, which could benefit many farmers in Nepal. Of the estimated 2,500 tons of hybrid maize grown in Nepal annually, only 1,000 tons are registered hybrids.
In 2014 and 2015, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) and Nepal’s National Maize Research Program (NMRP) partnered to evaluate maize hybrids in six additional districts (Banke, Bardiya, Kailali, Kanchanpur, Surkhet and Dadeldhura) in western Nepal. Trials were conducted in spring in the Terai and in summer in the mid-hills; they were monitored by a team of NMRP stakeholders. Performance data for variety release and registration were shared with Nepal’s National Seed Board (NSB).
Of the ten hybrids evaluated, four (TX 369, Bioseed 9220, Rajkumar and Nutan) were found to be agronomically superior, producing more than 6 t/ha. They also had tight husk cover, which provides moderate resistance to northern leaf blight and grey leaf spot. Based on the evaluation results, the NSB has registered and approved the four hybrid varieties for sale in western Nepal.
Highlighting the need to increase farmers’ access to registered hybrids, Dilaram Bhandari, NSB member and Director of the Crop Development Directorate of Nepal’s Department of Agriculture, said, “We have to adopt this modality for other hybrids as well, since new hybrids expand outside the recommendation domains quite frequently.”
H.S. Sidhu, senior research engineer, BISA, demonstrating laser land leveler technology. Photo: Yogehs Kumar/CIMMYT
DHARWAD, INDIA — Nearly 150 scientists, researchers and extension agents from universities and agricultural departments across the state of Karnataka, India, attended a field training 12-13 April on conservation agriculture and farm mechanization for sustainable intensification. The training was hosted by the University of Agricultural Sciences (UAS), Dharwad, Karnataka, and jointly organized by CIMMYT, UAS and Karnataka’s Department of Agriculture.
South Asia is one of the most vulnerable regions to climate change. Flooding and drought coupled with seasonal rainfall changes are predicted to devastate agriculture, with extreme heat already disrupting the growing season in India and other countries. Wheat production in India’s Indo-Gangetic Plains may decrease by up to 50 percent by 2100, harming the hundreds of millions who rely on the region for food security. India also extracts more groundwater than any other country in the world to support agriculture, with northern India’s groundwater declining one meter every three years.
Karnataka faces these and other challenges, including production system constraints, mono-cropping and lack of access to markets, storage facilities, processing units and real-time information. Other constraints include large post-harvest losses, labor and energy shortages, poor mechanization and fodder scarcity.
J.V. Goud, Ex Vice Chancellor, UAS, Dharwad, described these challenges in his inaugural address and emphasized the need for sustainable agriculture practices to achieve food security in India.
“Courses like this help combat climate anomalies and make agriculture practices drought-proof,” said Goud. Sustainable practices have proven successful in addressing water shortages in agriculture. For example, trainees were introduced to precision land leveling, which can raise India’s wheat yields more than 16% and increase water productivity by 130%.
Training attendees. Photo: UAS-Dharwad
According to M.L. Jat, CIMMYT senior cropping systems agronomist and an expert in conservation agriculture (CA), “Climate-smart agriculture practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, This is backed up by ample data on conservation agriculture management practices throughout the region.”
Conservation agriculture is sustainable and profitable agriculture based on minimal soil disturbance, permanent soil cover and crop rotations. It is improving farmers’ livelihoods throughout South Asia and has led to policy-level impacts through the implementation of CA practices covered in the training, such as precision land leveling, zero tillage, direct seeding and crop residue management.
Trainees were taught how to operate a variety of CA machines, including multi-crop zero-tillage machines that can calibrate the amount of seed and fertilizer and control speed for seeding different crops. They also learned about other practices such as weed, nutrient and water management using precision support and sensors.
Scientists and researchers who imparted the training included Jat, CIMMYT agronomist H.S. Jat, CIMMYT hub manager S.G. Patil, CIMMYT consultant Yogesh Kumar Singh, Borlaug Institute for South Asia (BISA) senior research engineer H.S. Sidhu, BISA senior scientist R.K. Jat and Deputy Director of the International Plant Nutrition Institute’s India Program-South Zone, T. Satyanarayana.
HYDERABAD, INDIA — A training course on maize seed production and seed business management was organized by CIMMYT and seed companies Pioneer Hi-bred and Kaveri Seeds from 28-30 March, 2016. The training was held as part of the CIMMYT’s efforts to connect several public and private sector agricultural research institutions in South Asia.
South Asian farmlands have been increasingly experiencing climate change-related weather extremes. If current trends persist until 2050, major crop yields and the food production capacity of South Asia will decrease significantly – by 17 percent for maize – due to climate change-induced heat and water stress. In response to this situation, CIMMYT with support from the United States Agency for International Development and partners are developing heat stress-resilient maize for Asia.
The course aimed to strengthen the capacity of partner institutions – particularly small-and-medium enterprises and national agricultural research systems in South Asia – to expand their maize seed production processes and increase uptake of heat-resilient maize hybrids in stress-prone areas. More than 20 participants from partner institutions participated in the course including breeders, seed production specialists and seed business specialists from commercial seed companies, including Syngenta, DuPont Pioneer, Advanta, J.K. Seeds, CIMMYT and the International Crops Research Institute for the Semi-Arid Tropics.
“Public-private alliances are critical to address complex issues such as heat stress and the development and deployment of heat stress-resilient maize in different regions of South Asia,” said P.H. Zaidi, CIMMYT’s Heat Stress Tolerant Maize for Asia (HTMA) project leader and senior maize physiologist. Zaidi also presented HTMA updates and listed the first variety releases licensed in 2015 to various partners for deployment.
Selvarajan Venkatesh, DuPont Pioneer senior maize breeder, gave a talk on commercial plant breeding and its business perspective with respect to sustainability and foundation for global food security. Venkatesh elaborated on how modern sophisticated hi-tech tools and interactions with multidisciplinary departments changed the face of present plant breeding. Nagesh Patne, CIMMYT seed system project Scientist, discussed the importance of seed production research and the optimization process of the cost of goods of seeds. Various aspects of plant characterization for seed production feasibility were also discussed during this meeting.
Participants learn about large-scale commercial seed production a during a visit to Kaveri Seeds Pvt. Ltd in Jiyanpur. Photo: CIMMYT
Other topics including maintenance breeding, production workflow, hybrid seed production, post-harvest management of seed lots and seed quality control were also discussed at the training. Presenters included A.R. Sadananda, CIMMYT, Satish Hegde, Advanta Seeds Pvt. Ltd., Ramana Rao, G.K. Seeds, S. Sudhakar Reddy, Field Crops Lead, Advanta India and R. Nanda Kumar, product quality and control manager with Syngenta India.
(L-R) Mark Bell (UC Davis), UAAR representative, Imtiaz Muhammad (CIMMYT), Rai Niaz, Vice Chancellor PMAS-UAAR, UAAR representative, UAAR representative. Photo: PMAS-UAAR.
ISLAMABAD — The United States Agency for International Development (USAID)-funded Agricultural Innovation Program (AIP) for Pakistan, in partnership with Pir Mehr Ali Shah University of Arid Agriculture Rawalpindi (PMAS-UAAR), organized a one-day conference on “Agricultural Productivity Improvement through Nudging.” The conference was attended by agricultural experts, professors, scientists, researchers, national and international experts, and students.
Rai Niaz, PMAS-UAAR Vice Chancellor, chaired the inaugural session. He extolled the partnership between AIP and PMAS-UAAR that will bring innovation to science and better opportunities in the agricultural sector. CIMMYT Country representative Muhammad Imtiaz gave the participants an overview of AIP activities.
The audience takes a keen interest in the seminar’s inaugural session. Photo: PMAS-UAAR.
Mark Bell, representative of University of California Davis, outlined some areas in which nudging, a technique that influences people towards desirable behavior, can be used as a potential vehicle for agriculture extension.
The technical session of the seminar was jointly chaired by Muhammad Imtiaz and Abdul Saboor, Dean of the Social Science Faculty, PMAS-UAAR.
Speaking during the technical session, Imtiaz described the nudging concept and the difference between nudging and incentivizing. He explained in detail the types of decisions made by the farming community and their implications for crop and livestock productivity. He spoke about AIP’s nudging efforts and how successful they have been in the livestock, vegetable and cereal sectors. He explained how farmers are nudged through AIP to increase agricultural productivity. The participants lauded AIP’s efforts to nudge farmers to adopt innovations and increase their productivity.
Puniram Chaudhary in Kailali District explains the advantages of growing new lentil variety Black Masuro over the local variety. Photo: Narayan Khanal
KATHMANDU, NEPAL (CIMMYT) – Farmers in Nepal are benefiting from the work done by the Cereal Systems Initiative of South Asia (CSISA) in Nepal, which promotes public-private partnerships with small and medium enterprises in the seed sector to aid sustainable intensification of wheat- and maize-based cropping systems over the past two years.
Representatives of these enterprises have received business mentoring, participated in an exercise on creating business plans, collaborated with Indian seed companies and attended a “theory of change” workshop. Subsequently, two seed companies (GATE Nepal Pvt. Ltd. and Unique Seed Company) requested technical support from CIMMYT to organize field demonstrations of new wheat and lentil varieties for farmers in six strategic districts in the hills and terai (plains) of Nepal. In terai demonstrations were held in Banke, Bardiya, Kailali and Kanchanpur. In hill districts demonstrations were held in Surkhet and Dadeldhura. Altogether, CIMMYT provided support for 60 wheat and lentil field demonstrations during the 2015-2016 winter season in collaboration with national agriculture research system partners.
A team of professionals, which included representatives from District Agriculture Development Offices (DADOs), Nepal Agriculture Research Council (NARC), CSISA-Nepal, seed companies and the media, attended the demonstrations from 13-17 March 2016. They observed three treatments: a farmers’ variety under farmers’ management; an improved variety under farmers’ management and an improved variety under improved management. The visitors also viewed seed production plots, interacted with farmers about key lessons learned and discussed possible strategies for scaling out wheat and lentil technology through public-private partnerships.
During the visit, it was clear that farmers understood the advantages of growing quality seed of recently released wheat varieties such as Vijay, compared to the local varieties. Some farmers asked for wheat varieties with physical features and cooking qualities similar to those of NL 297, an old variety. At one of the participatory variety selection (PVS) plots, senior wheat breeder Madan Bhatta proposed NARC’s pipeline variety BL4341 as an alternative to NL 297. Milan Paudel, GATE Nepal agriculture officer, became keenly interested in BL4341 and said he would collect seed from the trial plot so his company could multiply it.
Women farmers selected wheat variety Danfe at the PVS trial in Gadhi VDC, Surkhet District. Photo: Narayan Khanal
The team also observed the wheat field of farmer Ram Chandra Yadav, who had planted Vijay on 3 ha using a zero-tillage seed drill. Yadav is also a local service provider of the zero-tillage seed drill promoted by the CSISA project. During the current wheat season, he has provided paid services on 18 hectares (44.5 acres) belonging to other farmers. The team also witnessed the success of new wheat varieties WK 1204, Dhawalagiri and Danphe in the hill district of Surkhet, where farmers planted a significant area with seed saved from their previous harvest.
Lentils were also in focus, most farmers liked the performance of new variety Black Masuro across districts in the terai. Rabendra Sah, senior technical officer of the National Grain Legume Research Program, said that to get higher yields, farmers should sow Black Masuro by 15 October.
DADO officials acknowledged CIMMYT’s contribution to seed system development and mechanization. They proposed an improved model for producing seed of major food crops in public-private partnerships. In this model, seed companies agree to make contractual arrangements with seed producer groups and cooperatives to produce and market truthfully labeled (TL) seed. Once the contract is signed, DADOs will provide source seed to the seed companies at a subsidized rate, and the seed will be multiplied by producer groups and cooperatives. The TL seed thus produced will then be distributed through different food security related projects.
Given that DADOs from Surkhet and Kanchanpur are keen to participate in this model, CIMMYT has agreed to further strengthen such partnership arrangements. There is a growing realization that the CIMMYT can mobilize private seed companies in Nepal to utilize the network of farmer groups and cooperatives to scale out technologies/varieties.
EL BATAN, Mexico – Ivan Ortiz-Monasterio, principal scientist at the International Maize and Wheat Improvement Center (CIMMYT), was announced as the 2017 Global Agronomy Section Vice Chair of the American Society of Agronomy (ASA) on March 29.
CIMMYT principal scientist Ivan Ortiz-Monasterio.
The ASA is a scientific society dedicated to promoting the transfer of knowledge and practices to sustain global agronomy. The Global Agronomy Section, one ASA’s eight divisions, deals with international agriculture or agricultural issues outside the United States.
As Section Vice Chair, Ortiz-Monasterio, who works in CIMMYT’s Sustainable Intensification Program, will help Presiding Chair Sjoerd Duiker oversee the coordination of the Global Agronomy Section’s programs and services. The Vice Chair position rotates to Section Chair after the first year of service. Ortiz-Monasterio will also serve as a member of the Nomination Committee for Section Vice Chair and Section Representative to the Board of Directors.
Ortiz-Monasterio said he sees the Vice Chair position as a chance to enhance relations between the CGIAR and the association.
“As Vice Chair and Chair of the Global Agronomy Section of ASA, I hope to bring a closer involvement of the CG with the American Society of Agronomy,” he said.
Ortiz-Monasterio has worked at CIMMYT since 1989, first in the Global Wheat Program and, since 2009, as Principal Scientist with the Sustainable Intensification Program. Over his scientific career he has penned more than 150 publications that include more than 65 articles in international refereed journals, 18 book chapters, as well as numerous abstracts and conference papers.
HARARE (CIMMYT) — As CIMMYT joins the world in celebrating the International Day for Biological Diversity on 22 May, it can take pride in the diverse maize varieties it develops which have improved the livelihoods and health of smallholder farmers globally.
These varieties have brought tremendous benefits to smallholders in sub-Saharan Africa (SSA). Over 90 percent of agricultural production in SSA is rainfed, which puts farmers at risk for drought and heat in addition to the poor soil fertility, pests and diseases they face. Drought alone damages about 40 percent of all maize crops in SSA, endangering the livelihoods and food security of millions of smallholder farmers.
Stress tolerant maize not only reduces risks for farmers in the face of unpredictable environmental and biological conditions, it also allows more stable crop production. The International Maize and Wheat Improvement Center (CIMMYT) breeds high-yielding, locally-adapted maize varieties with farmer-preferred traits such as drought tolerance, nitrogen use efficiency, and disease and insect pest resistance. Many of these varieties also have increased nutritional traits such as high protein quality and increased provitamin A content, which help increase children’s weight and height growth rates and reduce childhood blindness.
“Since working with CIMMYT, we have unlocked our production potential,” says Sylvia Horemans, marketing director of Zambia-based Kamano Seeds. Since 2012 Kamano Seeds has benefitted from CIMMYT to strengthen its work in maize breeding, seed production and marketing. Photo: CIMMYT
“Increasing adoption of these stress tolerant maize varieties is helping African farmers cope with drought and climate change, improve yields at household level and thereby enhance the livelihoods and food security of tens of millions of farmers,” said Cosmos Magorokosho, CIMMYT-Southern Africa maize breeder.
These drought-tolerant varieties have proven resistant despite harsh conditions brought on in southern Africa by an intense El Niño, according to Magorokosho. “Significant impacts have been observed in plots of smallholder farmers who grow these varieties.”
In 2014, over 54,000 metric tons of certified seed of the stress tolerant maize varieties were produced and delivered by partner seed companies for planting by smallholders. By the end of that year, more than five million smallholders had planted the improved drought tolerant varieties on over two million hectares, benefiting more than 40 million people in 13 countries in SSA.
Today, there are more than 200 stress tolerant maize varieties that yield the same or more than commercial varieties under average rainfall, and more importantly, produce up to 30 percent more than commercial varieties under moderate drought conditions. Armed with these improved varieties, CIMMYT is assuming a greater role to ensure stress tolerant maize reaches nearly five and a half million smallholder households in SSA by the end of 2019.
“Even with a little rain, this seed does well,” says a smallholder farmer Philip Ngolania, in south-central Kenya, referring to a drought-tolerant maize variety he planted during the 2015 crop season. “Without this seed, I would have nothing. Nothing, like my neighbours who did not use the variety.” Photo: Johnson Siamachira/CIMMYT
“In close collaboration with our partners, we were able to create excitement about what can be achieved with drought tolerant maize in Africa,” said Tsedeke Abate, leader of CIMMYT’s Stress Tolerant Maize for Africa project. CIMMYT is working with national agricultural research systems, international research centers, and other development programs to disseminate improved maize seed to smallholder farmers in SSA through small-and medium-sized seed companies.
“The work we have undertaken on drought tolerant maize has created significant impacts. However, several challenges still remain,” cautioned B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE. One of these challenges is maize lethal necrosis (MLN), which emerged in Kenya in 2011 and has since devastated maize crops across East Africa. CIMMYT is working to generate improved stress tolerant maize varieties with resistance to MLN and other major diseases.
Maize production in Africa is growing rapidly, making maize the most widely cultivated crop on the continent, and the staple food of more than 300 million people. Providing farmers with diverse, improved seed choices will thus strengthen food security, health and livelihoods in SSA.
Afghan and Indian researchers are collaborating to combat the wheat rust disease Karnal bunt. Photo: CIMMYT
DELHI, INDIA — Afghanistan is strategically located at the intersection of South, Central and West Asia, making it an incredibly geographically diverse country. Varying climates and terrains across the country have a direct impact on agriculture, including Afghanistan’s staple crop wheat, which is grown in in tropical climates in the east to cooler regions in the west.
However, various rust diseases affect wheat yields across the country. According to the Food and Agricultural Organization of the United Nations, wheat rusts manifest as yellow, blackish or brown colored blisters that form on wheat leaves and stems, full of millions of spores. These spores, similar in appearance to rust, infect the plant tissues, hindering photosynthesis and decreasing the crop’s ability to produce grain.
While yellow rust is one of the most far-reaching diseases in Afghanistan and globally most devastating rust disease, Karnal bunt is another disease that while confined to the eastern part of Afghanistan, has proven challenging to combat with climate change creating more favorable conditions for the disease to spread in the region. In addition, the eastern province of Nangarhar is emerging as an important seed production hub in the country, raising concerns about Karnal bunt.
To counteract and contain Karnal bunt, CIMMYT and the Indian Institute of Wheat and Barley Research (IIWBR) of the Indian Council of Agricultural Research jointly organized a three-day training program on Karnal bunt for Afghan researchers. Indu Sharma, former IIWBR director, stated this training is the beginning of a long collaboration between IIWBR and Afghanistan’s national agricultural research system. She also gave a detailed description of the Karnal bunt pathogen and its epidemiology, emphasizing the importance of detecting and how to combat Karnal bunt in Afghanistan.
During the workshop various principal scientists from IIWBR and the Indian Agricultural Research Institute discussed India’s perspective and experience with wheat diseases, production strategies current research trends and genetic and biotechnological means for improving wheat. There was also a demonstration on preparing Karnal bunt-free seed samples for international shipping by IIWBR principal scientist M. S. Saharan.
In his address, IIWBR Director R. K. Gupta expressed his appreciation for the trainees’ active participation and looked forward to collaborating with them in the future. Sharma cited material exchange and screening of advanced lines for quality and disease resistance as opportunities for future collaboration.
NAIROBI, Kenya (CIMMYT) – When a strange maize disease suddenly appeared in 2011 in Bomet, a small town 230 kilometers (143 miles) west of Kenya’s capital city, Nairobi, scientists from CIMMYT and Kenya Agricultural Livestock and Research Organization were thrown into disarray. The disease, later identified as Maize Lethal Necrosis (MLN), became a nightmare for maize scientists leading many to work around the clock to find a solution to stop its rapid spread. As intensive research and screening work started, it became apparent that there was a dire need to fill a glaring information gap on the disease, particularly regarding MLN’s geographic distribution, the number of farmers affected, the levels of yield loss and the impact of those losses.
To address this gap, surveys were conducted with groups of male and female farmers in over 120 sub-locations of Kenya’s maize production zones in a recent study “Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya.” The results estimate maize losses from MLN at half a million tons per year with the highest losses reported in western Kenya. The study identified an urgent need to develop improved maize varieties resistant to MLN and emphasized the need for farmers to be informed and adapt appropriate agronomic practices to cope with the disease.
Read more about this research and other related studies on MLN from CIMMYT Scientists.
Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. 2016. Hugo De Groote, Francis Oloo, Songporne Tongruksawattana, Biswanath Das. Crop Protection Volume 82, April 2016, Pages 30–35
MLN pathogen diagnosis, MLN-free seed production and safe exchange to non-endemic countries. 2015. Monica Mezzalama, Biswanath Das, B. M. Prasanna
Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. 2015. Manje Gowda, Biswanath Das, Dan Makumbi, Raman Babu, Kassa Semagn, George Mahuku, Michael S. Olsen, Jumbo M. Bright, Yoseph Beyene, B. M. Prasanna. Theoretical and Applied Genetics
Smart, precise mechanization, presented by Víctor López. Photo: Margaret Zeigle/GHI
CALI, Colombia (CIMMYT) — Investment in agricultural research for development provides extraordinary returns and benefits for stakeholders, said the director general of the International Maize and Wheat Improvement Center (CIMMYT), expressing support for a new multi-donor funding platform.
AgroLAC 2025, coordinated by the Inter-American Development Bank in partnership with Dow Chemical Company and The Nature Conservancy, aims to stimulate investment in rural areas, encouraging profitable and sustainable agriculture by supporting pilot projects, funding initiatives and technologies that strengthen agricultural research and promote the sustainable agricultural innovation and development agenda of the Latin America-Caribbean (LAC) region. CIMMYT recently joined the initiative.
“With the looming challenge of feeding 9 billion people in 2050, CIMMYT fully supports the clear recommendations put forward by the AgroLAC 2025 Initiative for policies to help Latin America and the Caribbean (LAC) sustainably realize the potential of its outstanding natural resources,” said Martin Kropff, CIMMYT director general, in a recent blog post.
“Local governments, development agencies, foundations and higher education and research institutions must invest heavily in agricultural research and development. If they do so, the return on their investment will be profound,” he added. “In Mexico alone, this amounts to a network of over 150 partners, 50 research platforms, 233 demonstration modules and several thousands of extension plots, reaching over 200,000 farmers.”
At the event, CIMMYT’s sustainable intensification for Latin America team led a meeting on “Accessible mechanization for climate-smart agriculture in Latin America.”
Bram Govaerts, strategy lead for Latin America with CIMMYT’s Sustainable Intensification Unit and Víctor López, MasAgro’s manager of institutional relations, described CIMMYT’s experience designing mechanized solutions for conservation agriculture – farming practices that involve minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment – through the MasAgro (Sustainable Modernization of Traditional Agriculture) program and other regional programs.
Read the original AgroLAC 2025 Spanish press release here.
Read CIMMYT Director General Martin Kropff’s blog on AgroLac2025 here.
Visitors at the BISA-CIMMYT display. CIMMYT/Meenakshi Chandiramani
NEW DELHI (CIMMYT) – India’s Krishi Unnati Melanational agriculture fair, which was hosted by India’s Department of Agriculture and the Indian Agricultural Research Institute in March, attracted thousands of farmers who attended to learn about the latest agricultural innovations.
The fair was inaugurated by the country’s Prime Minister Shri Narendra Modi, who urged farmers to adopt a “three pillars” support system to insulate themselves from crop losses by farming sustainably. The prime minister recommended growing timber on extra land while adopting animal husbandry and other activities. Modi also presented awards to the best performing states of 2014-2015 and visited exhibitions demonstrating the latest advancements in India’s agriculture sector.
CIMMYT Country Representative Etienne Duveiller and Meenakshi Chandiramani, CIMMYT-India office manager attend the fair. CIMMYT/R.S. Tripathi
Delegates had the opportunity to visit some 500 stalls set up by public and private sector companies to display new crop varieties, modern technologies and inputs. The Borlaug Institute for South Asia and the International Maize and Wheat Improvement Center displayed joint research activities underway at sites across India.
Farmers and researchers visiting the display learned about farming practices and technology from interpretive staff and through information brochures, which were made available in regional languages.
Severe drought-affected area in Lamego, Mozambique. (Photo: Christian Thierfelder/CIMMYT)
HARARE (CIMMYT) — In southern Africa close to 50 million people are projected to be affected by droughts caused by the current El Niño, a climate phenomenon that develops in the tropical Pacific Ocean causing extreme weather worldwide — this year, one of the strongest on record. Many of those millions are expected to be on the brink of starvation and dependent on emergency food aid and relief.
However, severe droughts are nothing new to the region. Between 1900 and 2013 droughts have killed close to 1 million people in Africa, with economic damages of about $3 billion affecting over 360 million people. Over the past 50 years, 24 droughts have been caused by El Niño events, according to research by Ilyas Masih. If droughts are so recurrent and known to be a major cause of yield variability and food insecurity in southern Africa, why are we still reacting to this as a one-time emergency instead of a calculated threat?
Unpredictable harvests: Above, yield variability in the world’s top 5 maize producing countries (left) vs. southern Africa (right) Source: FAOSTAT, 2015
Over the past 50 years, donors have focused on the “poorest of the poor” in agriculture – areas where farming is difficult due to low and erratic rainfalls, poor sandy soils and high risk of crop failure. Investments were made in these areas to change farmers’ livelihoods – and yet the numbers of food insecure people are the same or rising in many southern African countries. Once drought hits, most farmers are left with no crops and are forced to sell their available livestock. Due to many farmers flooding the market with poor meat at once, prices for both livestock and meat hit rock bottom. Only when the situation becomes unbearable does the development community act, calling for emergency aid, which kicks in with a stuttering start. Abject poverty and food aid dependency is the inevitable consequence.
A farmer in Zimbabwe explains his challenges with drought and low soil fertility. CIMMYT/Michael Listman
Short-term relief can help millions of farmer families in this current crisis, and emergency solutions will likely be necessary this year. However, emergency relief is not the solution to saving lives and money in a world where extreme weather events are only going to become more frequent.
Proactive, strategic and sustainable response strategies are needed to increase farming system resilience and reduce dependency on food aid during extreme weather events like El Niño. This starts with improving the capacity of local, regional and national governments to make fully informed decisions on how to prepare for these events. Interventions must reach beyond poor performing areas, but also support higher productivity areas and emerging commercial farmers, who have greater potential to produce enough grain on a national scale to support areas hardest hit by droughts and dry-spells.
Groundnuts in rotation with maize under conservation agriculture can provide food and nutrition despite climate variability in Malawi. CIMMYT/Christian Thierfelder
They need to be scaled out to increase resilience to climate variability. This strategy of improved foresight and targeting coupled with adoption of climate-smart agriculture and improved outscaling can lead to increased resilience of smallholder farming systems in southern Africa, reducing year-to-year variability and the need for emergency response.
Learn more about the impacts of El Niño and building resilience in the priority briefing “Combating drought in southern Africa: from relief to resilience” here, and view the special report from FEWS Net illustrating the extent and severity of the 2015-16 drought in southern Africa.