Skip to main content

Tag: zero tillage

Special issue on gender research in agriculture highlights CIMMYT’s work on gender inclusivity

A new special issue on gender research in agriculture highlights nine influential papers published in the past three years on gender research on crop systems including maize.

The virtual special issue, published earlier this month in Outlook on Agriculture, features work by International Maize and Wheat Improvement Center (CIMMYT) scientists on gender inclusivity in maize systems in Africa and South Asia.

In the Global South, women contribute substantial labor to agriculture but continue to face barriers in accessing agricultural resources, tools and technologies and making decisions on farms.

Combatting gender inequality is crucial for increasing agricultural productivity and reducing global hunger and poverty and should be a goal in and of itself. Evidence suggests that if women in the Global South had access to the same productive resources as men, farm yields could rise by up to 30 percent, increasing total agricultural output by up to 4 percent and decreasing the number of hungry people around the world by up to 17 percent.

The latest virtual special issue includes a review of existing research by CIMMYT gender experts, exploring issues and options in supporting gender inclusivity through maize breeding and the current evidence of differences in male and female farmers’ preferences for maize traits and varieties. The team also identified key research priorities to encourage more gender-intentional maize breeding, including innovative methods to assess farmer preferences and increased focus in intrahousehold decision-making dynamics.

The issue also features a study by CIMMYT and Rothamsted Research researchers on differences in preferred maize traits and farming practices among female and male farmers in southern Africa. The team found that female plot managers and household heads were more likely to use different maize varieties and several different farming practices to male plot managers and household heads. Incorporating farming practices used by female farmers into selection by maize breeding teams would provide an immediate entry point for gender-intentionality.

Also included is a recent paper by CIMMYT gender researchers which outlines the evidence base for wheat trait preferences and uptake of new farming technologies among male and female smallholder farmers in Ethiopia and India. The team highlight the need for wheat improvement programs in Ethiopia and India to include more gender-sensitive technology development, evaluation and dissemination, covering gender differences in wheat trait preferences, technology adoption and associated decision-making and land-use changes, as well as economic and nutritional benefits.

In a study carried out in the Eastern Gangetic Plains of South Asia, CIMMYT scientists investigated how changes in weed management practices to zero tillage – a method which minimizes soil disturbance – affect gender roles. The team found that switching to zero tillage did not increase the burden of roles and responsibilities to women and saved households valuable time on the farm. The scientists also found that both women and men’s knowledge of weed management practices were balanced, showing that zero tillage has potential as a gender inclusive farming practice for agricultural development.

Also featured in the special issue is a study by CIMMYT experts investigating gender relations across the maize value chain in rural Mozambique. The team found that men were mostly responsible for marketing maize and making decisions at both the farm level and higher levels of the value chain. The researchers also found that cultural restrictions and gender differences in accessing transport excluded women from participating in markets.

Finally, the collection features a study authored by researchers from Tribhuvan University, Nepal and CIMMYT exploring the interaction between labour outmigration, changing gender roles and their effects on maize systems in rural Nepal. The scientists found that the remittance incomes sent home by migrants and raising farm animals increased maize yields. They further found that when women spent more time doing household chores, rearing farm animals and engaging in community activities, maize yields suffered, although any losses were offset by remittance incomes.

Read the study: Virtual Special Issue: Importance of a gender focus in agricultural research for development

Cover photo: Women make up a substantial part of the global agriculture workforce, but their role is often limited. (Credit: Apollo Habtamu/ILRI)

Conservation agriculture practices revive saline and sodic soils

In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.

Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.

Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.

Read the full publication: Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems

Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)

Climate-smart strategy for weed management proves to be extremely effective

Rice-wheat cropping rotations are the major agri-food system of the Indo-Gangetic Plains of South Asia, occupying the region known as the “food basket” of India. The continuous rice-wheat farming system is deceptively productive, however, under conventional management practices.

Over-exploitation of resources leaves little doubt that this system is unsustainable, evidenced by the rapid decline in soil and water resources, and environmental quality. Furthermore, continuous cultivation of the same two crops over the last five decades has allowed certain weed species to adapt and proliferate. This adversely affects resource-use efficiency and crop productivity, and has proven to negatively influence wheat production in the Western Indo-Gangetic Plains under conventional wheat management systems.

Studies suggest weed infestations could reduce wheat yields by 50-100% across the South Asian Indo-Gangetic Plains. Globally, yield losses from weeds reach 40%, which is more than the effects of diseases, insects, and pests combined.

Herbicides are not just expensive and environmentally hazardous, but this method of chemical control is becoming less reliable as some weeds become resistant to an increasing number common herbicides. Considering the food security implications of weed overgrowth, weed management is becoming increasingly important in future cropping systems.

How can weeds be managed sustainably?

Climate-smart agriculture-based management practices are becoming a viable and sustainable alternative to conventional rice-wheat cropping systems across South Asia, leading to better resource conservation and yield stability. In addition to zero-tillage and crop residue retention, crop diversification, precise water and nutrient management, and timing of interventions are all important indicators of climate-smart agriculture.

In a recently published 8-year study, scientists observed weed density and diversity under six different management scenarios with varying conditions. Conditions ranged from conventional, tillage-based rice-wheat system with flood irrigation (scenario one), to zero-tillage-based maize-wheat-mung bean systems with subsurface drip irrigation (scenario 6). Each scenario increased in their climate-smart agriculture characteristics all the way to fully climate-smart systems.

At the end of 8 years, scenario six had the lowest weed density, saw the most abundant species decrease dramatically, and seven weed species vanish entirely.  Scenario one, with conventional rice-wheat systems with tillage and flooding, experienced the highest weed density and infestation. This study highlights the potential of climate-smart agriculture as a promising solution for weed suppression in northwestern India.

Read the full study: Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains

Cover image: Farmer weeding in a maize field in India. (Photo: M. Defreese/CIMMYT)

“Happy Seeder” saves farmers money over burning straw, new study in India shows

Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)
Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)

Compared to conventional tillage practices, sowing wheat directly into just-harvested rice fields without burning or removing straw or other residues will not only reduce pollution in New Delhi and other parts of northern India, but will save over $130 per hectare in farmer expenses, lessen irrigation needs by as much as 25%, and allow early planting of wheat to avoid yield-reducing heat stress, according to a new study published in the International Journal of Agricultural Sustainability.

The practice requires use of a tractor-mounted implement that opens grooves in the soil, drops in wheat seed and fertilizer, and covers the seeded row, all in one pass. This contrasts with the typical method for planting wheat after rice, which involves first burning rice residues, followed by multiple tractor passes to plow, harrow, plank, and sow, according to Harminder S. Sidhu, principal research engineer at the Borlaug Institute for South Asia (BISA) and a co-author of the study.

“There are already some 11,000 of these specialized no-till implements, known as the Happy Seeder, in operation across northern India,” said Sidhu, who with other researchers helped develop, test and refine the implement over 15 years. “In addition to sowing, the Happy Seeder shreds and clears rice residues from the seeder path and deposits them back onto the seeded row as a protective mulch.”

Covering some 13.5 million hectares, the Indo-Gangetic Plain stretches across Bangladesh, India, Nepal and Pakistan and constitutes South Asia’s breadbasket. In India, the northwestern state of Punjab alone produces nearly a third of the country’s rice and wheat.

Some 2.5 million farmers in northern India practice rice-wheat cropping and most burn their rice straw — an estimated 23 million tons of it — after rice harvest, to clear fields for sowing wheat. Straw removal and burning degrades soil fertility and creates a noxious cloud that affects the livelihoods and health of millions in cities and villages downwind. Air pollution is the second leading contributor to disease in India, and studies attribute some 66,000 deaths yearly to breathing in airborne nano-particles produced by agricultural burning.

The central and state governments in northwestern India, as well as universities and think-tanks, have put forth strategies to curtail burning that include conservation tillage technologies such as use of the Happy Seeder. Subsidies for no-burn farming, as well as state directives and fines for straw burning, are in place and extension agencies are promoting no-burn alternatives.

A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

As an aid for policy makers and development practitioners, the present study applied econometrics to compare conventional and zero-tillage in terms of yield, input levels and implications for rice residue burning. The study also compared use of the Happy Seeder versus a simple zero-tillage drill with no straw shredder. Participants included more than 1,000 farm households in 52 villages, encompassing 561 users of conventional tillage, 226 users of simple zero-tillage seeding implements, and 234 Happy Seeder users.

They found that only the Happy Seeder was able to sow wheat directly into large amounts of rice residues, with significant savings for farmers and equal or slightly better wheat yields, over conventional tillage. The Happy Seeder also saves time and water.

“Given the benefits of sowing wheat using the Happy Seeder against the tremendous health and environmental costs of residue burning, the reduction or elimination of straw burning should be pushed forward immediately,” said P.P. Krishnapriya, research scientist at the Sanford School of Public Policy, Duke University, and a co-author of the article. “Investments in social marketing and policies that foster the use of the Happy Seeders, including significant subsidies to purchase these machines, must be accompanied by stricter enforcement of the existing ban on residue burning.”

The study also found that the information sources most widely-available to farmers are currently geared towards conventional agricultural practices, but farmers who use the internet for agricultural information are more likely to be aware of the Happy Seeder.

“Awareness raising campaigns should use both conventional and novel channels,” said Priya Shyamsundar, lead economist at the Nature Conservancy (TNC) and co-author of the article. “As with any innovation that differs significantly from current practices, social and behavioral levers such as frontline demonstrations, good champions, and peer-to-peer networking and training are critical.”

In addition, rather than having most individual farmers own a Happy Seeder — a highly-specialized implement whose cost of $1,900 may be prohibitive for many — researchers are instead promoting the idea of farmers hiring direct-sowing services from larger farmers or other people able to purchase a Happy Seeder and make a business of operating it, explained Alwin Keil, a senior agricultural economist with the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the new study.

“We are extremely grateful to the Indian Council of Agricultural Research (ICAR), the Nature Conservancy, and the CGIAR Research Program on Wheat Agri-Food Systems (WHEAT), who supported our research,” said Keil.

Cobs & Spikes podcast: What is conservation agriculture?

Farmers worldwide are increasingly adopting conservation agriculture. In the 2015/2016 season, conservation agriculture was practiced on about 180 mega hectares of cropland globally, 69% more than in the 2008/2009 season.

What are the benefits of this method of farming? How did it originate? In this episode, we answer common questions on conservation agriculture and talk to Simon Fonteyne, Research Platforms Coordinator with CIMMYT’s Integrated Development program and conservation agriculture expert.

You can listen to our podcast here, or subscribe on iTunes, Spotify, Stitcher, SoundCloud, or Google Play.

 

How do I become a zero-till farmer?

“What you are now about to witness didn’t exist even a few years ago,” begins the first video in a series on zero tillage produced by the International Maize and Wheat Improvement Center (CIMMYT). Zero tillage, an integral part of conservation agriculture-based sustainable intensification, can save farmers time, money and irrigation water.

Through storytelling, the videos demonstrate the process to become a zero till farmer or service provider: from learning how to prepare a field for zero tillage to the safe use of herbicides.

All videos are available in Bengali, Hindi and English.

This videos were produced as part of the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project, funded by the Australian Centre for International Agricultural Research (ACIAR). The videos were scripted with regional partners and filmed with communities in West Bengal, India.

Conservation Agriculture Visual Syllabus (English):

 

Conservation Agriculture Visual Syllabus (Hindi):

 

Conservation Agriculture Visual Syllabus (Bengali):

New publications: Rotation, mulch and zero tillage reduce weeds

Despite the many benefits of conservation agriculture, uptake by smallholder farmers remains limited. Alongside the struggle to maintain adequate soil cover and limited opportunities for crop diversification, weed management is a major constraint to the widespread adoption of conservation agriculture.

Although all three components of the practice – zero or minimal tillage, permanent soil cover and crop diversification – can reduce weed populations, the effects of these efforts may only become apparent in the medium to long term. As a result, many smallholders are likely to forgo these in favor of hand weeding, cheap herbicides and tillage – which controls weeds in the short term but also brings weed seeds from the seedbank to the soil surface and creates optimum conditions for germination.

In an effort to evaluate the impact of using conservation agriculture practices for weed management, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used data from a long-term trial in the Mexican Highlands to evaluate weed biomass, density and diversity with and without herbicide control.

Results of their study – recently published in Agronomy – show that weed density and biomass were generally much lower in areas where conservation agriculture was practiced, compared to conventional tillage. All three components helped to significantly reduce weed biomass, with an even greater reduction when all three practices were applied together. When herbicides were applied, weed biomass in conservation agriculture was 91% lower in maize and 81% lower in wheat than in conventional tillage.

The authors found that different treatments favored different weed species but did not observe any trend toward increased perennial weeds in conservation agriculture. The data from their study supports claims that if adequate weed control is achieved in the initial years, weed populations in conservation agriculture systems are lower than in conventional tillage ones. Given these weed-controlling effects, the authors posit that these practices are likely to lead to lower herbicide use in the long term – which may be welcome news for smallholders who have reported weed management to be particularly problematic in the initial years after adopting conservation agriculture.

Read the full article in Agronomy: Rotation, Mulch and Zero Tillage Reduce Weeds in a Long‐Term Conservation Agriculture Trial

See more recent publications from CIMMYT researchers:

  1. Paddy in saline water: analysing variety-specific effects of saline water intrusion on the technical efficiency of rice production in Vietnam. 2019. Dam, T.H.T., Amjath Babu, T.S., Zander, P., Muller, K. In: Outlook on Agriculture v. 48 no. 3 page 237-245.
  2. Doubled haploid technology for line development in maize: technical advances and prospects. 2019. Chaikam, V., Molenaar, W., Melchinger, A.E., Prasanna, B.M. In: Theoretical and Applied Genetics v. 132 no. 12 pg. 3227-3243.
  3. Smallholder farmers’ willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal. 2019. Paudel, G.P., KC, D.B., Rahut, D.B., Khanal, N.P., Justice, S.E., McDonald, A.J. In: Technology in Society v. 59, art. 101196.
  4. Variations in straw fodder quality and grain–Straw relationships in a mapping population of 287 diverse spring wheat lines. 2019. Joshi, A.K., Kumar, U., Vinod Kumar Mishra, Chand, R., Chatrath, R., Naik, R., Suma S. Biradar., Singh, R.P., Neeraj Budhlakoti, Devulapalli, R., Blummel, M. In: Field Crops Research v. 243, art. 107627.
  5. Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. 2019. Abbruzzini, T.F., Davies, C.A., Toledo, F.H., Pellegrino Cerri, C.E. In: Journal of Environmental Management, v. 252, art. 109638.
  6. The impact of agricultural interventions can be doubled by using satellite data. 2019. Meha Jain, Singh, B., Preeti Rao, Srivastava, A., Poonia, S. P., Blesh, J., Azzari, G., McDonald, A., Lobell, D.B. In: Nature Sustainability v. 2, pg. 931-934.
  7. A wheat chromosome 5AL region confers seedling resistance to both tan spot and Septoria nodorum blotch in two mapping populations. 2019. Wenjing Hua, Xinyao He, Dreisigacker, S., Sansaloni, C.P., Juliana, P., Singh, P.K. In: The Crop Journal v. 7, no. 6, pg. 809-818.
  8. Environmental variables contributing to differential performance of tropical maize hybrids across heat stress environments in South Asia. 2019. Vinayan, M.T., Zaidi, P.H., Seetharam, K., Md Ashraful Alam, Ahmed, S., Koirala, K.B., Arshad, Md., Kuchanur, P.H., Patil, A., Mandal, S.S. In: Australian Journal of Crop Science v. 13, no. 6, page 828-836.
  9. The use of pentaploid crosses for the introgression of Amblyopyrum muticum and D-genome chromosome segments into durum wheat. 2019. Othmeni, M., Grewal, S., Hubbart-Edwards, S., Cai-Yun Yang, Scholefield, D., Ashling, S., Yahyaoui, A.H., Gustafson, P., Singh, P.K., King, I.P., King, J. In: Frontiers in Plant Science v. 10, art. 1110.
  10. Alternate energy sources for lighting among rural households in the Himalayan region of Pakistan: access and impact. 2019. Ali, A., Rahut, D.B., Mottaleb, K.A., Aryal, J.P. In: Energy & Environment v. 30, no. 7, 1291-1312.
  11. Assessing climate adaptation options for cereal-based systems in the eastern Indo-Gangetic Plains, South Asia. 2019. Fantaye, K. T., Khatri-Chhetri, A., Aggarwal, P.K, Mequanint, F., Shirsath, P.B., Stirling, C., Jat, M.L., Rahut, D.B., Erenstein, O. In: Journal of Agricultural Science v. 157, no. 3, 189-210.
  12. Doing research and ‘doing gender’ in Ethiopia’s agricultural research system. 2019. Drucza, K.L.,  Tsegaye, M., Abebe, L. In: Gender, Technology and Development v. 23, no. 1, pg. 55-75.
  13. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. 2019. Posch, B.C., Kariyawasam, B.C., Bramley, H., Coast, O., Richards, R.A., Reynolds, M.P., Trethowan, R.M., Atkin, O.K. In: Journal of Experimental Botany v. 70, no. 19, pg. 5051-5069.
  14. Farming on the fringe: shallow groundwater dynamics and irrigation scheduling for maize and wheat in Bangladesh’s coastal delta. 2019. Schulthess, U., Zia Ahmed, Aravindakshan, S., Rokon, G.M., Alanuzzaman Kurishi, A.S.M., Krupnik, T.J. In: Field Crops Research v. 239, pg. 135-148.
  15. A Bayesian genomic multi-output regressor stacking model for predicting multi-trait multi-environment plant breeding data. 2019. Montesinos-Lopez, O.A., Montesinos-Lopez, A., Crossa, J., Cuevas, J., Montesinos-Lopez, J.C., Salas Gutiérrez, Z., Lillemo, M., Juliana, P., Singh, R.P. In: G3: Genes, Genomes, Genetics v. 9, No. 10, pg. 3381-3393.
  16. 16. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. 2019. Juliana, P., Poland, J.A., Huerta-Espino, J., Shrestha, S., Crossa, J., Crespo-Herrera, L.A., Toledo, F.H., Velu, G., Mondal, S., Kumar, U., Bhavani, S., Singh, P.K., Randhawa, M.S., Xinyao He, Guzman, C., Dreisigacker, S., Rouse, M.N., Yue Jin, Perez-Rodriguez, P., Montesinos-Lopez, O.A., Singh, D., Rahman, M.M., Marza, F., Singh, R.P. In: Nature Genetics v. 51, no. 10, pg. 1530-1539.
  17. Malting barley grain quality and yield response to nitrogen fertilization in the Arsi highlands of Ethiopia. 2019. Kassie, M., Fantaye, K. T. In: Journal of Crop Science and Biotechnology v. 22, no. 3, pg. 225-234.
  18. 18. Synergistic impacts of agricultural credit and extension on adoption of climate-smart agricultural technologies in southern Africa. 2019. Makate, C., Makate, M., Mutenje, M., Mango, N., Siziba, S. In: Environmental Development v. 32, art. 100458.
  19. An early warning system to predict and mitigate wheat rust diseases in Ethiopia. 2019. Allen, C., Thurston, W., Meyer, M., Nure, E., Bacha, N., Alemayehu, Y., Stutt, R., Safka, D., Craig, A.P., Derso, E., Burgin, L., Millington, S., Hort, M.C., Hodson, D.P., Gilligan, C.A. In: Environmental Research Letters v. 14, no. 11, art. 115004.
  20. 20. Understanding the relations between farmers’ seed demand and research methods: the challenge to do better. 2019. Almekinders, C., Beumer, K., Hauser, M., Misiko, M.T., Gatto, M., Nkurumwa, A.O., Erenstein, O. In: Outlook on Agriculture v. 48, no. 1, pg. 16-21.
  21. 21. Climate action for food security in South Asia? Analyzing the role of agriculture in nationally determined contributions to the Paris agreement. 2019. Amjath Babu, T.S., Aggarwal, P.K., Vermeulen, S. In: Climate Policy v. 19 no. 3, pg. 283-298.
  22. Future changes and uncertainty in decision-relevant measures of East African climate. 2019. Bornemann, F.J., Rowell, D.P., Evans, B., Lapworth, D.J., Lwiza, K., Macdonald, D.M.J., Marsham, J.H., Fantaye, K. T., Ascott, M.J., Way, C. In: Climatic Change v. 156, no. 3, pg. 365-384.
  23. Women’s time use and implications: for participation in cacao value chains: evidence from VRAEM, Peru. 2019. Armbruster, S., Solomon, J., Blare, T., Donovan, J.A. In: Development in Practice v. 29, no. 7, pg. 827-843.
  24. Estimates of the willingness to pay for locally grown tree fruits in Cusco, Peru. 2019. Blare, T., Donovan, J.A, Pozo, C. del. In: Renewable Agriculture and Food Systems v. 34, no. 1, pg. 50-61.
  25. 25. Smallholders’ coping mechanisms with wheat rust epidemics: lessons from Ethiopia. Debello, M. J., Hodson, D.P., Abeyo Bekele Geleta, Yirga, C., Erenstein, O. In: PLoS One v. 14 no. 7, art. e0219327.
  26. Fields on fire: alternatives to crop residue burning in India. 2019. Shyamsundar, P., Springer, N., Tallis, H., Polasky, S., Jat, M.L., Sidhu, H.S., Krishnapriya, P.P., Skiba, N., Ginn, W., Ahuja, V., Cummins, J., Datta, I., Dholakia, H.H., Dixon, J., Gerard, B., Gupta, R., Hellmann, J., Jadhav, A., Jat, H.S., Keil, A., Ladha, J.K., Lopez-Ridaura, S., Nandrajog, S., Paul, S., Ritter, A., Sharma, P.C., Singh, R., Singh, D., Somanathan, R. In: Science v. 365, no. 6453 pg. 536-538.
  27. Climate shock adaptation for Kenyan maize-legume farmers: choice, complementarities and substitutions between strategies. 2019. Tongruksawattana, S., Wainaina, P. In: Climate and Development v. 11, no. 8, pg. 710-722.
  28. Development of a participatory approach for mapping climate risks and adaptive interventions (CS-MAP) in Vietnam’s Mekong River Delta. 2019. Bui Tan Yen, Nguyen Hong Son, Le Thanh Tung, Amjath Babu, T.S., Sebastian, L. In: Climate Risk Management v. 24, pg. 59-70.
  29.  Genetic divergence and diversity in Himalayan Puccinia striiformis populations from Bhutan, Nepal, and Pakistan. 2019. Khan, M.R., Rehman, Z., Nazir, S.N., Tshewang, S., Baidya, S., Hodson, D.P., Imtiaz, M., Sajid Ali In: Phytopathology v. 109, no. 10, pg. 1793-1800.
  30. Herencia de la resistencia del trigo (Triticum aestivum L.) huites F95 a roya amarilla causada por Puccinia striiformis F. sp. tritici W. = Inheritance of resistance to yellow rust caused by Puccinia striiformis F. sp. tritici on huites F95 wheat (Triticum aestivum L.). 2019. Rodriguez-Garcia, M.F., Huerta-Espino, J., Rojas Martínez, R.I., Singh, R.P., Villaseñor Mir, H.E., Zavaleta Mejía, E., Sandoval-Islas, S., Crossa, J, Caixia Lan In: Agrociencia v. 53, no. 5, pg. 765-780.

Conservation agriculture for sustainable intensification in Eastern India

A new policy brief produced by the Indian Council of Agricultural Research (ICAR) lays out a clear case for the benefits and importance of conservation agriculture, and a road map for accelerating its adoption in Eastern India.

A collaborative effort by research and policy partners including ICAR, the National Academy of Agricultural Sciences (NAAS), The International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), and national academic and policy institutions, the brief represents the outputs of years of both rigorous scientific research and stakeholder consultations.

Eastern India — an area comprising seven states — is one of the world’s most densely populated areas, and a crucial agricultural zone, feeding more than a third of India’s population. The vast majority — more than 80% — of its farmers are smallholders, earning on average, just over half the national per capita income.

Conservation agriculture (CA) consists of farming practices that aim to maintain and boost yields and increase profits while reversing land degradation, protecting the environment and responding to climate change. These practices include minimal mechanical soil disturbance, permanent soil cover with living or dead plant material, and crop diversification through rotation or intercropping. A number of studies have shown the success of conservation agriculture in combatting declining factor productivity, deteriorating soil health, water scarcity, labor shortages, and climate change in India.

The road map lists recommended steps for regional and national policy makers, including

  • establishing a database repository on conservation agriculture for eastern India,
  • setting up common learning platform and sites for science-based evidence on CA,
  • developing an effective and productive supply chain system for CA machinery,
  • offering subsidies for CA machinery as incentives to farmers,
  • adopting pricing strategies to encourage market demand for sustained adoption of CA,
  • developing synergies for effective coordination between NARS and CGIAR institutions, and
  • building capacity among stakeholders.

Read the full policy brief here:

Conservation Agriculture for Sustainable Intensification in Eastern India

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Partners include the Indian Council of Agricultural Research (ICAR), the National Academy of Agricultural Sciences (NAAS), the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), the Trust for Advancement of Agricultural Sciences (TAAS), the Borlaug Institute for South Asia (BISA), Dr. Rajendra Prasad Central Agricultural University, Bihar Agricultural University, and the Department of Agriculture of the state of Bihar.

 

Conservation agriculture key to better income, environment protection: Study

Resorting to conservation agriculture would not only increase crop yield, income and reduce the use of natural resources, but would also confer climate change benefits, according to a study by Indian agricultural scientists and others published in an international journal on Thursday.

The study, published in the journal Nature Sustainability, also showed that conservation agriculture was key to meeting many of the UN’s Sustainable Development Goals (SDGs) such as no poverty, zero hunger, good health and well-being, climate action and clean water. Conservation agriculture can offer positive contributions to several SDGs, said M. L. Jat, a Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study.

Read more here: https://www.thehindubusinessline.com/economy/agri-business/conservation-agriculture-key-to-better-income-environment-protection-study/article31364196.ece#

Systems thinking at work in South Asia’s food production

A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)

In 2009, state governments in Northwest India implemented a policy designed to reduce groundwater extraction by prohibiting the usual practice of planting rice in May and moving it to June, nearer the start of monsoon rains.

Although the policy did succeed in alleviating pressure on groundwater, it also had the unexpected effect of worsening already severe air pollution. The reason for this, according to a recent study published in Nature Sustainability, is that the delay in rice planting narrowed the window between rice harvest and sowing of the subsequent crop — mainly wheat — leaving farmers little time to remove rice straw from the field and compelling them to burn it instead.

Even though burning crop residues is prohibited in India, uncertainty about the implementation of government policy and a perceived lack of alternatives have perpetuated the practice in Haryana and Punjab states, near the nation’s capital, New Delhi, where air pollution poses a major health threat.

Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress - Dreamstime.com; Image 11205929)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress – Dreamstime.com; Image 11205929)

Decades of research for development have enabled researchers at the International Maize and Wheat Improvement Center (CIMMYT), the Indian Council of Agricultural Research (ICAR) and other partners to identify potential solutions to this problem.

One particularly viable option focuses on the practice of zero tillage, in which wheat seed is sown immediately after rice harvest through the rice straw directly into untilled soil with a single tractor pass.

In a new blog published as part of the Chicago Council on Global Affairs’ Field Notes series, CIMMYT scientists Hans Braun and Bruno Gerard discuss the combination of agronomic and breeding conditions required to make zero tillage work, and propose a fundamental shift away from current incentives to maximize the region´s cereal production.

Read the full article:
Field Notes – Systems thinking at work in South Asia’s food production

What is conservation agriculture?

If not practiced sustainably, agriculture can have a toll on the environment, produce greenhouse gases and contribute to climate change. However, sustainable farming methods can do the opposite — increase resilience to climate change, protect biodiversity and sustainably use natural resources.

One of these methods is conservation agriculture.

Conservation agriculture conserves natural resources, biodiversity and labor. It increases available soil water, reduces heat and drought stress, and builds up soil health in the longer term.

What are the principles of conservation agriculture?

Conservation agriculture is based on the interrelated principles of minimal mechanical soil disturbance, permanent soil cover with living or dead plant material, and crop diversification through rotation or intercropping. It helps farmers to maintain and boost yields and increase profits, while reversing land degradation, protecting the environment and responding to growing challenges of climate change.

To reduce soil disturbance, farmers practice zero-tillage farming, which allows direct planting without plowing or preparing the soil. The farmer seeds directly through surface residues of the previous crop.

Zero tillage is combined with intercropping and crop rotation, which means either growing two or more crops at the same time on the same piece of land, or growing two different crops on the same land in a sequential manner. These are also core principles of sustainable intensification.

How is conservation agriculture different from sustainable intensification?

Sustainable intensification is a process to increase agriculture yields without adverse impacts on the environment, taking the whole ecosystem into consideration. It aims for the same goals as conservation agriculture.

Conservation agriculture practices lead to or enable sustainable intensification.

What are the benefits and challenges of conservation agriculture?       

Zero-tillage farming with residue cover saves irrigation water, gradually increases soil organic matter and suppresses weeds, as well as reduces costs of machinery, fuel and time associated with tilling. Leaving the soil undisturbed increases water infiltration, holds soil moisture and helps to prevent topsoil erosion. Conservation agriculture enhances water intake that allows for more stable yields in the midst of weather extremes exacerbated by climate change.

While conservation agriculture provides many benefits for farmers and the environment, farmers can face constraints to adopt these practices. Wetlands or soils with poor drainage can make adoption challenging. When crop residues are limited, farmers tend to use them for fodder first, so there might not be enough residues for the soil cover. To initiate conservation agriculture, appropriate seeders are necessary, and these may not be available or affordable to all farmers. Conservation agriculture is also knowledge intensive and not all farmers may have access to the knowledge and training required on how to practice conservation agriculture. Finally, conservation agriculture increases yields over time but farmers may not see yield benefits immediately.

However, innovations, adapted research and new technologies are helping farmers to overcome these challenges and facilitate the adoption of conservation agriculture.

How did conservation agriculture originate?

Belita Maleko, a farmer in Nkhotakota, central Malawi, sowed cowpea as an intercrop in one of her maize plots, grown under conservation agriculture principles. (Photo: T. Samson/CIMMYT)
Belita Maleko, a farmer in Nkhotakota, central Malawi, sowed cowpea as an intercrop in one of her maize plots, grown under conservation agriculture principles. (Photo: T. Samson/CIMMYT)

The term “conservation agriculture” was coined in the 1990s, but the idea to minimize soil disturbance has its origins in the 1930s, during the Dust Bowl in the United States of America.

CIMMYT pioneered no-till training programs and trials in the 1970s, in maize and wheat systems in Latin America. In the 1980s this technique was also used in agronomy projects in South Asia.

CIMMYT began work with conservation agriculture in Latin America and South Asia in the 1990s and in Africa in the early 2000s. Today, these efforts have been scaled up and conservation agriculture principles have been incorporated into projects such as CSISA, FACASI, MasAgro, SIMLESA, and SRFSI.

Farmers worldwide are increasingly adopting conservation agriculture. In the 2015/16 season, conservation agriculture was practiced on about 180 mega hectares of cropland globally, about 12.5% of the total global cropland — 69% more than in the 2008/2009 season.

Is conservation agriculture organic?

Conservation agriculture and organic farming both maintain a balance between agriculture and resources, use crop rotation, and protect the soil’s organic matter. However, the main difference between these two types of farming is that organic farmers use a plow or soil tillage, while farmers who practice conservation agriculture use natural principles and do not till the soil. Organic farmers apply tillage to remove weeds without using inorganic fertilizers.

Conservation agriculture farmers, on the other hand, use a permanent soil cover and plant seeds through this layer. They may initially use inorganic fertilizers to manage weeds, especially in soils with low fertility. Over time, the use of agrichemicals may be reduced or slowly phased out.

How does conservation agriculture differ from climate-smart agriculture?

While conservation agriculture and climate-smart agriculture are similar, their purposes are different. Conservation agriculture aims to sustainably intensify smallholder farming systems and have a positive effect on the environment using natural processes. It helps farmers to adapt to and increase profits in spite of climate risks.

Climate-smart agriculture aims to adapt to and mitigate the effects of climate change by sequestering soil carbon and reducing greenhouse gas emissions, and finally increase productivity and profitability of farming systems to ensure farmers’ livelihoods and food security in a changing climate. Conservation agriculture systems can be considered climate-smart as they deliver on the objectives of climate-smart agriculture.

Cover photo: Field worker Lain Ochoa Hernandez harvests a plot of maize grown with conservation agriculture techniques in Nuevo México, Chiapas, Mexico. (Photo: P. Lowe/CIMMYT)

West Bengal agri-entrepreneur a role model for farmers in her community

Hosneara Bibi (top-right) shows her zero-tillage wheat crop. (Photo: SSCOP)
Hosneara Bibi (top-right) shows her zero-tillage wheat crop. (Photo: SSCOP)

Hosneara Bibi is a farmer in the village of West Ghughumari, in the Cooch Behar district of West Bengal, India. She began her journey as an agricultural entrepreneur two years ago, when members of the nonprofit Satmile Satish Club o Pathagar (SSCOP), a CIMMYT partner, first came to her village.

Their visit was part of CIMMYT’s Sustainable and Resilient Farming Systems Intensification (SRFSI) project. This project aims to reduce poverty in the Eastern Gangetic Plains of Bangladesh, India and Nepal by making smallholder agriculture more productive, profitable and sustainable while safeguarding the environment and involving women.

In the context of the SRFSI project and in collaboration with Godrej Agrovet, Bibi and her self-help group received training on conservation agriculture practices for sustainable intensification. Self-help groups are small associations, usually of women, that work together to overcome common obstacles. With support from SSCOP, Bibi’s fellow group members learned about a variety of improved agricultural practices, including zero tillage, which improves soil nutrient levels and water efficiency. This support helped them to increase their crop yields while promoting sustainability.

Hosneara Bibi works at the rice seedling enterprise she and her fellow self-help group members started. (Photo: SSCOP)
Hosneara Bibi works at the rice seedling enterprise she and her fellow self-help group members started. (Photo: SSCOP)

After adopting the improved practices, Bibi increased her wheat yield by 50 percent. This positive experience encouraged her to implement mechanically transplanted rice technology. Bibi and her self-help group have since started a rice seedling enterprise and they offer their mechanically transplanted rice services to other farmers. This has become a profitable agri-enterprise for the group.

Bibi has been able to expand her farm and now cultivates wheat, rice and jute. She has also adopted digital technologies in her farming practice and now uses a mobile app to aid in pest management for her rice crop, designed by Uttar Banga Krishi Viswavidyalaya.

Because of her higher yields and the profitability of the self-help group’s rice seedling enterprise, Bibi has successfully increased and diversified her income. Her proudest moment was when she was able to buy a motorbike for her husband.

Members of the SRFSI team consider Hosneara Bibi a role model for other farmers and entrepreneurs in her community.

The Sustainable and Resilient Farming Systems Intensification project is funded by the Australian Centre for International Agricultural Research.

Hosneara Bibi (center, in pink) poses for a photograph with other members of her self-help group, SSCOP representatives and Sagarika Bose, Deputy General Manager of Corporate Social Responsibility for Godrej Agrovet. (Photo: SSCOP)
Hosneara Bibi (center, in pink) poses for a photograph with other members of her self-help group, SSCOP representatives and Sagarika Bose, Deputy General Manager of Corporate Social Responsibility for Godrej Agrovet. (Photo: SSCOP)

New study: India could cut nearly 18% of agricultural greenhouse gas emissions through cost-saving farming practices

NEW DELHI (CIMMYT) — India could reduce its greenhouse gas emissions from agriculture by almost 18 percent through the adoption of mitigation measures, according to a new study. Three improved farming practices would account for more than half of these emission reductions, researchers say: efficient use of fertilizer, zero tillage and better water management in rice farming.

In an article published in Science in the Total Environment, scientists estimate that, by 2030, “business-as-usual” greenhouse gas emissions from the agricultural sector in India would be 515 MtCO2e per year. The study indicates that Indian agriculture has the potential to mitigate 85.5 Megatonne CO2 equivalent (MtCO2e) per year without compromising food production and nutrition. Considering the 2012 estimates of 481 MtCO2e, that would represent a reduction of almost 18 percent. Researchers suggest mitigation options that are technically feasible but will require government efforts to be implemented at scale.

The study was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the University of Aberdeen and the Indian Council of Agricultural Research (ICAR), with support from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). They followed a “bottom-up” approach to estimate and analyze greenhouse gas emissions from agriculture, using large datasets related to crops (around 45,000 data points) and livestock production (around 1,600 data points) along with soil, climate and management information. To evaluate mitigation measures, associated costs and benefits of adoption, researchers used a variety of sources, including literature, stakeholder meetings and consultations with experts in crops, livestock and natural resource management.

The authors also identify “hotspots” where mitigation practices would have the highest potential for reduction of greenhouse gas emissions. For example, reduced fertilizer consumption through precision nutrient management shows the highest potential in the state of Uttar Pradesh, followed by Andhra Pradesh, Maharashtra and Punjab. Water management in rice farming has the highest mitigation potential in Andhra Pradesh, followed by Tamil Nadu, Orissa and West Bengal.

India is the world’s third largest emitter of greenhouse gases. Contributing almost one-fifth to the national total, agriculture has been identified as a priority in the country’s efforts to reduce emissions. The results from this study can help the country make great strides towards its goals. However, these climate change mitigation benefits can only work if farmers take up the new practices, some of which require an initial investment. Government policies and incentives will be crucial to help farmers take the first steps, ensure wide-scale adoption of these mitigation options, and help India meet its food security and greenhouse gas emission reduction goals.

Marginal abatement cost curve of Indian agriculture.
Marginal abatement cost curve of Indian agriculture.

Three feasible mitigation measures

Efficient use of fertilizer not only lowers emissions at the field, but also reduces the need for fertilizer and the emissions associated with production and transportation. It also represents savings for the farmer. Mitigation options would include applying fertilizer at the right time and the right place for plant uptake, or using slow-release fertilizer forms or nitrification inhibitors. “Efficient fertilizer use in the agriculture sector in India has potential to reduce around 17.5 MtCO2e per year,” said Tek Sapkota, CIMMYT scientist and lead author of the study.

Adoption of zero tillage farming and residue management — maintaining crop residues on the soil surface to protect the ground from erosion — in rice, wheat, maize, cotton and sugarcane was shown to reduce emissions by about 17 MtCO2e per year. “CIMMYT has successfully worked to develop and promote these practices in India,” said M.L. Jat, CIMMYT principal scientist and co-author of the study.

Better water management in rice farming — such as adopting alternate wetting and drying in rice fields that are currently continuously flooded — can offer mitigation of about 12 MtCo2e per year. Other water management techniques in major cereals, such as laser-levelling of fields, or using sprinkler or micro-sprinkler irrigation and fertigation together, also provide important greenhouse gas emissions savings, with a reduction of around 4 MtCO2e per year for laser levelling alone.

This work was jointly carried out by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Aberdeen. Research was funded by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements.


RELATED RESEARCH PUBLICATIONS:

Cost-effective opportunities for climate change mitigation in Indian agriculture

INTERVIEW OPPORTUNITIES:

Tek Sapkota – Scientist, International Maize and Wheat Improvement Center (CIMMYT)

M.L. Jat – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Geneviève Renard, Head of Communications, CIMMYT. g.renard@cgiar.org, +52 (55) 5804 2004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

“Layering” climate smart rice-wheat farming practices in India boosts benefits

Farmers confront a daunting range of options for potentially achieving high crop yields in India’s western Indo-Gangetic Plains, where rice and wheat crops are planted in rotation to meet high demand for dietary food staples.

Since 1965, rotational crop planting has been deployed in the area to intensify production in a limited growing area, initially yielding positive food security results. Over time, agricultural practices have led to troubling consequences for the landscape, leading to unreliable or lower yields for farmers.

Now, new scientific research into “layering” climate smart agriculture techniques shows promise, demonstrating the potential for crop adaptability to climate change. Experiments reveal the possibilities for high productivity, benefits for water and energy supplies resulting in a smaller environmental footprint.

Throughout Southeast Asia, but particularly in the Indo-Gangetic Plains area, natural resources are three to five times more stressed due to agricultural intensification, urbanization, population growth, increasing climate change risks, and land degradation difficulties.

“Land is degraded in the region because over the past 50 years crop production increased quickly leading to inefficient use and mismanagement of resources,” said M.L. Jat, a Principal Scientist with the International Maize and Wheat Improvement Center (CIMMYT), who works with a team of scientists on sustainable intensification and climate smart agriculture.

The scientists conducted a study to determine the most effective methods to grow rice and wheat in constrained conditions where horizontal expansion of crop growing areas is no longer a viable option for increasing yields.

Before embarking on their research, scientists were already aware that due to overpopulation, to meet rising food demand in the Indo-Gangetic Plains area, the only option for farmers is to increase yields on land already under agricultural production. Land shortages are exacerbated by reduced availability of water and energy.

By 2050, variability in growing conditions due to climate change is projected to lower crop yields by 10 to 40 percent and total crop failure will become more common.

Additionally, over the same time period, more than half the current wheat growing area in the Indo-Gangetic Plains will likely become unsuitable for production due to heat stress. Over pumping of ground water for rice production is simultaneously depleting the water table.

“Adaptation to climate change is no longer an option, but essential for minimizing crop losses that will occur as a result of the adverse impact of climate change,” Jat said, adding that the key to future food security is to use agricultural technologies that promote sustainable intensification and adapt to emerging climatic variability.

“Farmers face an enormous challenge – to be successful they must now rely on sustainable intensification management practices and adapt to emerging climate variability while playing a role in reducing greenhouse gas emissions and sequestering carbon to keep global warming in check,” he said.

The key will be to boost the use climate smart agriculture techniques, which have the potential to address these challenges, maintain environmental equilibrium and produce high crop yields simultaneously.

The strategy opens the door to sustainably increase agricultural productivity and farmer income, adapt to and develop the capacity to resist climate change, and reduce or eliminate greenhouse gas emissions.

After experimental fieldwork, the scientists learned that strategically combining climate smart agricultural technologies already used selectively as a result of years of CIMMYT-designed trials in the region are most likely to lead to high crop yields and food security.

Participatory experimental field in Beernarayana climate-smart village. (Photo: CIMMYT)
Participatory experimental field in Beernarayana climate-smart village. (Photo: CIMMYT)

WINNING TECHNIQUES

Their findings are reported in a new research paper published in Agricultural Water Management journal.

Currently, farmers are using such climate smart water and energy saving techniques as direct seeded rice, zero tillage, laser land leveling, alternate wetting and drying, weather forecast based irrigation, precision nutrient management. Other climate smart techniques include retention of crop residues on the fields to store carbon and prevent emissions and unhealthy smog levels that result from residue burning.

“Climate smart agriculture practices in isolation may not fulfill their full potential in adapting to climate risks and mitigating greenhouse gas emissions in rice-wheat production systems,” Jat said.

“However, layering of these practices and services in optimal combinations may help to adapt and build resilience under diverse production systems and ecologies to ensure future food security.”

The scientists studied six scenarios in three different climate smart villages in India’s sub-tropical state of Haryana in the Indo-Gangetic Plains.

The first scenario was based solely on observing the normal practices of a farmer, the second and third scenarios were layered with different technologies used for tillage, crop establishment, residue and nutrient management, and designated as “improved farmers’ practices.”

The other three scenarios were based on climate smart agriculture practices combined with the available range of technologies deployed to enhance tillage, crop establishment, laser land leveling; residue, water and nutrient management; improved crop varieties, information and communication technology and crop insurance.

Scientists set out to determine the best combination of practices and found that layering of climate smart agriculture practices improved rice-wheat system productivity from 6 to 19 percent depending on techniques used.

Layering also led to savings of more than 20 percent irrigation water. Global warming potential was reduced by 40 percent.

“The research leaves us feeling optimistic that the work we’ve been conducting throughout South Asia is leading to strong results,” Jat said. “Our aim now is to continue to work through various real life scenarios to see how far we can go in sustainably intensifying the entire region so that food supply can keep apace with population growth under emerging climate change challenges.”

The project was supported by the CGIAR Research Program on Wheat (WHEAT) and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).