Skip to main content

Tag: women

Atubandike: Breaking down gender barriers in Zambia’s agricultural advisory services

A digital champion trained by CIMMYT in climate-smart agricultural practices, shares her knowledge with her community (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Zambia’s agricultural sector has long grappled with significant gender disparities, particularly in rural areas where women often face unique barriers to accessing essential agricultural information. Despite playing a critical role in food production, women remain significantly underrepresented as agricultural extension agents, a trend that persists not only in Sub-Saharan Africa (SSA) but also globally. Changing this narrative demands a coordinated effort from government, non-governmental organizations (NGOs), the private sector and communities to challenge deep-rooted stereotypes about women’s roles and capabilities in agriculture.[1]

The Atubandike approach, a key part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, addresses these challenges head on. Through initiatives focusing on gender-inclusive seed systems and agricultural advisories on climate-smart agricultural (CSA) practices, Atubandike is actively working to increase women’s representation among Zambia’s agricultural advisors. By equipping communities with inclusive advisory services and training women and men digital champions, Atubandike is paving the way for a more equitable agricultural future.

This blog delves into the gender biases uncovered during recent community consultations organized by the AID-I Atubandike team in Zambia’s Southern Province across various rural districts, held in November 2023, as well as July 2024.[2] These consultations, aimed at addressing gender and youth stereotypes in agriculture, highlighted Atubandike’s initiatives to reshape the agricultural landscape for women and marginalized groups.

Community dialogues reveal deep-rooted gender biases in advisory access and spring up encouraging perspectives for female advisors

Staying true to the name, Atubandike—meaning “Let’s Chat” in Tonga—the AID-I team implementing the initiative, facilitated community discussions with over 1,700 farmers in Zambia’s Southern Province to explore underlying gender challenges in agriculture. Through these conversations, deep-seated gender biases emerged as a significant barrier. Many female agricultural advisors contend with cultural stereotypes that undermine their leadership and technical skills. As one participant noted, “Women are mostly seen as subordinates to men, so it is only natural that female agricultural advisors are viewed as less capable.” Such remarks highlight the difficult path women often tread to establish their authority in agricultural roles. Unfortunately, this bias isn’t limited to men; some female farmers also expressed a preference for male advisors, sharing the belief that “a fellow woman cannot provide valuable information.”

Women participating during a focus group discussion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Studies on agricultural extension services confirm that  gender disparities in advisory roles severely  limit women farmers’ access to timely, high-quality  information in SSA and other developing regions. This, in turn, impedes their ability to boost productivity and provide for their families. [3] Agricultural Advisory Services (AAS) are often designed with men as the primary beneficiaries, overlooking the need to make services more accessible and relevant to women. The dominance of male extension agents further exacerbates this issue, especially in societies where cultural norms restrict interactions between women and men outside their immediate family. These societal norms reinforce traditional gender roles, undermining the effectiveness of women as agricultural advisors. As a result, women are often excluded from opportunities that would enable them to fully participate in, and benefit from, agricultural development. This exclusion not only limits their potential but also perpetuates poverty and inequality.

On a positive note, a more nuanced perspective also emerged during the discussions. Some community members recognized the unique strengths that female advisors bring to their work. As one participant observed, “Female advisors are more careful and easier to talk to,” noting that women often prioritize technical knowledge, while men may base advice more on personal experience. This insight provides a glimmer of hope: with increased exposure and trust, farmers could become more receptive to female advisors, recognizing their effectiveness alongside their male colleagues.

A female farmer shares her experience during a CIMMYT visit to her village where farmers were discussing gender youth and social inclusion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

In some settings, women farmers even prefer female advisors, feeling more comfortable discussing issues and having a greater sense of shared experiences. According to a study conducted in Mozambique, women farmers were more likely to be reached as well as learn when agricultural content was delivered by female advisors. [4] This highlights the potential impact of gender-sensitive approaches in improving the efficacy and accessibility of advisory services for women.

Achieving equal footing for women in AAS requires addressing a broader range of barriers. This not only entails efforts to recruit and retain women in these roles but also providing equal opportunities for education and training, as well as developing explicit policies to safeguard women advisors from gender-based discrimination.

Breaking barriers: How Atubandike is transforming AAS

The goal of the Atubandike approach is to identify, understand and dismantle entrenched gender barriers in agriculture. By adopting an innovative and inclusive strategy, this initiative equips both men and women with the tools they need to become digital champions and agricultural advisors, playing pivotal roles in their communities. With a deliberate focus on increasing female representation, Atubandike ensures that at least 50% of these champions are women, amplifying their visibility and influence in the sector.

Central to Atubandike is its emphasis on community engagement through a feedback-driven process. This approach facilitates open dialogue among community members, urging them to confront existing social biases and develop practical solutions. Through these discussions, the initiative fosters collective action aimed at promoting gender equity and social inclusion. Additionally, Atubandike provides comprehensive training on gender, diversity, and inclusion, equipping its digital champions not only with technical knowledge but also with the skills required to challenge and navigate gender biases effectively.

One of the initiative’s most transformative elements is its focus on diverse role models. By ensuring that half of its village-based digital champions are women, Atubandike boosts their digital literacy, agricultural expertise, and standing as leaders and role models within their communities.[5] These women are featured prominently in digital content and on talk shows, reshaping perceptions of women as agricultural leaders and breaking down longstanding negative narratives that have historically sidelined them.

Sustaining Atubandike’s momentum: Community-driven support for female advisors

Community members balanced the discussions by proposing valuable insights and strategies to overcome the deeply rooted stereotypes that challenge female agricultural advisors. Raising community awareness about the value of female advisors emerged as a crucial approach to fostering their acceptance. As one participant emphasized, “More training on gender norms is essential so that the community can become more open-minded.” Others argued that establishing trust in female advisors from the outset could empower them as agents of change: “If we begin by placing our trust in female agricultural advisors, we can encourage other communities to do the same.”

Community leaders were urged to facilitate meetings to address any disrespect toward agricultural advisors, irrespective of gender. A farmer emphasized the necessity of mutual respect, stating, “The community should be encouraged to work cooperatively with their agricultural advisors.”

Participants also highlighted that agricultural advisors must actively demonstrate their competence to build trust. In one community, it was stressed that both female and male advisors “must practice the agricultural technologies they promote so that people can have faith in their competence.” Additionally, participants suggested that advisors wear uniforms to clearly distinguish their professional roles, signaling their commitment to serving the community in an official capacity.

A model for inclusive agricultural development

Atubandike transcends the role of a conventional agricultural advisory initiative; it stands as a beacon of inclusive development, extending its impact across Zambia and setting a model for the region. By delving into the roots of gender bias and driving practical, community-led solutions, Atubandike aligns with the AID-I project’s mission of “delivering with a difference.” Through empowering female digital champions and fostering dialogues on social equity, Atubandike demonstrates that meaningful change is both attainable and sustainable. As a testament to AID-I’s dedication to equitable innovation and resilience, Atubandike is not only reshaping gender norms in Zambia but is also establishing itself as a blueprint for inclusive impact across Southern Africa’s agricultural landscape.

[1] BenYishay, A., Jones, M., Kondylis, F., & Mobarak, A. M. (2020). Gender gaps in technology diffusion. Journal of development economics, 143, 102380.

[2] The informed consent statement and methodology used in the community conversations are available upon request m.fisher@cgiar.org.

[3]Bill & Melinda Gates Foundation. (2020). Gender and agricultural advisory services. https://www.gatesgenderequalitytoolbox.org/wp-content/uploads/BMGF_AG-Advisory-Services-Brief_web.pdf

[4] Kondylis, F., Mueller, V., Sheriff, G., & Zhu, S. (2016). Do female instructors reduce gender bias in the diffusion of sustainable land management techniques? Experimental evidence from Mozambique. World Development, 78, 436-449.

[5] Lecoutere, E., Spielman, D. J., & Van Campenhout, B. (2023). Empowering women through targeting information or role models: Evidence from an experiment in agricultural extension in Uganda. World Development, 167, 106240.

In Zimbabwe, Women Are Leading the Battle Against Climate Change

CIMMYT, through the CGIAR-supported Ukama Ustawi initiative, is supporting women farmers in Zimbabwe to lead the fight against climate change. By adopting climate-smart practices like zero tillage and growing drought-resistant crops such as orange maize, cowpeas, and lab-lab, farmers like Susan Chinyengetere are ensuring food security, generating income, and inspiring others. These techniques not only strengthen resilience against erratic weather but also enable women to balance traditional roles while driving sustainable agriculture. With access to affordable seeds, mechanization, and strong farmer networks, CIMMYT is fostering lasting solutions to climate adaptation across Zimbabwe and beyond.

Read the full story.

US$2M poultry project targets youth, women farmers in Dodoma

In Dodoma, Tanzania, CIMMYT, ILRI and TALIRI with USAID funding of US$2M, launch the AID-L project to enhance poultry farming among youth and women. Targeting 18,000 farmers, it involves cost-sharing, advisories, and media resources to reduce poultry morbidity. Implemented across eight districts, the initiative aims to benefit 3 million people as part of the broader AID-I project, addressing a significant contributor to Tanzania’s agricultural GDP.

Read the full story.

CIMMYT and WorldVeg in an MoU to enhance sustainable food production, boost youth and women employment

CIMMYT, in collaboration with World Vegetable Center, has embarked on a partnership to enhance sustainable food production and employment for youth and women. This initiative aims to advance food security and poverty reduction by promoting diversified, resilient agricultural practices and strengthening cereal and vegetable value chains, contributing to the Sustainable Develpment Goals.

Read the full story.

One year of Women in Crop Science at CIMMYT

To mark International Women’s Day 2023, Nele Verhulst, cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), shares progress from the Women in Crop Science group and how their work tries to contribute to gender equality in agriculture and science.

Growing up in the nineties in Belgium, I was interested in feminism, but I also assumed that the fight for equal rights for women and men had been fought and won. Studying bioscience engineering in the 2000s, more than half of the students were women, so this demonstrated to me that we were all set (although the large majority of professors were men, it seemed to be just a matter of time for that to be resolved). I have now been working in Latin America as an agronomist and researcher for more than 15 years and have come to realize that there is still a lot of work to do to achieve equal opportunities for female farmers, farm advisors, scientists, and other professionals in agriculture.

At CIMMYT, between 20 and 25 percent of staff in the science career track – careers involving field, lab, data, and socioeconomic work – are female. Because of that, Alison Bentley and I started a group of women in crop science at CIMMYT about one year ago on the International Day of Women and Girls in Science in 2022. In our first meeting, we aimed to connect, discussed how to build a network (we did not even have a list of all women in science at CIMMYT, so it was hard to know who to invite), and decided whether we wanted to commit to additional actions to achieve a more inclusive environment at CIMMYT.

Since that first meeting, we have organized coffee mornings and other events, and have split into smaller working groups to draft action plans on ten topics: gender in the workplace strategy development, advancement for locally recruited staff, mentorship, recruitment processes, microaggressions, harassment policies, work-life balance, family friendly work environment, raising external awareness about women in agriculture, and ensuring internal visibility.

Our group is also linked to the worldwide network of Women in Crop Science and the One CGIAR Women in Research and Science (WIRES) group.

I have enjoyed being able to make some first small changes – who knew sanitary facilities would turn out to be a recurring topic! – but most of all I have loved the opportunities over the past year to connect with women with a shared passion for crop science in all its aspects. That passion and the opportunities it creates to improve the lives of farmers and rural communities is the most important thing we are celebrating today.

Cover photo: Women participate in a public harvest event for timely sown wheat organized by the Cereal Systems Initiative for South Asia (CSISA) project with Krishi Vigyan Kendra (KVK) in in Nagwa village near Patna in Bihar, India. (Photo: Madhulika Singh/CIMMYT)

Growing stronger with every season

The United Nations International Day of Women and Girls in Science (IDWGIS) is observed annually on February 11 to highlight the gender gap in the disciplines of science, technology, engineering and mathematics (STEM).

Data shows that women are given smaller research grants than their male colleagues, are underrepresented in cutting edge fields, and account for a lower percentage of STEM graduates.

At the International Maize and Wheat Improvement Center (CIMMYT), women are leaders, mentors, and role models in agricultural science and research, helping to support the next generation. Across our global programs, women are making a difference to the lives of farmers and their communities every day.

Supporting the careers of women in science

Happy Makuru Daudi, Head of Groundnut Research Program at the Tanzania Agricultural Research Institute (TARI) based at Naliendele Research Center in Mtwara, is a plant breeder specializing in groundnut. For the United Nations International Day of Women and Girls in Science, she shares with us her passion for what she does and why more women should venture into plant breeding.

What inspired you to get into your career?

I was in love with science and my intention was to be a doctor but later I changed my mind. I loved biology a lot and that set my focus on my academic path. At university I had good mentors who influenced my career direction as well.

When I achieved my first degree, I was recruited by the Government of Tanzania as an agricultural officer. My then boss, Omar Mponda, inspired me to be a plant breeder. He encouraged me and I went ahead to study plant breeding for both my Masters and PhD. My first degree was in Agronomy, I then did a Masters in Crop Science, specializing in Plant Breeding, and eventually completed a PhD in Plant Breeding as well.

What did you love about plant breeding?

I realized breeders are very active people. Always trying to improve and change things. Always looking for ways to make a difference. This desire to make a change makes us active lifelong learners.

The other thing I learnt from breeders is that they can change the life of farmers. Most smallholder farmers are women. I love my crop (groundnut) because it is a ‘woman’s crop’. If the breeder develops a product such as groundnut with high impact, it means they have changed the life of women. I realized I work a lot with women in my field and even if I only change the smallest of things, it means I get to change their lives and boost them from one step to the next.

Please elaborate on why you refer to groundnut as a woman’s crop.

Groundnut is a nutritious crop and is used a lot in processing and preparing children’s food, hence most women value it and engage in farming the crop, even though in small plots of land, in order to have nutritious food for their families’ health.

Most women especially in Tanzania view groundnut as their ATM, in that when they need money for use at home, they only need to sell some of their harvested groundnut and get cash to meet their home’s needs, such as buying schoolbooks for their children.

Women are involved in the entire groundnut value chain, that is from farming the crop in the field up to the processing stages, unlike men who mostly only come in at the market stage to sell the produce. Therefore, groundnut is source of income for many women in Tanzania.

Happy Makuru Daudi presents at the Drylands Legumes and Cereals Crop Improvement Review and Planning meeting in Ghana in January 2023. (Photo: Susan Otieno/CIMMYT)

Has the International Maize and Wheat Center (CIMMYT) and the CGIAR at large contributed in any way to your career growth?

Yes! They have contributed a lot. First in building my capacity and, as I work with them in the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. My PhD was sponsored by the Tropical Legumes III Project. I remember when interacting with scientists from these organizations, I observed how they carried themselves with confidence, both the women and men; it motivated me and built my confidence.

What was the focus of your PhD?

My PhD was on breeding for groundnut resistance for rust and high yield in Tanzania.

What is your message for young women and girls interested in getting into science, technology, engineering, and mathematics (STEM) careers?

First, they need to trust themselves. They can do anything in this world. They should not be fearful. For instance, those interested in breeding might observe that most breeders are men, and they may tell themselves that it is a difficult career and run away from it. But I would like them to tell themselves they can be and do even better than men. They only need to trust themselves and build their confidence.

Tell me about the formation of your team – are you intentional in working with women in your team?

Yes, I’m usually intentional about this. I always give equal chance to both genders but when I get an opportunity to hire for my team, it makes me happier if a woman lands the job. I realized women are good workers and ready to learn. Most of my casual laborers on my team are also women. They work meticulously. The main work for breeders entails crossing. The best people for crossing are women! I have observed that the success rate of the crosses is higher with women! Crossing is intensive work, physically as well, and needs utmost concentration. So, I trust them in this.

Is there anything else you would like to add?

I want to encourage women not to run away from sciences, and especially agricultural sciences such as breeding. We want more women breeders. They can change this world and help more people put food on the table. The agricultural sector, especially the farms, are dominated by women, and it is easier for them when they interact with other women. When we go meet them in the fields, it is easier for us to understand their needs and change their lives. So, I call girls and women to come on board in this sector and change the lives of many.

Cover photo: Happy Makuru Daudi (center) discussing groundnut varieties with colleagues from TARI and CIMMYT in Mtwara, Tanzania, in 2022. (Photo: Susan Otieno/CIMMYT)

Solar powered dryers boost peanut production in Togo

Solar powered peanut dryers in Togo are helping women-run cooperatives reduce their workload and increase their profits.

A number of West African countries have climate and soil well-suited to groundnut cultivation. In the second half of the twentieth century, the region became a world leader in peanut production. In Togo, peanuts do well, but problems with postharvest processing have kept this crop performing well below its potential.

However, the introduction of the solar powered dryers has had a significant positive impact on the production and preservation of a vital crop for the local population.

From peanut stews and sauces that are staples of national cuisine to overseas export of peanut products, there is no shortage of uses for this groundnut in Togo. However, smallholding farmers struggle to preserve their entire crop in large part because of aflatoxins, which thrive when conditions are too moist and ruin peanuts.

“Peanuts are a very perishable commodity and they can spoil if not stored properly for processing,” said Aïssetou Koura, president of the peanut farmer cooperative in Koumonde.

This is particularly true for smallholding peanut farmers, which in Togo includes many women. The established method for drying peanuts is to lay them out in the open air, which is a labor-intensive process that leaves the crop exposed to unexpected rains and contamination by pests. “In the past, we suffered huge losses,” Aïssetou explained.

Aicha Gaba from the N’kani N’kana cooperative works with a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

A better way to dry

In 2021, the introduction of solar dryers began to change things dramatically for peanut farmers in cooperatives from Tovegan to Dapaong. In collaboration with the United Nations Food and Agriculture Organization (FAO), the Green Innovation Centers for the Agriculture and Food Sector (GIC) in Togo helped a local manufacturer, Guema Concept, develop solar dryer technology for local peanut farmers from plans made by the University of Hohenheim.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

The dryers are equipped with a ventilation system and a power kit that includes solar panels and a battery so they can operate during periods of reduced sunlight. They have a capacity of 12 kilograms and can complete a drying cycle in as little as two hours, which is about one quarter of the time a manual drying cycle takes. Depending on the solar exposure, cooperatives like the one in Koumonde can perform three or four cycles in a day.

“We have found a solution by preserving our products with the solar dryer,” Aïssetou said.

GIC has helped five smallholding farmer cooperatives procure solar dyers across Togo, and more than 50 women farmers are members of these groups whose work is benefitting from this technology.

Farmers like Aicha Gaba are also increasing their profit because the solar dryers allow them to do more work with fewer laborers.

“Our cooperative dries peanuts with only two people via the solar dryer, unlike conventional open drying, which requires five people to spread, turn, monitor and collect the peanuts,” Gaba said.

“This process reduces the workers’ wages and then saves us the money of three workers, which is a good thing for us.”

The new technology is producing better peanuts thanks to consistent moisture and temperature levels and faster processing speeds, said Djéri Bossa, a member of the cooperative in Bassar.

“Thanks to the solar dryers offered by GIC Togo, we can freely dry our products in good conditions,” Bossa explained.

“The products derived from the processing of peanuts are of improved quality, unlike the conventional open-drying method we used.”

All is not sunny

Despite the initial success of the solar dryers, there are challenges that remain for scaling up this innovation. The dyers are quite heavy and, for smallholding women, it can be difficult to maneuver the machines by themselves. At the same time, farmers say that – even with the greater volume the dryers have helped them achieve – they would still like a higher-capacity machine.

But even with the need for lighter, harder-working dryers, there is enormous potential for this innovation to spread to new areas, bring additional production and income to smallholding farmers (including many women), and help make groundnuts a bigger piece of the economic pie in Togo.

Cover photo: Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

Thank you to our partners, Laré B. Penn (University of Lomé) and Johanna Steinkuehler (GIZ Togo).

On Africa’s farms, the forecast calls for adaptation and innovation

On a visit to Kenya, Bill Gates had the opportunity to learn how smallholder farmers like Mary Mathuli are adapting their practices to account for the impacts of climate change.

Mathuli drew attention to the innovations that are making her life easier, such as drought-tolerant maize seed varieties developed by the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture and Livestock Research Organization (KALRO). She also cited her mobile phone as a vital tool, allowing her access essential information, such as weather forecasts, market prices, and technical farming support.

“In sub-Saharan Africa, more than half of the population works in agriculture,” explains Gates. “Together, they produce about 80 percent of the continent’s food supply. And most of the people doing the backbreaking farm work—like the chores I performed—are women.”

In addition to managing her farm, Mathuli is a model farmer and Village Based Advisor with the Cereal Growers Association, encouraging other farmers to adopt new practices that will improve their productivity. “She is clearly doing a good job in this role because more than 90 percent of farmers in her area have embraced one of the new adaptation practices,” said Gates.

Read the original article: On Africa’s farms, the forecast calls for adaptation and innovation

Latin American female scientists collaborate on CIMMYT-supported TechMaiz project

A team of women researchers that are part of the Latin American Maize Network participated in the training given by CIMMYT in the framework of the TechMaiz project. (Photo: Francisco Alarcón and Fernando Garcilazo/CIMMYT)

Female scientists from four different Latin American countries have come together to work on TechMaiz, a project supported by the International Maize and Wheat Improvement Center (CIMMYT), and continue the organization’s commitment to inclusivity and inclusion.

The scientists spent four days in November at CIMMYT’s headquarters in Mexico to contribute to the training plan, which focused on genetic improvement, soil conservation, seed storage, analysis of the nutritional quality of grain and innovation management in the hub model of maize cultivation.

This training allowed the researchers from Ecuador, Colombia, Guatemala and Peru to discuss the use of new technological tools for sustainable intensification of production systems of small and medium farmers, as well as the challenges on the road to moving from efficiency to resilience.

The scientists involved in this training within the framework of the TechMaiz project were:

  • Liliana Atencio S. – A Colombian who works at the Colombian Agricultural Research Corporation (AGROSAVIA). She is an agricultural engineer with a master’s degree in agronomic science. This includes an emphasis on plant physiology and she has additional experience in transient and forage crop improvement programs.
  • Ana Pincay – An Ecuadorian working at the Santa Catalina Experimental Station of the National Institute of Agricultural Research (INIAP) as an agricultural researcher. She’s also a biotechnology engineer.
  • Alicia Medina – A Peruvian who is based at the National Institute of Agrarian Innovation (INIA) as a researcher. She is an agricultural engineer and has a master’s degree in development planning.
  • María Gabriela Albán – She has several responsibilities, including co-investigator, coordinates the academic-financial part and is a professor of the agronomy engineering career at the San Francisco de Quito University (USFQ) in Ecuador. She is an agribusiness engineer with a master’s degree in agricultural sciences with an emphasis on agricultural business development. Albán also has a diploma in design, management, and evaluation of development projects.
  • Karen Agreda – An agronomist engineer in agri-production systems. She has a postgraduate degree in alternative fruit and vegetable production and works as a specialized researcher in the validation and technology of transference program at the Institute of Agricultural Science and Technology (ICTA) in Guatemala.
Visiting a research plot under the guidance of Nele Verhulst, Cropping Systems Agronomist with CIMMYT’s Sustainable Agrifood Systems (SAS) program. (Photo: Francisco Alarcón and Fernando Garcilazo/CIMMYT)

Weaving bonds of trust to generate changes

Following a period of continuous interaction, the researchers identified not only a number of shared challenges in their respective countries, but also how much complementary and concrete opportunities for teamwork are created when bonds of trust and teamwork are strengthened.

“In addition to strengthening knowledge, there’s also the relationship between researchers and institutions, understanding the role of each member of the team is important and allows us to make greater progress,” said Atencio. “For example, Alicia works on improvement, Ana on the use of bio-inputs, and Karen on transfers and linking. We all see that there are opportunities in agriculture for innovation by using tools such as e-agrology. The result of this is that generational change is becoming more and more urgent.”

Proposing more ambitious projects, but also clearer and more precise ones, is part of the learning the researchers plan to take with them. The scientists are determined to share this information with their teams and colleagues, along with integrative approaches that are designed to strengthen the human talent of each institution.

“In Ecuador, we practice the agriculture of conservation, but we didn’t know the concept of not removing the soil,” Picay said. “It is always a good decision to invest in training, as it refreshes the thought, opens the mind and triggers actions.”

The TechMaíz project will continue in 2023 with its third year of implementation, promoting national meetings to promote and disseminate the use of sustainable technologies for maize production. CIMMYT training for members of the Latin American Maize Network is also expected to continue.

CIMMYT at COP27

COP27, the UN Climate Change Conference for 2022, took place this year in Sharm El-Sheikh, Egypt, between November 6-18. Scientists and researchers from the International Maize and Wheat Improvement Center (CIMMYT) represented the organization at a wide range of events, covering gender, genebanks, soil health, and digital innovations.

Gender and food security

In an ICC panel discussion on Addressing Food Security through a Gender-Sensitive Lens on November 7, Director General Bram Govaerts presented on CIMMYT’s systems approach to address gender gaps in agriculture. This event formed part of the ICC Make Climate Action Everyone’s Business Forum, which aimed to bring together experts to determine solutions to the planet’s biggest environmental challenges.

Govaerts highlighted the importance of extension and training services targeting female farmers, particularly those delivered by women communicators. This can be achieved through training female leaders in communities, which encourages other women to adopt agricultural innovations. He also emphasized the obstacles to global food security caused by conflict, climate change, COVID-19, and the cost-of-living crisis, which will in turn create more challenges for women in agriculture.

The role of CGIAR genebanks in a climate crisis

Govaerts and Sarah Hearne, principal scientist, introduced the Agriculture Innovation Mission for Climate (AIM4C) innovation sprint on Fast Tracking Climate Solution from Genebank Collections, at a virtual side event organized by the Foundation for Food & Agriculture Research (FFAR).

Hearne explained that the development of current and future varieties is dependent upon breeders sourcing and repackaging native genetic variation in high value combinations. The CGIAR network of germplasm banks holds vast collections of crops that are important for global food and feed supplies. Among the diversity in these collections is currently unexplored and unused native variation for climate adaptation.

Through strong partnerships, multi-disciplinary activities, and the harnessing of diverse skillsets in different areas of applied research and development work, the sprint will help to identify genetic variations of potential value for climate change adaptation and move that variation into products that breeders globally can adopt in their variety development work. Through these efforts, the sprint improves access to specific genetic variation currently sat in the vaults of germplasm banks and facilitates crop improvement programs to develop the varieties that farmers demand.

The sprint is a clear example of the shift in paradigms we are looking for, so that people in the year 2100 know we took the right decisions in 2022 for them to live in a better world, said Govaerts. He continued by emphasizing the need for the initiative to be integrated within the systems it aims to transform, and the importance of accelerating farmers’ access to seeds.

The initiative is only possible because of the existence of the genebank collections that have been conserved for humanity, and due to cross-collaboration across disciplines and sharing of data and resources.

Addressing soil fertility management

Tek Sapkota, senior scientist, presented at Taking Agricultural Innovation to the Next Level to Tackle the Climate Crisis, the AIM4C partner reception on November 11, which gathered critical actors committed to making agriculture one of the most impactful climate solutions. Hosted on the one-year anniversary of the AIM4C launch at COP26 and on the eve of the COP27 day on adaptation and agriculture, the event was a celebration of progress made to date to address the climate crisis by 2025.

Along with 20 partners, CIMMYT submitted an AIM4C innovation sprint on climate-resilient soil fertility management by smallholders in Africa, Asia, and Latin America, which was announced at COP27 alongside other sprints.

Sapkota, who leads a project that is part of CIMMYT’s AIM4C innovation sprint submission, presented alongside the Minister of Climate Change and Environment from the United Arab Emirates, the Secretary of Agriculture for the United States, and the Regional Director for Central Asia, West Asia and North Africa at CGIAR.

Digital solutions for sustainable systems

Tharayil Shereef Amjath Babu, agricultural economist in modeling and targeting, hosted an event on Accelerating Digital Climate Services for resilient food systems in the Global South, exploring the work of two CGIAR Initiatives: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience and Transforming Agrifood Systems in South Asia (TAFSSA) on November 17.

In the Global South, farmers are being affected by unreliable weather patterns caused by climate change, which means they can no longer rely on their traditional knowledge. However, demand climate services can fill this vacuum, enabling meteorological agencies to produce accurate climate information, co-create digital climate services for agricultural systems, and support sustainable and inclusive business models.

Cover photo: A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center, as featured in a session on Fast Tracking Climate Solution from Genebank Collections at COP27. (Photo: Xochiquetzal Fonseca/CIMMYT)

New WIRES initiatives to advance women’s careers in science and research

IITA women nutrition scientists perfecting a new recipe. (Photo: IITA)

The CGIAR Women in Research and Science (WIRES) employee-led resource group recently had a virtual engagement to discuss the progress and new happenings in the group. The meeting, themed “Connecting and Mentoring, What’s new with WIRES!” was held on October 24.

Giving the opening remarks, The Alliance of Bioversity International and CIAT Knowledge Sharing Specialist Arwen Bailey stated that the group was launched in July 2020 to empower and increase the visibility of women research and science professionals across CGIAR.

Bailey and other co-coordinators, International Maize and Wheat Improvement Center (CIMMYT) Technical Program Manager Aparna Das, IITA HarvestPlus Cassava Breeder Elizabeth Parkes, and International Center for Agricultural Research in the Dry Areas (ICARDA) Communication Consultant Nada Abdelhamid, shared their reasons for volunteering in WIRES. Participants also highlighted their expectations for the meeting.

Explaining the vision and mission of the group, Das stated that WIRES aims to provide tools and knowledge that support professional development. She added that this would create visibility for CGIAR women in science and research so their voices are heard and their contributions recognized. “We are an open community that accommodates both men and women who are willing to support the vision of WIRES,” she said.

HarvestPlus Cassava Breeder Dr Elizabeth Parkes is one of the WIRES coordinators. (Photo: IITA)

Discussing her reason for sponsoring WIRES, CGIAR Executive Managing Director Claudia Sadoff said she admires the efforts and engagement of the team in supporting women despite having other personal life activities. She added that the increase in the percentage of women scientists calls for more effort to train and empower these women. “Thanks for allowing me to be your sponsor,” she said. International Livestock Research Institute (ILRI) Director General Jimmy Smith, also a sponsor, stated that his motivation to join the cause stems from his experience raising daughters.

Highlighting how intending volunteers can support WIRES, Das spoke on mentorship as a promising strategy to advance Gender, Diversity and Inclusion (GDI) in the workplace as it offers access and advocacy for women. Explaining the criteria for engagement, she stated that a mentor must be passionate about advancing GDI, while the mentee must be a middle to senior-level career woman researcher/scientist with an appetite to learn. “Registration for the program will begin in November, and the program will kick off in December. Interested mentors and mentees who meet the criteria can register and be trained,” she said.

Other new WIRES initiatives coming up before the end of 2022 include “Random coffee,” where members can schedule to meet physically or virtually to build a vibrant relationship and network, and “Focus groups” for discussions that will ensure continuous improvement for WIRES.

Closing out the meeting, CGIAR Global Director of People and Culture, Fiona Bourdin-Farrell, summarized ways volunteers can help to advance women in science and research in CGIAR. She mentioned that it starts with joining the WIRES team, being a part of the mentoring program, engaging in the random coffee pilot, and joining focus groups. “You can contribute to the information in the newsletter. You can also register as both mentor and mentee as long as you meet the criteria,” she concluded.

Read the original article: New WIRES initiatives to advance women’s careers in science and research

Contributed by Ochuwa Favour Daramola.

The critical role of smallholder farmers of the Eastern Gangetic Plains in the global food chain

The Eastern Gangetic Plains (EGP) are vulnerable to climate change and face tremendous challenges, including heat, drought, and floods. More than 400 million people in this region depend on agriculture for their livelihoods and food security; improvements to their farming systems on a wide scale can contribute to the Sustainable Development Goals (SDGs).

The Australian Centre for International Agricultural Research (ACIAR) has been supporting smallholder farmers to make agriculture more profitable, productive, and sustainable while also safeguarding the environment and encouraging women’s participation through a partnership with the International Maize and Wheat Improvement Center (CIMMYT). On World Food Day, these projects are more important than ever, as scientists strive to leave no one behind.

The EGP have the potential to significantly improve food security in South Asia, but agricultural production is still poor, and diversification opportunities are few. This is a result of underdeveloped markets, a lack of agricultural knowledge and service networks, insufficient development of available water resources, and low adoption of sustainable farming techniques.

Current food systems in the EGP fail to provide smallholder farmers with a viable means to prosper, do not provide recommended diets, and impose undue strain on the region’s natural resources. It is therefore crucial to transform the food system with practical technological solutions for smallholders and with scaling-up initiatives.

Zero tillage wheat growing in the field in Fatehgarh Sahib district, Punjab, India. It was sown with a zero tillage seeder known as a Happy Seeder, giving an excellent and uniform wheat crop. (Photo: Petr Kosina/CIMMYT)

ACIAR: Understanding and promoting sustainable transformation of food systems

Over the past ten years, ACIAR has extensively focused research on various agricultural techniques in this region. The Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project sought to understand local systems, demonstrate the efficacy of Conservation Agriculture-based Sustainable Intensification (CASI) approaches, and create an environment that would support and scale-up these technologies.

To establish a connection between research outputs and development goals, the Transforming Smallholder Food Systems in the Eastern Gangetic Plains (Rupantar) project expands on previous work and partnership networks. This is a collaborative venture with CIMMYT that demonstrates inclusive diversification pathways, defines scaling up procedures for millions of smallholder farmers in the region, and produces a better understanding of the policies that support diversification.

Building the future and inspiring communities

Men and women both contribute substantially to farming activities in the EGP of India, Bangladesh, and Nepal, but gender roles differ according to location, crops and opportunities. It is a prevalent perception supported by culture, tradition, and social biases that women cannot be head of the household.

In Coochbehar, India, the unfortunate passing of Jahanara Bibi’s husband left her as head of her household and sole guardian of her only son. Though a tragic event, Bibi never gave up hope.

Going through hardships of a rural single female farmer intensified by poverty, Bibi came to know about CASI techniques and the use of zero-till machines.

Though it seemed like a far-fetched technique at first and with no large network to rely on for advice, Bibi decided to gather all her courage and give it a try. Being lower cost, more productive, adding income, and saving her time and energy all encouraged Bibi to adopt this zero-till machine in 2013, which she uses to this day. Today, she advocates for CASI technology-based farming and has stood tall as an inspiration to men and women.

“I feel happy when people come to me for advice – the same people who once thought I was good for nothing,” said Bibi.

With no regrets from life and grateful for all the support she received, Bibi dreams of her future as a female agro-entrepreneur. Being a lead female farmer of her community and having good contact with the agriculture office and conducive connection with local service providers, she believes that her dream is completely achievable and can inspire many single rural female farmers like herself to encourage them to change perceptions about the role of women.

Cover photo: Jahanara Bibi standing by her farm, Coochbehar, India. (Photo: Manisha Shrestha/CIMMYT)

Making purple maize a seed of prosperity for Peruvian farmers

In Mexico there is an indigenous poem that says, “We are grains of maize from the same cob; we are one root of the same path.” So, it is not surprising that the path of Alicia Medina Hoyos, a researcher with the National Maize Research Program at El Instituto Nacional de Innovación Agraria (INIA), began life in a rural community in Cupisnique, Cajamarca, Peru, at 1,800 meters above sea level.

At an early age, she realized the importance of maize as a feature of identity. This prompted her to dedicate her life to contribute to food security through research on starchy maize, soft maize types used for human consumption with 80% starch in their composition.

Medina studied Agronomy at the National University of Cajamarca, where her thesis brought her into contact with Luis Narro, a Peruvian researcher linked to the International Maize and Wheat Improvement Center (CIMMYT), which she has been associated with ever since.

“This permanent contact has been key to strengthening my capacities to actively participate in the co-creation of better opportunities for producers in Peru and Latin America,” said Medina. Her connection with CIMMYT has helped her to maintain an enriching exchange of knowledge and experiences with researchers such as Terry Molnar, a specialist in native maize, as well as with the more than 130 colleagues who make up the Latin American Maize Network.

It has also provided opportunities to showcase Peruvian agricultural research. In 2022, Peru hosted the XXIV Latin American Maize Meeting, an event jointly organized by CIMMYT and INIA every two years. Medina explained, “The event is a great opportunity to show Cajamarca, producers, organizations, to highlight the best we have, and to promote purple maize.”

Award-winning research

On International Women’s Day in 2019, Medina received an award from the College of Engineers of Peru for the effort, dedicated work, and contribution of engineering to the service of society.

When asked what it meant to receive this award, Medina said, “Research in starchy maize and, in recent years, in purple maize, has taken me to Ecuador, Colombia, Bolivia and Japan, and has given me the satisfaction of receiving awards that motivate me to continue putting research at the service of producers.”

This is without losing sight of the other valuable awards that Medina has received: the Personage of the Bicentennial, awarded in 2021 by the Provincial Municipality of Contumazá, Peru; the compass that Chile gave her in 2021 as recipient of the Strait of Magellan Award for Innovation and Exploration with Global Impact; and the SUMMUM Research Award given by the Summum Awards Advisory Committee in 2019.

Purple maize holds many health benefits due to its high content of anthocyanins and antioxidants. (Photo: Alicia Medina Hoyos/INIA)

Why is purple maize so important?

Purple maize comes from a breed called kulli. The team of researchers led by Medina — who obtained the variety — brought a population of purple maize from Huaraz, Peru, and crossed it with another from Cajamarca. Ten years of breeding gave rise to the INIA 601 maize, characterized by its high yield and high content of anthocyanins and antioxidants that are beneficial to health, cancer prevention, and lowering high blood pressure and cholesterol.

“In 2011 I had the opportunity to go to Japan, followed by working with a team of Japanese experts in Cajamarca,” explained Medina. “There, we started a project that gave more importance to purple maize, not for its production but for its color and therefore anthocyanin content. We saw the characteristic of the color in the husk. In 2013, we determined the amount of anthocyanin in this variety and it turned out that it was higher in the husk than in the cob. That gave us the option to market both parts.”

Medina explains how teamwork with the Japan International Cooperation Agency (JICA) laid the foundations so that today, 500 Peruvian producers “who see that there are profits, are convinced, by listening to their testimonies, in dissemination and training events” grow the maize in 12 of the 13 provinces that make up Cajamarca and market a kilo of cob and purple maize bract at $5 USD each.

There is currently high demand for the product in grain, grain flour, whole, dried, chopped and chopped dried forms; transnational companies based in Lima acquire the purple maize to extract the pigment and anthocyanin, and export it to the United States, Japan and Spain. “In fact, there are companies that produce whiskey with purple maize flour from Cajamarca,” Medina added.

In October 2021, a new agricultural campaign began in the Peruvian fields and Medina continues to promote agriculture based on the dream of seeing purple maize become a flagship product of the country, while becoming the engine of agribusiness in the region of Cajamarca, so that producers benefit in a better way, have more income and see the real magnitude of the grain they grow every day.

Cover photo: Medina assesses purple maize in Peru, which she introduced to the country. (Photo: Alicia Medina Hoyos/INIA)

Stepping up for South Asian women

Women play an integral role in all stages of agrifood systems, yet their unpaid labor is often culturally and economically devalued and ignored. As agriculture becomes more female-oriented, women are left with a double workload of caring in the home and laboring in the fields, leaving no time for leisure. Training programs are often developed with only male farmers in mind, and women can be completely excluded when it comes to mechanization.

The Cereal Systems Initiative for South Asia (CSISA), established by the International Maize and Wheat Improvement Center (CIMMYT), and implemented jointly with the International Food Policy Research Institute (IFPRI), the International Water Management Institute (IWMI) and the International Rice Research Institute (IRRI), is empowering women to become active participants in farming, improving their abilities and confidence through training, expanded access to machinery and better crop management practices. To celebrate International Day of Rural Women, here are stories from three of the women CIMMYT has helped.

Equality in agricultural opportunities

Nisha Chaudhary and her husband Kamal were engaged in agriculture, poultry and pig farming in Nepal, but struggled to provide for their family of seven; their combined income was never sufficient for them to make ends meet.

Through the CSISA COVID-19 Response and Resilience Activity, CIMMYT introduced Chaudhary to mechanization’s advantages and supported her to connect with banks, cooperatives, and machinery dealers to access financial support to introduce agriculture machinery into the family business. She became the first farmer in her village to acquire a mini combine rice mill and offer milling services. The following month, Chaudhary received additional tutoring from the Activity, this time in business management and mill repair and maintenance.

Learning about mechanization was eye-opening for Chaudhary, particularly as the Bankatti community that she comes from uses traditional methods or travels great distances to process grains using machines hired out by other communities.

Chaudhary’s primary income is now from her milling services, offering post-harvest processing services to 100 households and earning more than $150 USD each month; after deducting expenses, she is still able to save around $50 USD every month. She has bought four more cows, increasing the number of cattle she owns from 12 to 16, and is able to make her own for her livestock, saving an additional $20 USD per month.

Giving rural women the credit they deserve

As part of its response to the pandemic, CSISA launched a COVID-19 Response Activity aimed at supporting farmers and service providers to access subsidies and collateral-free loans via the Government of Nepal Kisan Credit Card (KCC) scheme, designed to support agriculture-related businesses. Through this scheme, farmers received hands-on training in providing after-sales support to customers, as well as mentoring to learn how to operate machinery and use it to generate sales and income.

Smallholder female farmers have been subject to many hardships due to lack of access to finance. They are forced to sell produce at low prices and buy inputs at high prices, which makes them suffer financially and physically. Now, loans through appropriate intermediaries can foster rural entrepreneurship and the service delivery business model.

The KCC scheme gave Chaudhary financial security just when she needed it. Her next step, with her newfound confidence, respect of her community, and the support of a collateral-free loan from KCC, will be to launch her own poultry farm agri-business.

Eradicating discrimination in mechanization

The CSISA Mechanization and Extension Activity (CSISA-MEA) enables smallholder female farmers to discover the advantages of scale-appropriate mechanization and its benefits: increased productivity, reduced labor costs, improved financial stability and greater food security.

Rokeya Begum was a stay-at-home mother to three children in Bangladesh and aspired to give her daughter a good education. However, her husband found it difficult to sustain the family as a factory worker due to the high cost of their daughter’s education.

As a result, Begum opted to work in an agriculture machinery manufacturing workshop like her husband. She was initially hesitant to work in a male-dominated workplace but on the other hand realized that this job would mean she could pursue the dream she had for her daughter. She immediately began using her earnings to fund her daughter’s education, who is currently in high school.

Begum was part of the grinding and painting departments at M/S Uttara Metal Industries in Bogura, Bangladesh, for five years. Her weekly wage was equivalent to $12 USD – insufficient to support her family or sustain a decent quality of life.

CSISA-MEA included Begum in skills training, which proved to be a gamechanger. She participated in CIMMYT’s training on spray gun painting, as well as in fettling and grinding skills. As part of both training programs, she learnt how to handle an air compressor paint gun and painting materials, as well as different painting methods. She has also learnt more about keeping herself safe at work using personal protective equipment. “Before the training, I did not know about the health risks – now I don’t work without PPE,” she said.

Begum used to paint the traditional way with a brush, but now the owner permits her to paint with a spray gun with her increased expertise. As a result, she has been promoted from day laborer to contractual employee in painting and grinding, with a new weekly salary of $50 USD. Her confidence has grown to the extent that she is comfortable in an engineering workshop among male coworkers.

Farmer Malti Devi in her field, where she grew wheat through zero-till. (Photo: Nima Chodon/CIMMYT)

Harvesting the benefits of improved practices

Farmer and mother of six, Malti Devi has an infectious smile that hardly reveals the toil and labor of her everyday farm work in India.

She grows wheat on nearly 0.45 acres of leased land. Her husband, a barber, earns an ordinary income that is insufficient for a family of eight. Despite the challenges, Devi has managed to earn income through her efforts in the field and by working as a daily wager in nearby fields.

To support women farmers like Devi, CSISA made efforts to build relationships via on-the-ground partnerships with civil society, women’s cooperatives like JEEViKa in Bihar and Mission Shakti in Odisha, or self-help groups. The team provides in-field demonstrations, training, workshops on best practices and support with access to better seed varieties and extension services. CSISA’s integrated approaches reach these women with information and associated technology that best serves them, while being climate-smart and sustainable.

Devi expressed that due to zero-till practice encouraged by the CSISA team, she saved time in the planting season, which she devoted to working on other’s fields for extra income. “The traditional method would have left me struggling for time, on the field or at home. Practices like zero-till ensured our crop was harvested on time with reduced input costs and resources and enabled a good harvest for consumption, and we could also sell some produce.”

Devi has ensured self-sufficiency for her family through her efforts and hopes to make use of the support in better crop management on offer from CSISA for wheat and other crops.

Cover photo: Rokeya Begum has increased her workshop salary through support from CSISA. (Photo: Abdul Mumin)