Skip to main content

Tag: World Food Prize

2019 World Food Prize recognizes the impact of bringing improved seeds to Africa, Asia and Latin America

Simon N. Groot is the winner of the 2019 World Food Prize. With this award, food and agriculture leaders recognize his work to increase vegetable production in more than 60 countries, through the development of high-quality seeds and training programs for farmers.

Groot’s efforts were crucial in leading millions of farmers to become horticulture entrepreneurs, resulting in improved incomes and livelihoods for them, and greater availability of nutritious vegetables for hundreds of millions of consumers.

Like small-town Iowa farm boy Norman Borlaug, Groot comes from a small town in the Netherlands, where he learned the value of seeds at a young age. Both shared the same vision to feed the world and succeeded.

“I think I was born to be a vegetable seedsman.”
– Simon N. Groot

Groot devoted his whole life to the seed and plant breeding industry. After 20 years in the industry in Europe and North America, Groot travelled to southeast Asia at the age of 47 with a vision to set up the region’s first vegetable seed breeding company. Frustrated by the poor quality seeds he found and noticing a total lack of commercial breeding activities in the region, Groot decided to set up his own company, using his own capital, partnering with Benito Domingo, a Philippines local with a passion for seeds and local connections to the traditional seed trade, agriculture industry and universities.

The company, named East-West Seed Company, started out as a small five-hectare farm outside Lipa City, Philippines. Groot brought over well-trained plant breeders from the Netherlands to begin plant breeding and help train locals as breeders and technicians. Groot was the first to introduce commercial vegetable hybrids in tropical Asia: varieties which were high-yielding, fast-growing and resistant to local diseases and stresses. Today, East-West Seed Company has over 973 improved varieties of 60 vegetable crops which are used by more than 20 million farmers across Asia, Africa and Latin America.

Inspired by Borlaug

Groot described meeting Dr. Borlaug at a conference in Indonesia in the late 1980s as “a pivotal moment” for him, writing that “his legacy has continued to serve as an inspiration for everything I have done at East-West Seed.”

In response to being awarded the 2019 World Food Prize, Groot wrote: “Bringing about the ‘Vegetable Revolution’ will be a fitting tribute to the work of Dr. Borlaug.”

The World Food Prize has been referred to as the “Nobel Prize for food and agriculture.” Awarded by the World Food Prize Foundation, it recognizes individuals who have advanced human development by improving the quality, quantity or availability of food in the world. Winners receive $250,000 in prize money.

The World Food Prize was founded in 1986 by Norman Borlaug, recipient of the 1970 Nobel Peace Prize.

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. Bram Govaerts received the Norman Borlaug Field Award in 2014. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.

Inspiring millennials to focus on food security: The power of mentorship

As part of their education, students worldwide learn about the formidable challenges their generation faces, including food shortages, climate change, and degrading soil health. Mentors and educators can either overwhelm them with reality or motivate them by real stories and showing them that they have a role to play. Every year the World Food Prize lives out the latter by introducing high school students to global food issues at the annual Borlaug Dialogue, giving them an opportunity to interact with “change agents” who address food security issues. The World Food Prize offers some students an opportunity to intern at an international research center through the Borlaug-Ruan International Internship program.

Tessa Mahmoudi

Plant Microbiologist Tessa Mahmoudi, a 2012 World Food Prize’s Borlaug-Ruan summer intern, says her experience working with CIMMYT researchers in Turkey when she was 16 years old profoundly changed her career and her life.

“For a summer I was welcomed to Turkey not as a child, but as a scientist,” says Mahmoudi, who grew up on a farm in southeast Minnesota, USA. “My hosts, Dr. Abdelfattah A. Dababat and Dr. Gül Erginbas-Orakci, who study soil-borne pathogens and the impact those organisms have on food supplies, showed me their challenges and, most importantly, their dedication.”

Mahmoudi explains she still finds the statistics regarding the global food insecurity to be daunting but saw CIMMYT researchers making real progress. “This helped me realize that I had a role to play and an opportunity to make positive impact.”

Among other things, Mahmoudi learned what it meant to be a plant pathologist and the value of that work. “I began to ask scientific questions that mattered,” she says. “And I went back home motivated to study — not just to get good grades, but to solve real problems.”

She says her outlook on the world dramatically broadened. “I realized we all live in unique realities, sheltered by climatic conditions that strongly influence our world views.”

According to Mahmoudi, her internship at CIMMYT empowered her to get out of her comfort zone and get involved in food security issues. She joined the “hunger fighters” at the University of Minnesota while pursuing a bachelor’s in Plant Science. “I was the president of the Project Food Security Club which focuses on bring awareness of global hunger issues and encouraging involvement in solutions.” She also did research on stem rust under Matthew Rouse, winner of the World Food Prize 2018  Norman Borlaug Award for Field Research and Application.

Pursuing a master’s in plant pathology at Texas A&M University under the supervision of Betsy Pierson, she studied the effects of plant-microbe interactions on drought tolerance and, specifically, how plant-microbe symbiosis influences root architecture and wheat’s ability to recover after suffering water stress.

Tessa Mahmoudi, plant microbiologist and 2012 World Food Prize Borlaug-Ruan summer intern, credits the mentorship of CIMMYT researchers in Turkey with changing her outlook on the potential of science to improve food security and health. (Photo: University of Minnesota)
Tessa Mahmoudi, plant microbiologist and 2012 World Food Prize Borlaug-Ruan summer intern, credits the mentorship of CIMMYT researchers in Turkey with changing her outlook on the potential of science to improve food security and health. (Photo: University of Minnesota)

Currently, Mahmoudi is involved in international development and teaching. As a horticulture lecturer at Blinn College in Texas, she engages students in the innovative use of plants to improve food security and global health.

Mahmoudi incorporates interactive learning activities in her class (see her website, https://reachingroots.org/). Her vision is to increase access to plant science education and encourage innovation in agriculture.

“As a teacher and mentor, I am committed to helping students broaden their exposure to real problems because I know how much that influenced me,” Mahmoudi says. “Our world has many challenges, but great teams and projects are making progress, such as the work by CIMMYT teams around the world. We all have a role to play and an idea that we can make a reality to improve global health.”

As an example, Mahmoudi is working with the non-profit Clean Challenge on a project to improve the waste system in Haiti. The initiative links with local teams in Haiti to develop a holistic system for handling trash, including composting organic waste to empower small holder farmers to improve their soil health and food security.

“Without my mentors, I would not have had the opportunity to be involved in these high impact initiatives. Wherever you are in your career make sure you are being mentored and also mentoring. I highly encourage students to find mentors and get involved in today’s greatest challenge, increasing food security.”

In addition to thanking the CIMMYT scientists who inspired her, Mahmoudi is deeply grateful for those who made her summer internship possible. “This would include the World Food Prize Foundation and especially Lisa Fleming, Ambassador Kenneth M. Quinn, the Ruan Family,” she says. “Your commitment to this high-impact, experiential learning opportunity has had lasting impact on my life.”

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

To feed the world, take the science to the farmer

DES MOINES (Iowa) — Hundreds of food and agriculture leaders from around the world gathered last week in Iowa, USA, for the 2018 edition of the Borlaug Dialogue. Much of the conversation this year was centered on how to “take it to the farmer,” as Norman Borlaug famously said. Experts discussed how to build sustainable seed systems, grounded on solid science, so improved varieties reach smallholder farmers.

General view of the 2018 Borlaug Dialogue venue. (Photo: World Food Prize)
General view of the 2018 Borlaug Dialogue venue. (Photo: World Food Prize)

Louise Sperling, senior technical advisor at Catholic Relief Services, presented a study on the sources of seed for smallholder farmers in Africa. She explained that 52.2 percent of households receive new varieties, but only 2.8 percent of the seed comes through agro-dealers. The biggest source is local markets and own stock, the so-called informal channels.

Quality and variety of seed should be the focus, emphasized Jean Claude Rubyogo, seed systems specialist at CIAT. In his view, we need to integrate formal and informal seed distribution channels, using the competitive advantages of each.

“When we take good seed, we address all African soil,” said Ruth Oniang’o, board chair at the Sasakawa Africa Foundation. Oniang’o explained access to financing is a major hurdle for smallholders to access better seed and other innovations. In her view, current financial products are inadequate. “Why should we get a farmer to pay 20 percent interest rates on a small loan?”

B.J. Marttin, member of the managing board of Rabobank Group, recommended financial institutions to partner with farmers through every stage, from production to sale, so they better understand risk and the whole value chain. Simon Winter, executive director of the Syngenta Foundation for Sustainable Agriculture, captured the main points from the session on financing for agricultural entrepreneurs. “We have to have the farmer at the center. The farmer is the ultimate customer,” Winter said. “If we are not serving farmer needs, we are not really solving the problems.”

Research to feed the world

The 2018 Global Agricultural Productivity (GAP) Report, presented at the Borlaug Dialogue, shows the growing gap between future food supply needs and agricultural production, particularly in low-income countries. To meet the projected food needs of nearly 10 billion people in 2050, global agricultural productivity must increase by 1.75 percent annually, the report states, but has only increased 1.51 percent annually since 2010.

A plenary session led by CGIAR explored the role of research in tackling this and other complex challenges. “We have to talk about food and agriculture research,” said former U.S. Secretary of Agriculture Dan Glickman. People need to understand research is not abstract academic knowledge, but rather useful innovation that goes “from the farm, to the table and to the stomach,” he explained.

“Innovation, no matter where you are in the world, is key to moving forward,” said Patience Koku, a farmer from Nigeria part of the Global Farmer Network. “I don’t think the farmers in Africa or in Nigeria need a lot of convincing” to adopt innovation, Koku noted. If someone is able to explain what a new technology can do, “farmers see that science can make their life better and embrace it.”

Rising to the challenge

Agricultural research is also crucial to confront global threats like pests, conflict and climate change.

A session led by CIMMYT presented the latest research and actions against fall armyworm. (Photo: Rodrigo Ordóñez/CIMMYT)
A session led by CIMMYT presented the latest research and actions against fall armyworm. (Photo: Rodrigo Ordóñez/CIMMYT)

Two separate sessions, hosted by Corteva Agriscience and CIMMYT, shared the latest approaches in the fight against fall armyworm and other pests and diseases. The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, explained how organizations are working together to respond to the rapid spread of fall armyworm in Africa and Asia. “We have to solve the problem based on science, and then develop, validate and deploy integrated pest management approaches,” Kropff said.

As part of the World Food Prize outreach program, Bram Govaerts, director of innovative business strategies at CIMMYT, gave a lecture to students at Brody Middle School about the importance of agriculture and food. “When people can’t grow crops or pay for food to feed their families, desperation turns to conflict.”

At a side event, the Economist Intelligence Unit presented the Global Food Security Index 2018, which ranks food systems in 113 countries based on affordability, availability, and quality and safety. Senior consultant Robert Powell explained that the index now includes an adjustment factor based on each country’s natural resource risks and resilience to the impacts of a changing climate. “All countries will experience the impact of climate change,” Powell said.

The pernicious effects of climate change were also evident to the 2018 World Food Prize winners, David Nabarro and Lawrence Haddad, who have led global efforts to curb child malnutrition. “There is no evidence to me that [this] crisis is going to stop, because climate change is here,” Nabarro declared. “The foods we choose to grow and eat have a large impact on emissions,” Haddad said. “Food has a lot to offer” on climate mitigation and “diversity is the secret sauce” for climate adaptation. “We need food systems that are diverse: in crops, locations, organizations involved in them…”

Less biodiversity translates into “less resilience and worse nutrition,” according to the Vice President of Peru, Mercedes Aráoz. Through improved health and nutrition services, the country more than halved malnutrition among children under five, from 28 percent in 2008 to 13.1 percent in 2016.

2018 World Food Prize winners Lawrence Haddad (left) and David Nabarro speak during the award ceremony. (Photo: World Food Prize)
2018 World Food Prize winners Lawrence Haddad (left) and David Nabarro speak during the award ceremony. (Photo: World Food Prize)

A rallying cry for nutrition

The impact of nutrition on the first 1,000 days of life lasts a lifetime, explained Haddad. “For young kids, these are permanent shocks.”

“If a person is not nourished in those very important weeks and months of life, the long-term consequences are likely to be irreversible,” Nabarro added. According to him, nutrition needs to be the target in the 2030 agenda, not only hunger.

“Nutrition-based interventions present us a new lens through which to create and assess impact as agricultural researchers,” said Elwyn Grainger-Jones, the executive director of the CGIAR System Organization. “Our future success must come not only from ensuring an adequate supply of calories for the global population, but also the right quality and diversity of foods to tackle hidden hunger as well.”

“We are not going to resolve the challenges of undernutrition without the ag sector stepping up in a big way and differently,” argued Shawn Baker, director of nutrition at the Bill & Melinda Gates Foundation. “Nutrition needs you,” Baker told other participants. “Welcome to the nutrition family.”

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Fall armyworm on the agenda at the 2018 Borlaug Dialogue

DES MOINES (Iowa) — At the plenary of the 2018 Borlaug Dialogue, a global panel of experts gave an overview of the origins of the fall armyworm, how it is spreading around the world, and how governments, farmers and researchers are fighting against this pest.

Pedro Sanchez, research professor in tropical soils at the University of Florida and 2002 World Food Prize Laureate, shared background information on the history of the fall armyworm and the early attempts to neutralize it, decades ago. He pointed out that once-resistant varieties were eventually affected by this pest.

The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, shared the most recent developments and explained how organizations are working together to respond to this pest. “We want to have science-based, evidence-based solutions,” Kropff said. “We have to solve the problem based on science, and then to develop and validate and deploy integrated pest management technologies.”

The director general of the Ethiopian Institute of Agriculture, Mandefro Nigussie, reminded that in addition to affecting people and the environment, fall armyworm “is also affecting the future generation,” as children were pulled out of school to pick larvae.

The response against fall armyworm cannot be done by governments alone, panelists agreed. It requires the support of multiple actors: financing the research, producing research, promoting the results of the research and implementing appropriate measures.

Rob Bertram, chief scientist at USAID’s Bureau for Food Security predicted the fall armyworm will continue to be a “serious problem” as it moves and migrates.

The director general and CEO of the Kenya Agricultural & Livestock Research Organization, Eluid Kireger, emphasized the importance of global collaboration. “We need to borrow the technologies that are already working”.

The fall armyworm was also discussed during the Corteva Agriscience Forum side event, on a session on “Crop security for food security”. The Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize, B.M. Prasanna, was optimistic about the efforts to tackle this voracious pest. “I’m 100 percent confident that the pest will be overcome, but it requires very solid synergistic and coordinated actions at the national level, at the regional level and at the continental level.”

CIMMYT is co-leading the Fall Armyworm R4D International Consortium. “Fall armyworm is not going to be the only threat now and forever; there will be more insects, pests and pathogens moving around,” Prasanna said. “Global connectedness is exacerbating this kind of problem, but the solution lies also in global connectedness.”

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

2018 World Food Prize recognizes action to improve child nutrition

Postcard_FOOD PRIZE copy

DES MOINES (Iowa) — As winners of the 2018 World Food Prize, Lawrence Haddad and David Nabarro are being recognized today for their individual work in unifying global nutrition efforts and reducing child malnutrition during the first 1,000 days of life. With this award, food and agriculture leaders highlight the importance of linking food production and nutrition.

Haddad’s and Nabarro’s efforts were crucial in uniting food security policy and programs in the wake of the 2008 global food crisis, when wheat, maize and rice prices doubled. Haddad and Nabarro leapt into action, each rallying a broad group of food system stakeholders and development champions and pushing for the implementation of evidence-based policies.

Using economic and medical research, Haddad convinced leaders to make child and maternal nutrition a priority in the global food security agenda. Nabarro, a champion of public health at the United Nations, was directly responsible for uniting 54 countries and one Indian state under the Scaling Up Nutrition Movement.

The 2018 laureates’ work significantly improved nutrition for mothers and children in the critical first 1,000 days of life — the period from pregnancy to a child’s second birthday. Their relentless leadership and advocacy inspired efforts by countless others to reduce childhood malnutrition. Between 2012 and 2017, the world’s number of stunted children dropped by 10 million.

“I would like to personally congratulate Haddad and Nabarro for putting nutrition and healthy diets on the global agenda,” expressed Martin Kropff, the Director General of the International Maize and Wheat Improvement Center (CIMMYT). “Together, we have to strive to develop resilient agri-food systems that provide nutritious cereal-based diets.”

Food and agriculture leadership

The World Food Prize has been referred to as the “Nobel Prize for food and agriculture.” Awarded by the World Food Prize Foundation, it recognizes individuals who have advanced human development by improving the quality, quantity or availability of food in the world. Winners receive $250,000 in prize money.

The World Food Prize was founded in 1986 by Norman Borlaug, recipient of the 1970 Nobel Peace Prize.

CIMMYT laureates

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. Bram Govaerts received the Norman Borlaug Field Award in 2014. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

CIMMYT has key role to address global nutrition challenges, says maize quality specialist

Natalia Palacios, CIMMYT maize quality specialist, spearheads the center's work to raise the nutritional value of maize-based foods.
Natalia Palacios, CIMMYT maize quality specialist, spearheads the center’s work to raise the nutritional value of maize-based foods.

Exposure to more frequent and intense climate extremes is threatening to reverse progress towards ending hunger and malnutrition. New evidence points to rising world hunger. A recent FAO report estimated the number of undernourished people worldwide at over 800 million. Severe food insecurity and undernourishment are increasing in almost all sub-regions of Africa, as well as across South America.

“It’s very important to ensure food security,” says CIMMYT maize quality specialist Natalia Palacios. “But we also have to focus on food nutrition, because increasing yields doesn’t always mean that we’re improving food quality.” Food quality, she explained, is affected not only by genetics, but also by crop and postharvest management practices. As head of CIMMYT’s maize nutritional quality laboratory, Palacios’ work combines research on all three.

As she prepares to attend the World Food Prize in Des Moines, Iowa – which this year recognizes the contributions of those working to combat malnutrition and ensure food and nutrition security – Palacios discusses ways in which she and CIMMYT colleagues work to address health and nutrition challenges.

What role can CIMMYT play in addressing global nutrition challenges?

Nutrition is an interdisciplinary issue, so there are several ways for CIMMYT to engage. In breeding, there’s a lot we can do in biofortification—which means to increase grain nutrient content. The CIMMYT germplasm bank, with its more than 175,000 unique collections of maize and wheat seed, is an invaluable source of genetic traits to develop new nutritious and competitive crops.

CIMMYT also addresses household nutrition challenges, including food availability, proper storage, and consumer behavior and choice. In cropping systems, the Center studies and promotes diversification, agroforestry, and improved soil health and farming practices, and at the landscape level it examines the role of agricultural practices. Gender research and foresight allow us to identify our role in the evolving setting of agri-food systems and rural transformation. We are prioritizing areas where CIMMYT can play a key role to address global nutrition challenges and partner effectively with leading nutrition groups worldwide.

How does the biofortification of staple crops like maize and wheat help to improve nutrition?

CIMMYT biofortification research has focused on micronutrients such as provitamin A in maize and zinc in both maize and wheat, to benefit consumers whose diets depend on those crops and may lack diversity. Biofortification must be complemented by enhanced dietary diversification and education for better nutrition.

How important are processing and post-harvest storage in terms of ensuring high-nutritional quality?

Research on post-harvest processing and storage is key to our work. A critical topic in maize is monitoring, understanding, and controlling aflatoxins—poisonous toxins produced by molds on the grain. CIMMYT has worked mainly to develop aflatoxin-tolerant maize, but recent funding from the Mexican food industry has enabled us to launch a small, more broadly-focused study.

In the past, aflatoxins showed up every three or four years in Mexico, and even then at fairly low levels. Aflatoxin incidence has lately become more frequent, appearing almost every year or two, as climate changes expose crops to higher temperatures and fungi are more likely to develop in the field or storage, especially when storage conditions are poor.

What are the implications of high aflatoxin incidence for health and nutrition?

The implications for health and nutrition are huge. High consumption can affect the immune system and lead to pancreatic and liver cancers, among other grave illnesses.

How easy is it to tell if a kernel is contaminated?

It’s impossible to tell whether grain is contaminated without doing tests. The chemical structure of the toxin includes a lactone ring that fluoresces under UV-light, but this method only tells you whether or not the toxin is present, and results depend contamination levels and kernel placement under the lamp.

We’re spreading the lamp method among farmers so they can detect contamination in their crops, as well as making other of our other methods more accessible and less expensive, for use by farmers and food processors.

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Cobs & Spikes podcast: Matthew Rouse discusses research on wheat diseases

This week the International Maize and Wheat Improvement Center (CIMMYT) launched a new podcast: Cobs & Spikes. This is a space where we’re going to break down complex science into bite-sized, audio-rich explainers. We’re going to have real conversations with experts from around the world who are innovating in the fields of agriculture, food security and nutrition. We’re also going to listen to stories that link CIMMYT’s research with real-world applications.

In this episode, we are celebrating World Food Day, October 16. Also this week, food experts and leaders from around the world are gathering in Iowa for the 2018 Borlaug Dialogue and the World Food Prize Laureate Award Ceremony.

Today we’re talking to the recipient of the World Food Prize 2018 Norman Borlaug Award for Field Research and Application.

Matthew Rouse is a researcher with the Agricultural Research Service of the United States Department of Agriculture. Rouse works on developing wheat varieties that are resistant to diseases, and he’s being recognized for his work on Ug99 — a devastating race of stem rust disease. Throughout his career, Rouse has collaborated with the International Maize and Wheat Improvement Center (CIMMYT).

Music credit: Loam by Podington Bear

You can subscribe to Cobs & Spikes on SoundCloud, iTunes, Stitcher and other podcast platforms.

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

CIMMYT collaborator wins Norman Borlaug Award for Field Research and Application

Matthew Rouse, a researcher with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), has been named the winner of the 2018 Norman Borlaug Award for Field Research and Application. Rouse is recognized for his essential leadership efforts to contain and reduce the impact of Ug99, a devastating new race of the stem rust pathogen that poses a serious threat to the world’s wheat crops and food security.

The Norman Borlaug Award for Field Research and Application is presented annually to a young extension worker, research scientist or development professional who best emulates the dedication, perseverance, and innovation demonstrated by Norman Borlaug while working in the field with Mexican farmers in the 1940s and ’50s.

“When I learned that I was selected for the Borlaug Field Award, I was humbled by both the legacy of Norman Borlaug and by the fact that any impact I made was a part of collaborations with talented and hard-working individuals at USDA-ARS, the University of Minnesota, CIMMYT, the Ethiopian Institute of Agricultural Research, and other national programs,” Rouse said.

Rouse has been an essential collaborator for a wide range of crucial projects to protect the world’s wheat crops. His research supports more than 20 breeding programs in the U.S. and 15 wheat genetics programs around the world, including those at CIMMYT. As the coordinator of ARS’s spring wheat nursery project in Ethiopia and Kenya, he has provided Ug99 resistance genes to breeders worldwide, accelerating the process for incorporating enhanced stem rust protection into wheat varieties.

Rouse also collaborated with CIMMYT in 2013, when a race of stem rust unrelated to Ug99 caused an epidemic in Ethiopia. He rapidly assembled a team of scientists from CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and USDA-ARS, and developed a research plan to establish four stem rust screening nurseries. This led to the selection of promising new wheat breeding lines by Ethiopian and CIMMYT scientists and the rapid 2015 release of the variety ‘Kingbird’ in Ethiopia, which was shown to be resistant to four of the most dangerous races of stem rust in addition to Ug99.

Read the announcement of the award on the World Food Prize website.

Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)
Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)

 

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

CIMMYT renames lab to honor Evangelina Villegas, World Food Prize laureate

Surinder K. Vasal, former CIMMYT maize scientist and World Food Prize laureate, with Natalia Palacios, head of the CIMMYT maize quality laboratory, and Martin Kropff, CIMMYT director general, helped unveil the plaque in honor of Dr. Evangelina Villegas. (Photo: A. Cortés/CIMMYT)
Surinder K. Vasal, former CIMMYT maize scientist and World Food Prize laureate, with Natalia Palacios, head of the CIMMYT maize quality laboratory, and Martin Kropff, CIMMYT director general, helped unveil the plaque in honor of Dr. Evangelina Villegas. (Photo: A. Cortés/CIMMYT)

El BATAN, Mexico, (CIMMYT) – To celebrate and expand the legacy of the late Evangelina Villegas Moreno, a pioneering Mexican cereal chemist who won the 2000 World Food Prize for co-developing quality protein maize, the International Maize and Wheat Improvement Center (CIMMYT) has named its maize quality laboratory in her honor.

A memorial plaque was unveiled on 6 June by Martin Kropff, CIMMYT’s director general, at the entrance of the CIMMYT lab that generates crucial grain quality data for the center’s global maize breeding efforts.

“What better way to honor Dr. Villegas’ accomplishments than to have a CIMMYT maize quality lab named after her?” Kropff said. “The center is proud to have counted among its ranks a professional like Dr. Villegas, a pioneering Mexican scientist whose contributions to nutrition and food security will continue to resonate in impoverished regions.”

Breeding lines and populations from CIMMYT’s maize program are used in 100 countries and result in high-yielding, resilient varieties and hybrids grown on at least 20 million hectares throughout the tropics and subtropics.

One derivative of that work, known as quality protein maize (QPM), was developed by Villegas and Surinder K. Vasal, another former CIMMYT maize breeder and distinguished scientist, with whom she shared the 2000 World Food Prize.

Maize grain is rich in carbohydrates but poor in protein. In particular, it is lacking in the amino acids lysine and tryptophan, which are key protein building blocks in human diets. QPM grain contains more of those amino acids and so offers better nutrition for people with heavily maize-based diets, as is the case in parts of Latin America and sub-Saharan Africa.

A 2009 study in the science journal Food Policy found that eating QPM instead of conventional maize resulted in respective 12 and 9 percent increases in growth rates for weight and height, in infants and young children with mild-to-moderate undernutrition and where maize constituted the major staple food.

“Today, almost 30 years after Villegas retired from CIMMYT, the chemical and analytical approaches she developed still underpin work to monitor protein quality in QPM,” said Natalia Palacios, CIMMYT maize nutrition quality specialist and current head of the renamed lab. Together with Kropff, Vasal and Villegas’ sister, Juana Villegas Moreno, Palacios helped unveil the new plaque in a ceremony attended by 100 current and former CIMMYT personnel and Villegas’ family members.

Groundbreaker in science and society

Known as “Eva” to colleagues, Villegas, who passed away in April 2017, was born in Mexico City in 1924 and earned a Bachelor of Science degree in chemistry and biology at Mexico’s National Polytechnic Institute, at a time when higher education for women was still a novelty.

In 1950, she began her career as a chemist and researcher at Mexico’s National Institute of Nutrition and at the Office of Special Studies, an initiative funded by the Rockefeller Foundation and the Mexican government that was CIMMYT’s precursor.

She returned to CIMMYT in 1967, after earning a Master of Science degree in cereal technology from Kansas State University and a doctoral degree in cereal chemistry and breeding from North Dakota State University.

Villegas worked with Vasal in CIMMYT’s QPM breeding program, which operated from 1970 to 1985. Requiring the capacity to select for intricate gene combinations before the advent of DNA markers or genetic engineering, the program could not have succeeded without the support of Villegas’ lab and science, according to Vasal.

“I would call it exemplary interdisciplinary work (for) a breeder and a biochemist,” said Vasal. “Her lab analyzed 26,000 grain samples or more a year and provided the data in time for us to sow or pollinate experimental lines. Eva also furnished valuable critical suggestions that improved our breeding work.”

In a message read at the unveiling, Sanjaya Rajaram, 2014 World Food Prize recipient and former CIMMYT wheat scientist and program director, recalled Villegas’s significant contributions to the center’s wheat breeding research, which included establishing the center’s wheat industrial quality lab.

An inspiration in science to improve nutrition

Villegas’ prizes and professional recognitions include the 2000 Woman of the Year award of the Mexican Women’s Association, presented to her by former Mexican President Ernesto Zedillo. In 2001 Villegas was named to Alpha Delta Kappa’s prestigious list of International Women of Distinction and received the Lazaro Cardenas Medal from the National Polytechnic Institute. In 2013 Kansas State University (KSU) honored Villegas with an Outstanding Alumni Award.

“As a scientist, as a woman and as a Mexican, Villegas will continue to inspire future generations working to enhance food security and nutrition for the disadvantaged,” said Palacios.

World Food Prize presentation updates delegates on key contributions of MasAgro

judith-and-bram-2
L-R: Judith Rodin, president of the Rockefeller Foundation; Bram Govaerts, CIMMYT Latin America Regional Representative at the World Food Prize. CIMMYT/Ricardo Curiel

DES MOINES, Iowa (CIMMYT) – Transforming subsistence agriculture and unsustainable farming systems into productive and sustainable operations has been the key focus of scientist Bram Govaerts, 2014 recipient of the Norman Borlaug Award for Field Research and Application at the World Food Prize

Govaerts manages the Sustainable Modernization of Traditional Agriculture (MasAgro) program at the International Maize and Wheat Improvement Center (CIMMYT), which aims to enable farmers to produce high quality staple grains in sufficient quantities to meet the needs of the Mexican market.

“Starting five years ago, MasAgro and, in particular, its work on technological innovation in farmers’ fields, have been acting upon the infamous instructions of Dr. Norman Borlaug, founder of CIMMYT and of the World Food Prize,” said Govaerts, Latin America Regional Representative of the International Maize and Wheat Improvement Center (CIMMYT)  while participating in the  Borlaug Dialogue panel “Borlaug–Rockefeller: Inspiring a new generation,” coordinated by the World Food Prize Foundation.

“Borlaug told his acolytes to ‘take it to the farmer,’ which is exactly what we have been doing through MasAgro,” Govaerts said.

On the panel hosted by Rockefeller Foundation President Judith Rodin, which included three other young researchers who are also Norman Borlaug Award for Field Research and Application laureates, Govaerts added that MasAgro has produced successful results because its applied field research and capacity building activities transfer technologies to the farm sector through decision-making processes based on reliable and objective data.

“We demand scientific excellence of ourselves because agriculture can only be transformed through innovation networks, mechanisms and smart tools that enable farmers to realize their full potential,” Govaerts said.

Each year, more than 1,000 private and public sector leaders from the international community meet in Des Moines, the state capital of Iowa in the United States, to participate in the Borlaug Dialogue. The conference precedes the presentation of the World Food Prize, which was established by Borlaug, who reached the pinnacle of his career when he was awarded the 1970 Nobel Peace Prize, in recognition of exceptional leaders who have contributed to the fight against world hunger.

Previously, three CIMMYT researchers—Evangelina Villegas, Surinder Vasal and Sanjaya Rajaram—have been awarded this important prize. This year, the World Food Prize Foundation recognized  Maria Andrade from Cape Verde, Robert Mwanga from Uganda, and Jan Low and Howarth Bouis, both from the United States, for their work developing and disseminating  micronutrient-rich crops, including the biofortified, vitamin A-enriched orange-fleshed sweet potato.

Andrew Mude received the 2016 Norman Borlaug Award for Field Research and Application for developing an insurance program for previously uninsured communities whose livelihoods depend on herding cattle, goats, sheep and camels in the remote, arid and drought-prone lowlands of the Horn of Africa. The field award is sponsored by the Rockefeller Foundation.

Tackle food insecurity with homegrown education, Food Prize delegates say

mk-bg-wfp
CIMMYT Director General Martin Kropff (L) and Bram Govaerts, strategy lead for sustainable intensification in Latin America and Latin America Regional Representative, in the Iowa State Capitol in Des Moines attending the 2016 World Food Prize ceremony. CIMMYT/Julie Mollins

DES MOINES, Iowa (CIMMYT) – Africa must develop a strong educational infrastructure to address the challenges of poverty, malnutrition and food insecurity, said experts at the World Food Prize Borlaug Dialogue in Des Moines, Iowa, recommending reforms at both the institutional and individual level to help smallholder farmers.

Almost 220 million people of the 1.2 billion people who live in Africa are undernourished. In sub-Saharan Africa, which lags behind regional and global trends, hunger affects about one out of every four people, according to the U.N. Food and Agriculture Organization.

“African countries must become more self-reliant when it comes to education, building on historical achievements to establish a strong infrastructure – not focused only on academic research, but with a practical ‘science for impact’ component as well,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Many people think education and capacity building are just about training or earning a doctoral degree, but it’s more extensive than that. It’s important to develop a proper framework for training individuals and institutions to ensure countries can achieve development goals.”

CIMMYT trains scientists throughout the developing world to become maize and wheat breeders. In Africa, where CIMMYT conducts 40 percent of its work, a screening facility for maize lethal necrosis disease and a center for double haploid breeding are also used as training facilities for capacity building, also helping to bolster national agricultural systems.

Kropff, who served as rector of Wageningen University and Research Center in the Netherlands before joining CIMMYT in 2015, is laying the groundwork for a “CIMMYT Academy.” The academy will pull together a range of existing training programs, uniting them into a coherent set of activities affiliated with universities throughout Africa to help breeders learn a variety of skills that can broaden their knowledge base.

“The key is to take a unified approach, sometimes a maize or wheat breeder needs also to learn technological and socioeconomic aspects of the work — we need integration – a more well-rounded approach – to really have impact,” Kropff said, adding that each innovation has a socioeconomic component and technological component.

“If we want to help countries in Africa struggling to establish a functional seed distribution system, we have to involve the private sector, so we also need to train people to become entrepreneurs,” he added.

FOUNDATION AND GROWTH

In the 1960s and 1970s, the international community helped set up the first educational development programs throughout Africa creating leadership candidates who subsequently trained many people, said Gebisa Ejeta, the 2009 World Food Prize laureate whose drought-resistant sorghum hybrids have increased food supply for millions of people throughout sub-Saharan Africa. Over time, these programs have provided the necessary foundation upon which to build institutions, he said.

“Nothing is more foundational for development than having native capacity at the human level as well as at the institutional level to really take more experiential learning forward and that way also to benefit greatly from development assistance,” Ejeta added. “Otherwise, it becomes an activity of external programs coming in and out.”

Africa has benefited over the past 10 years from being part of a new global landscape, Ejeta said, pointing to the expansion of infrastructure resulting from assistance from China, the World Bank and the African Development Bank. Simultaneously, Africa is also beginning to invest directly internally.

“Africa needs to benefit from valuable lessons from China, India and Brazil,” Ejeta said. “Each one of them is different, but the common denominator is that they all invested systematically in human and institutional capacity building in their countries to really drive involvement processes taking place to bring about transformative change.”

We need to shift the center of gravity to African governments and scientists, said Joyce Banda, who served as president of Malawi from 2012 to 2014, adding that a major challenge is a lack of extension – many people don’t know how to properly grow crops, use technology or about improved seeds due to a lack of farmer education.

Good agricultural production goes side-by-side with good governance, Banda said. “We need to fight and make sure that our resources are safe for the benefit of agriculture and food security across Africa. Africa needs to educate for change because men are eating first, best and most, but women are growing the food, storing the food, processing the food, cooking the food and eating last and less.”

The average age of an African farmer is 60, but 65 percent of Africans are young people, Banda said, adding that it is a lost opportunity if young people aren’t introduced to agriculture and trained.

CONFRONTING RISKS

Comprehensive individual and institutional capacity building can demonstrate modern agricultural techniques to inspire younger people to embrace farming, said Bram Govaerts, strategy lead for sustainable intensification in Latin America and Latin America Regional Representative at CIMMYT.

“Farmers must be made aware of new farm technology, taught how to apply scientific research to agricultural practices and get opportunities to innovate – education can facilitate the creative process, said Govaerts who won the 2014 Borlaug Award for Field Research and Application endowed by the Rockefeller Foundation and presented by the World Food Prize foundation.

“We need to first make sure partners can produce enough nutritious food for their families and then connect them to networks that can track data and crops all the way from farm to consumer,” he said. “We need to take a holistic approach to innovative post-harvest processes.”

For example, a small sensor placed in a post-harvest storage silo could measure temperature and humidity to protect the crop, but can also connect to a market network, allowing farmers to easily find buyers and prevent food waste.

“Millions of farmers in African countries are suffering from poverty, malnutrition and food insecurity, and a lack of technology prevents them from maximizing their potential contributions to their families and communities,” Govaerts said.

“I’m more and more convinced that change is going to come from innovation networks and the enabling tools that will generate them.”

HarvestPlus World Food Prize laureates benefit more than 10 million people

HarvestPlus director Howarth Bouis is one of four winners of the 2016 World Food Prize. Graphic design: Bose Zhou
HarvestPlus director Howarth Bouis is one of four 2016 World Food Prize laureates. Graphic design: Bose Zhou

EL BATAN, Mexico (CIMMYT) — HarvestPlus director Howarth Bouis is one of four winners of the 2016  World Food Prize, honored for international research leading to a substantial increase in the availability of nutritious biofortified crops for millions of poor people.

Bouis was recognized specifically for pioneering work that established a multi-institutional approach to biofortification as a global plant breeding strategy, World Food Prize organizers said in a statement on Tuesday. The interdisciplinary, collaborative HarvestPlus program was launched in 2003 and is now part of the Agriculture for Nutrition and Health program managed by the CGIAR consortium of agricultural researchers.

Bouis, who works with the CGIAR International Food Policy Research Institute (IFPRI), has directed initiatives that have led to the release or testing of such crops as iron- and zinc-fortified beans, rice, wheat and pearl millet, along with vitamin A-enriched cassava, maize and the orange-fleshed sweet potato in more than 40 countries.

The three other laureates, Maria Andrade, Robert Mwanga and Jan Low of the CGIAR International Potato Center (CIP) are being recognized for work leading to the development of the biofortified orange-fleshed sweet potato. Andrade and Mwanga, plant scientists in Mozambique and Uganda, bred the Vitamin A-enriched potato using genetic material from CIP and other sources, while Low structured the nutrition studies and programs that convinced almost two million households in 10 separate African countries to plant, purchase and consume the nutritionally fortified food, the statement said.

Although orange-colored sweet potatoes are common in some parts of the world, in parts of Africa white sweet potatoes have historically been more typical. Breeding potatoes so they can synthesize more vitamin A means they can be grown in poor areas to benefit consumers and smallholder farmers who cannot afford to buy or grow food high in micronutrients.

Due to the combined efforts of the four World Food Prize laureates, more than 10 million people are now gaining nutritional benefits from biofortified crops, and the potential exists to benefit several hundred million more people in the coming decades, the statement said.

“The impact of the work of all four winners will be felt around the globe, but particularly in sub-Saharan Africa,” said Kenneth Quinn, president of the World Food Prize. “It is particularly poignant that among our 2016 recipients are two African scientists who are working on solutions to tackle malnutrition in Africa, for Africa.”

Some 2 billion people around the world suffer from micronutrient deficiency, which occurs when food does not provide enough vitamins and minerals, according to the World Health Organization. South Asia and sub-Saharan Africa are most affected by hidden hunger.

Andrade, Mwanga, Low and Bouis will receive the World Food Prize at a ceremony in Des Moines, Iowa, on October 13, the main event during the annual Borlaug Dialogue symposium. The late Nobel Peace Prize laureate, Norman Borlaug, a wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT), established the World Food Prize 30 years ago.

CIMMYT scientists have won the prestigious award twice.  Evangelina Villegas and Surinder Vasal received it in 2000 for their work developing quality protein maize with an adequate balance of amino acids using biofortification techniques. They provided nutritional options for people with diets dominated by maize and with no adequate alternative source of protein.

Wheat breeder Sanjaya Rajaram, who worked with both CIMMYT and the CGIAR International Center for Agricultural Research in the Dry Areas (ICARDA), won in 2014 for producing a remarkable 480 wheat varieties, which produce yields that are estimated to feed more than 1 billion people a year.

HARVESTPLUS MAIZE AND WHEAT

While the orange sweet potato is a highlight, biofortified wheat and maize are part of the overall HarvestPlus success story, benefiting thousands of resource-poor farmers and consumers.

“This news shows that it is vital to keep up the fight and serves as encouragement for partners, collaborators and donors to pursue biofortification more vigorously to achieve greater global impact on food and nutritional security,” said CIMMYT wheat breeder Velu Govindan.

CIMMYT maize and wheat scientists tackle micronutrient deficiency, or “hidden hunger,” through HarvestPlus to help improve nutrition in poor communities where nutritional options are unavailable, limited or unaffordable. Micronutrient deficiency is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The wheat component of the HarvestPlus program involves developing and distributing wheat varieties with high zinc levels.

“Breeding these varieties involves the use of diverse genetic resources, including wheat landraces, ancestors and wild relatives, with high genetic potential to accumulate zinc in the grain, which are combined with adapted wheat to obtain high-yielding varieties with high zinc grain concentration,” said Carlos Guzman, head of the Wheat Chemistry and Quality Laboratory at CIMMYT, adding that such varieties have been shown to have higher iron values in grain than conventional varieties.

A project to develop superior wheat lines combining higher yield and high zinc concentrations in collaboration with national agriculture program partners in South Asia has led to new biofortified varieties 20 to 40 percent superior in grain zinc concentration, which are already available for farmers in India and Pakistan. Other national partners, such as Bolivia, are also close to releasing biofortified wheat varieties developed through collaboration with CIMMYT.

Additionally, a recent HarvestPlus study revealed that modern genomic tools such as genomic selection hold great potential for biofortification breeding to enhance zinc concentrations in wheat.

Scientists working with HarvestPlus have developed vitamin A-enriched “orange” maize. Orange maize is conventionally bred to provide higher levels of pro-vitamin A carotenoids, a natural plant pigment found in such orange foods as mangoes, carrots, pumpkins, sweet potatoes, dark leafy greens and meat, converted into vitamin A by the body.

Vitamin A is essential for good eyesight, growth and boosting immunity. Almost 200 million children under the age of 5 and 19 million pregnant women are vitamin A deficient, and increasing levels through maize kernels is an effective means of boosting it in the diet.

Maize breeders are currently working on developing varieties with 50 percent more pro-vitamin A than the first commercialized varieties released. In Zambia, Zimbawe and Malawi, 12 varieties, which are agronomically competititve and have about 8ppm provitamin A, have been released.

Provitamin A from maize is efficiently absorbed and converted into vitamin A in the body.  Stores of Vitamin A in 5 to 7 year old children improved when they ate orange maize, according to HarvestPlus research. The study also shows preliminary data demonstrating that children who ate orange maize for six months experienced an improved capacity of the eye to adjust to dim light. The findings indicate an improvement in night vision.

Researchers are also developing maize varieties high in zinc. Scientists expect the first high zinc hybrids and varieties will be released in 2017. Further efforts are starting in such countries as Zambia, Zimbabwe and Ethiopia. Results from the first nutrition studies in young rural Zambian children indicate that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for the vulnerable population.

World Food Prize laureate Rajaram honored at World Food Forum

From right to left: Alejandro Violic, retired CIMMYT training specialist, Sanjaya Rajaram and Juan Izquierdo, FAO consultant. Photo: Juan Izquierdo, FAO consultant
From right to left: Alejandro Violic, retired CIMMYT training specialist, Sanjaya Rajaram and Juan Izquierdo, FAO consultant. Photo: Juan Izquierdo, FAO consultant

Sanjaya Rajaram, recipient of the 2014 World Food Prize, told more than 200 participants at the World Food Forum in Santiago, Chile, on 14 April, that he held hopes for a “second Green Revolution.”

Speaking to an audience that included the Chilean Minister of Agriculture, Carlos Furche Guajardo, Rajaram talked about feeding the world’s growing population and the challenges that farmers face to achieve this, which include rising temperatures and more extreme and erratic rainfall. Rajaram emphasized the importance of small-scale agriculture, genetically-modified crops and biofortified crop varieties to provide more nutritious food.

The event included a special recognition for Rajaram’s outstanding work at CIMMYT, along with Dr. Norman Borlaug, to develop more than 500 wheat varieties.

The Forum was organized by CROPLIFE,whose members include Dow, FMC, DuPont, BASF, Bayer, Monsanto, Syngenta and Arista.

Q+A: Young scientist wins award for “Taking it to the Farmer”

Taking-it-to-the-Farmer EL BATAN, Mexico (CIMMYT) — Conservation agriculture, which improves the livelihoods of farmers by sustainably boosting productivity, is becoming a vital part of the rural landscape throughout Mexico and Latin America, leading to a major World Food Prize award for Bram Govaerts.

As associate director of the Global Conservation Agriculture Program at the International Maize and Wheat Improvement Center (CIMMYT), Govaerts works with farmers to help them understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields, increase profits and protect the environment.

Govaerts, winner of the 2014 Borlaug Field Award , played a major role in developing a Mexican initiative known as the Sustainable Modernization of Traditional Agriculture (MasAgro), and in June 2014 the 35-year-old assumed leadership of the project, spearheading the coordination of related initiatives throughout Latin America.

According to Govaerts, there are two choices – “Either agricultural production is going to grow in unsustainable ways, depleting our resources, or we take action now, investing in sustainable agriculture so that it can be a motor for growth as well as a motor for sustainable development.”

MasAgro is a partnership led by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food and CIMMYT involving more than 100 agricultural research organizations. It offers training and technical support for farmers in conservation agriculture and gives them access to high-yielding, conventionally bred seeds.

The overall aims of MasAgro include raising the yield potential of wheat by 50 percent and increasing Mexico’s annual production by 350,000 tons (318,000 metric tons) in 10 years. Goals also include raising the production of maize in rainfed areas.

MasAgro’s “Take It to the Farmer” component was inspired by a statement made by the late CIMMYT scientist Norman Borlaug who won the Nobel Peace Prize in 1970. He believed that scientists should work closely with farmers, an idea central to CIMMYT’s overall approach to agricultural research and practice. Borlaug led the development of semi-dwarf wheat varieties in the mid-20th century that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world. He also founded the World Food Prize .

“Take it to the Farmer” integrates technological innovation with small-scale farming systems for maize and wheat crops, while minimizing harmful impacts on the environment. Farmers on more than 94,000 hectares (232,280 acres) have switched to sustainable systems using MasAgro technologies, while farmers on another 600,000 hectares are receiving training and information to improve their agricultural techniques and practices. Techniques include crop diversification, reducing tilling of the soil and leaving crop residue on the fields.

Govaerts, who has also worked on conservation agriculture projects in Ethiopia and India, discussed his work after winning the award.

Q: What inspired the “Take it to the Farmer” component of the MasAgro project?

A: The strategy stemmed from the fact that there’s a great deal of information out there today for farmers, starting with seed varieties. Farmers have many choices to make about technology to increase productivity, but they need to understand how to integrate it and make it sustainable. We work closely with farmers to develop conservation-based agricultural systems so that they can generate high, stable crop yields over time. Doing this offers farmers the best opportunity for higher incomes, but also lowers environmental impact.

MasAgro helps the farmers develop an agronomic system – including the technology. In that way it’s not so much taken to the farmers, but it’s developing a system together with the farmer. We innovate with the farmers and connect them to a working value chain and we then combine what we call our hub approach. We’re connecting research platforms with farm innovation modules and from there we develop systems influenced by farmer knowledge.

Q: Is it possible for this to work on any farm in any location?

A: The key is to adapt to the specific locations of each of the farmers. We have to make the strategies work for specific farming and then on top of that we need to include other technologies to make it work. Technology might simply be hand-planting, not necessarily high-tech huge machinery. It is really about establishing basic conservation agriculture principles and working together to make those basic principles work.

Q: Are you trying to help farmers achieve their agricultural goals by helping them save money by not spending on fertilizers?

A: It depends; if you’re in an area where farmers are over-fertilizing it helps to reduce costs if they don’t use fertilizers as much. On the other hand, some farmers are not using fertilizers at all so there we recommend using them in an integrated manner. There might be areas where production costs go up slightly because farmers were not investing in any inputs or technologies, but because productivity is increased in the end they have a higher return on investment.

Q: Can you give an example of a farmer who has changed practices?

A: Some smallholder farmers in Oaxaca, Mexico, are improving their production practices as they raise the local [indigenous] maize landraces. We connected them with a niche maize market in New York City. They are now exporting and selling their specialty maize to chefs in New York who use them in high-end restaurants. So they are not only increasing productivity, they are also connected to markets to sell their extra produce. The challenge now is to take this effort to scale. What we realized is that by only increasing productivity, we’re actually bringing the farmers into a risky situation unless they can find bigger markets.

We helped a novice wheat farmer who is renting land. He’s been adjusting his farming system and is now using conservation agriculture technology. As a result, because he has a slower turnaround time, when he planted his summer crop, instead of planting only 100 hectares, he jumped to 350 hectares. In a strict sense, he was not a smallholder farmer, but we work with big and small farmers.

Another example is the use of mobile phones – farmers can subscribe to a short message service, or SMS text-messaging system. Once subscribed, the farmer receives information on different topics, including technical recommendations or warnings. For example, one of the warnings we sent out during the wheat-growing season was that there was going to be an imminent frost. That led to some of the farmers irrigating their crops because that helped mitigate the damage and saved part of their crops.

Q: What challenges do you face?

We’re working with more than 150 institutions and organizations and we’re connected to more than 200,000 farmers. When Dr. Borlaug was working the world was simpler, we not only have to increase yields but we also have to work in an environmentally friendly manner. We also have to provide environmental services via agriculture and we have to make sure that farmers have sufficient income and this in a complex, institutional.
We can no longer accept that we’re just doing the science and then leave it up to others to apply the science. That’s not how it works – we scientists need to ensure that the technology is actually implemented and that it is expanded by new ideas from farmers, technicians and others along the value chain. We need to take responsibility that our knowledge and science is used and is responding to a real need. Public and private investment in agriculture should increase, especially in Latin America because it’s going to be a motor of transformation.

Q: How do you encourage farmers to change their practices?

A: We do a lot of training. In some areas our first step is bringing new seeds – connecting seed companies with a new variety CIMMYT has developed, making sure the seed system is working. There are some interventions that are rather linear – one-shot interventions. There are methods that from the beginning are going to be complicated and the farmer has to wait five years before changes are seen. That’s quite difficult, but if you can show an intervention where the farmer can store maize better and instead of losing 40 percent he’s only losing 10 percent during storage, that’s an intervention that can then start the dialogue to a more complicated system change. Much of our focus is on knowledge exchange, as well as in training and innovation.

Q: What is the significance of your award for Mexico?

A: The award has a special significance for Mexico. It recognizes Mexico’s bold decision to invest in agricultural innovation and to take responsibility not only for the country but for the region. We are proud of CIMMYT’s achievements within its host country.
Before CIMMYT’s collaboration with the Mexican government there was a real disconnect between agricultural science and the reality of farmers on the ground. As a result, this award is not only a recognition of scientific excellence, but the importance of getting the results out to the farmers. Mexico is a complex country.

Here we have all types of farmers – from large commercial farmers who exploit market opportunities for export to smallholder farmers who do not have access to markets. Mexico also hosts a wide range of unique agro-ecological environments. These circumstances offer CIMMYT scientists a unique laboratory to conduct their research and gives us an opportunity to explore new ways of doing science and connecting with farmers to ensure that science has impact.

Q: This year the World Food Prize Borlaug Dialogue was titled “Can we sustainably feed the 9 billion people on our planet by the year 2050?” What are your thoughts on the topic?

A: This is not just a numbers game. We will need to feed more than 9 billion people while working in a more complicated institutional and political environment and at the same time safeguarding natural resources. These global challenges are moving at a fast pace, so CIMMYT needs to move fast and expand its scientific excellence. We are at a turning point where we have to take advantage of these rapid changes in science and technology, which are becoming increasingly interlinked.

Working to help provide nutritional food for 9.5 billion people will be a collective effort. There won’t be one Norman Borlaug but a consortium of people working together with different expertise to achieve this goal. This will require new collaborations, especially public-private partnerships. CIMMYT is one of the best institutions to create these partnerships but we need to be better equipped for what is needed at this time. Complacency and living in the past is not an option.

Food security successes earn ‘sultan of wheat’ World Food Prize

sultan of wheat
Undated file picture shows the late Nobel Peace Prize laureate Norman Borlaug (L) with 2014 World Food Prize laureate Sanjaya Rajaram.

EL BATAN, Mexico (CIMMYT) — Scientist Sanjaya Rajaram, originally from a small farm in India’s state of Uttar Pradesh, is now widely recognized by the international agriculture sector for his prolific contributions to food security and poverty alleviation.

He is credited with producing a remarkable 480 wheat varieties, which have boosted worldwide yields by more than 180 million metric tons (200 million tons). These increased yields provide food to more than 1 billion people each year.

The varieties Rajaram developed during his 40-year career have been released in 51 countries on six continents.

They are used by farmers with both large and small land holdings who rely on disease-resistant wheat adaptable to a range of climate conditions.

For those feats and more Rajaram is the 2014 World Food Prize laureate, an honor awarded each year to the person who does the most to advance human development by improving the quality, quantity or availability of food in the world. Rajaram received the award at the World Food Prize ceremony on October 16 in Des Moines, Iowa.

“Rajaram has made a massive contribution to food security – I doubt that one person will ever again be involved in the development of as many widely grown wheat varieties,” said Hans Braun, director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), where Rajaram worked for 33 years.

“As a former colleague once said: ‘It’s amazing what happens, when the ‘Sultan of Wheat’ puts his magic hands on a wheat line’,” he added.

INTERESTS FLOURISH

Rajaram was born in 1943 on the 5-hectare (12 acre) farm in Raipur where his family eked out a living by producing wheat, rice, maize, sugarcane and millet.

His parents recognized Rajaram’s intellectual potential and sent him to school 5 kilometers (3 miles) from home, which at the time was unusual in an area where 96 percent of people had no formal education.

Rajaram excelled scholastically and became the top-ranked student in his district. A state scholarship gave him the opportunity to attend high school, which led to his acceptance at the College of Jaunpur in the University of Gorakhpur, where he earned a Bachelor of Science in agriculture in 1962.

Afterwards Rajaram attended the Indian Agricultural Research Institute in New Delhi, graduating with a Master of Science in 1964.

Subsequently, he earned a doctorate in plant breeding at Australia’s University of Sydney where he first made contact with the superstars of what became known as the “Green Revolution” – Norman Borlaug and Glenn Anderson, who were leading scientists at CIMMYT.

CIMMYT VARIETIES

Borlaug, who was from the United States, died in 2009 at age 95. He is known as the “Father of the Green Revolution” and he was awarded the Nobel Peace Prize in 1970. Borlaug is credited with saving 1 billion lives in the developing world — particularly in South Asia — as a result of the disease-resistant, high-yield semi-dwarf wheat varieties he developed.

Borlaug had also introduced similar innovations throughout Mexico – where CIMMYT is headquartered – leading to the country’s self-sufficiency in wheat.

Anderson, a Canadian who died in 1981 at 57, was recruited by Borlaug to lead the major “Green Revolution” wheat improvement project in India. In 1971, Anderson became deputy director of the CIMMYT Wheat Program and then its director after Borlaug retired in 1979.

The two recruited Rajaram, who joined CIMMYT in 1969. He was appointed head of the wheat breeding team by Borlaug three years later. He set to work cross breeding select plant varieties, and the yield potential of his cultivars increased 20 to 25 percent.

“His technique was to cross winter and spring wheat varieties, which were distinct gene pools, leading to the development of higher yield plants that can be grown in a wide range of environments around the world,” Braun said, adding that Rajaram’s varieties were disease- and stress-resistant.

“The varieties he developed were eventually grown on a larger area than those developed by Borlaug.”

His varieties could be planted in areas previously uninhabitable for wheat in China, India and in Brazil’s acidic soils, for which he developed aluminum-tolerant wheat. Rajaram also developed wheat cultivars now grown on millions of hectares worldwide with durable resistance to rust diseases, which can devastate crops.

Rajaram spent eight years working for the International Center for Agricultural Research in the Dry Areas (ICARDA). At ICARDA, first as director of the Integrated Gene Management Program, then as special scientific advisor, he oversaw the promotion of new technologies to help farmers in the Central and West Asia and North Africa (CWANA) region.

He developed wheat improvement strategies to tackle some of the challenges facing wheat in dry areas, including stripe rust disease, which can spread quickly and have a devastating effect on wheat.

MENTOR TO MANY

“Rajaram’s research not only led to enhanced productivity, but farmers also saw big increases in profits due to higher yields and disease resistance – they no longer had to buy expensive fungicides to protect their plots,” said Ravi Singh, current head of wheat breeding at CIMMYT, one among many breeders Rajaram mentored.

Now a Mexican citizen and still a firm believer in the value of education, Rajaram continues his affiliation with CIMMYT, recently attending a “trainee wheat boot camp” for students from major wheat-growing nations.

“We know we need to double food production to feed the more than 9 billion people we’re expecting by 2050,” Rajaram said.

“Global objectives for food security can most definitely be met. However, we must be able to rely on guaranteed research funding from both the public and private sectors to address the many challenges we face, including decreasing land availability and erratic environmental changes related to climate change.”

Wheat currently provides 20 percent of overall daily protein and calories consumed throughout the world. Production must grow 70 percent over the current amount by 2050, according to the international Wheat Initiative – an achievable goal if annual wheat yields are increased from a current level of below 1 percent to at least 1.7 percent.

Researchers at CIMMYT are aiming to develop resilient wheat varieties tolerant to the drought, heat, extreme wet and cold conditions anticipated by scientists to grow more extreme as mean annual temperatures continue to increase and weather patterns become more volatile.

Rajaram’s great legacy was to give opportunities to newly graduated doctoral students, Singh said.

“He put us in charge of different parts of the breeding program each season, so we had to learn all aspects of the process for ourselves – we worked many long hours with him in the field developing confidence, which was very important for our professional careers.”

Rajaram intends to put a portion of his World Food Prize winnings, valued at $250,000, into training and education programs.