Skip to main content

Tag: water management

India’s Groundwater Is In Trouble. And It Could Cause a Food Shortage for Millions By 2025, Study Finds

A recent study of the groundwater in India revealed that, by 2025, large areas of the north-western and southern parts of the country will have “critically low groundwater availability”, leading to a decrease in cropping that will ultimately cause an imbalance in the food security for millions.

Read more: https://www.greenqueen.com.hk/indias-groundwater-is-in-trouble-and-it-could-cause-a-food-shortage-for-millions-by-2025-study-finds/

Saving water and time

“I wonder why I never considered using drip irrigation for all these years,” says Michael Duri, a 35-year-old farmer from Ward 30, Nyanga, Zimbabwe, as he walks through his 0.5-hectare plot of onions and potatoes. “This is by far the best method to water my crops.”

Duri is one of 30 beneficiaries of garden drip-kits installed by the International Maize and Wheat Improvement Center (CIMMYT), an implementing partner under the Program for Growth and Resilience (PROGRESS) consortium, managed by the Zimbabwe Resilience Building Fund (ZRBF).

“In June 2020, I installed the drip kit across 0.07 hectares and quickly realized how much water I was saving through this technology and the reduced amount of physical effort I had to put in,” explains Duri. By September, he had invested in two water tanks and more drip lines to expand the area under drip irrigation to 0.5 hectares.

Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)
Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)

Water woes

Zimbabwe’s eastern highland districts like Nyanga are renowned for their diverse and abundant fresh produce. Farming families grow a variety of crops — potatoes, sugar beans, onions, tomatoes, leafy vegetables and garlic — all year round for income generation and food security.

Long poly-pipes lining the district — some stretching for more than 10 kilometers — use gravity to transport water from the mountains down to the villages and gardens. However, in the last five-to-ten years, increasing climate-induced water shortages, prolonged dry spells and high temperatures have depleted water reserves.

To manage the limited resources, farmers access water based on a rationing schedule to ensure availability across all areas. Often during the lean season, water volumes are insufficient for effectively irrigating the vegetable plots in good time, which leads to moisture stress, inconsistent irrigation and poor crop performance. Reports of cutting off or diverting water supply among farmers are high despite the local council’s efforts to schedule water distribution and access across all areas. “When water availability is low, it’s not uncommon to find internal conflicts in the village as households battle to access water resources,” explains Grace Mhande, an avid potato producer in Ward 22.

Climate-proofing gardens

Traditionally, flood, drag hose, bucket and sprinkler systems have been used as the main irrigation methods. However, according to Raymond Nazare, an engineer from the University of Zimbabwe, these traditional irrigation designs “waste water, are laborious, require the services of young able-bodied workers and use up a lot of time on the part of the farmers.”

Prudence Nyanguru, who grows tomatoes, potatoes, cabbages and sugar beans in Ward 30, says the limited number of sprinklers available for her garden meant she previously had to irrigate every other day, alternating the sprinkler and hose pipe while spending more than five hours to complete an average 0.05-hectare plot.

“Whereas before I would spend six hours shifting the sprinklers or moving the hose, I now just switch on the drip and return in about two or three hours to turn off the lines,” says Nyanguru.

The drip technology is also helping farmers in Nyanga adapt to climate change by providing efficient water use, accurate control over water application, minimizing water wastage and making every drop count.

“With the sprinkler and flood systems, we noticed how easily the much-needed fertile top soil washed away along with any fertilizer applied,” laments Vaida Matenhei, another farmer from Ward 30. Matenhei now enjoys the simple operation and steady precision irrigation from her drip-kit installation as she monitors her second crop of sugar beans.

FrĂ©dĂ©ric Baudron, a systems agronomist at CIMMYT, observes that Zimbabwe has a long history of irrigation, but this has mostly tended to be large-scale. “This means either expensive pivots owned by large-scale commercial farmers — a minority of the farming population in Zimbabwe as in much of sub-Saharan Africa — or capital-intensive irrigation schemes shared by a multitude of small-scale farmers, often poorly managed because of conflicts amongst users,” he says. A similar pattern can be seen with mechanization interventions, where Zimbabwe continues to rely on large tractors when smaller, and more affordable, machines would be more adapted to most farmers in the country.

“Very little is done to promote small-scale irrigation,” explains Baudron. “However, an installation with drip kits and a small petrol pump costs just over $1 per square meter.”

Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A disability-inclusive technology

The design of the drip-kit intervention also focused on addressing the needs of people with disabilities. At least five beneficiaries have experienced the limitations to full participation in farming activities as a result of physical barriers, access challenges and strenuous irrigation methods in the past.

For 37-year-old Simon Makanza from Ward 22, for example, his physical handicap made accessing and carrying water for his home garden extremely difficult. The installation of the drip-kit at Makanza’s homestead garden has created a barrier-free environment where he no longer grapples with uneven pathways to fetch water, or wells and pumps that are heavy to operate.

“I used to walk to that well about 500 meters away to fetch water using a bucket,” he explains. “This was painstaking given my condition and by the time I finished, I would be exhausted and unable to do any other work.”

The fixed drip installation in his plot has transformed how he works, and it is now easier for Makanza to operate the pump and switches for the drip lines with minimal effort.

Families living with people with disabilities are also realizing the advantages of time-saving and ease of operation of the drip systems. “I don’t spend all day in the field like I used to,” says George Nyamakanga, whose brother Barnabas who has a psychosocial disability. “Now, I have enough time to assist and care for my brother while producing enough to feed our eight-member household.”

By extension, the ease of operation and efficiency of the drip-kits also enables elderly farmers and the sick to engage in garden activities, with direct benefits for the nutrition and incomes of these vulnerable groups.

Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Scaling for sustained productivity

Since the introduction of the drip-kits in Nyanga, more farmers like Duri are migrating from flood and sprinkler irrigation and investing in drip irrigation technology. From the 30 farmers who had drip-kits installed, three have now scaled up after witnessing the cost-effective, labor-saving and water conservation advantages of drip irrigation.

Dorcas Matangi, an assistant research associate at CIMMYT, explains that use of drip irrigation ensures precise irrigation, reduces disease incidence, and maximal utilization of pesticides compared to sprinklers thereby increasing profitability of the farmer. “Although we are still to evaluate quantitatively, profit margin indicators on the ground are already promising,” she says.

Thomas Chikwiramadara and Christopher Chinhimbiti are producing cabbages on their shared plot, pumping water out of a nearby river. One of the advantages for them is the labor-saving component, particularly with weed management. Because water is applied efficiently near the crop, less water is available for the weeds in-between crop plants and plots with drip irrigation are thus far less infested with weeds than plots irrigated with buckets or with flood irrigation.

“This drip system works well especially with weed management,” explains Chinhimbiti. “Now we don’t have to employ any casual labor to help on our plot because the weeds can be managed easily.”

Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

New publications: A study of water markets in Bangladesh

Domestic rice and wheat production in Bangladesh has more than doubled in the last 30 years, despite declining per capita arable land. The fact that the country is now almost self-sufficient in staple food production is due in large part to successful and rapid adoption of modern, high-yielding crop varieties. This has been widely documented, but less attention has been paid to the contribution of small-scale irrigation systems, whose proliferation has enabled double rice cropping and a competitive market system in which farmers can purchase irrigation services from private pump owners at affordable rates.

However, excess groundwater abstraction in areas of high shallow tube-well density and increased fuel costs for pumping have called into question the sustainability of Bangladesh’s groundwater irrigation economy. Cost-saving agronomic methods are called for, alongside aligned policies, markets, and farmers’ incentives.

A recent study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) examines the different institutions and water-pricing methods for irrigation services that have emerged in Bangladesh, each of which varies in their incentive structure for water conservation, and the level of economic risk involved for farmers and service providers.

Using primary data collected from 139 irrigation service providers and 556 client-farmers, the authors assessed the structure of irrigation service types as well as the associated market and institutional dimensions. They found that competition between pump owners, social capital, and social relationship between of pump owners and client farmers, significantly influence the structure of irrigation services and irrigation water pricing methods. Greater competition between pump owners, for instance, increases the likelihood of pay-per-hour services while reducing that of crop sharing arrangements.

Based on these and other findings, authors made policy recommendations for enhancing irrigation services and sustainability in Bangladesh. As Bangladesh is already highly successful in terms of the conventional irrigation system, the authors urge taking it to the next level for sustainability and efficiency.

Currently Bangladesh’s irrigation system is based on centrifugal pumps and diesel engines. The authors suggest scaling out the energy efficient axial flow pump, and the alternate wetting and drying system for water conservation and irrigation efficiency. They also recommend further investment in rural electrification to facilitate the use of electric motors, which can reduce air pollution by curbing dependency on diesel engines.

Read the full article:
“
Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: A study of water markets in Bangladesh” in Agricultural Water Management, Volume 222, 1 August 2019, pages 242-253.

This study was made possible through the support provided by the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation to the Cereal Systems Initiative for South Asia (CSISA). Additional support was provided by the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT).

Local irrigation service providers in southern Bangladesh demonstrate the use of a two-wheeled tractor to power an axial flow pump to provide fuel-efficient surface water irrigation. (Photo: Tim Krupnik/CIMMYT)
Local irrigation service providers in southern Bangladesh demonstrate the use of a two-wheeled tractor to power an axial flow pump to provide fuel-efficient surface water irrigation. (Photo: Tim Krupnik/CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. A spatial framework for ex-ante impact assessment of agricultural technologies. 2019. Andrade, J.F., Rattalino Edreira, J.I., Farrow, A., Loon, M.P. van., Craufurd, P., Rurinda, J., Shamie Zingore, Chamberlin, J., Claessens, L., Adewopo, J., Ittersum, M.K. van, Cassman, K.G., Grassini, P. In: Global Food Security v. 20, p. 72-81.
  2. Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain ZN and FE concentrations. 2019. Velu, G., Crespo-Herrera, L.A., Guzman, C., Huerta-Espino, J., Payne, T.S., Singh, R.P. In: Frontiers in Plant Science v. 9, art. 1971.
  3. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. 2019. Yibing Yuan, Cairns, J.E., Babu, R., Gowda, M., Makumbi, D., Magorokosho, C., Ao Zhang, Yubo Liu, Nan Wang, Zhuanfang Hao, San Vicente, F.M., Olsen, M., Prasanna, B.M., Yanli Lu, Zhang, X. In: Plant Breeding v. 9, art. 1919.
  4. Diversifying conservation agriculture and conventional tillage cropping systems to improve the wellbeing of smallholder farmers in Malawi. 2019. TerAvest, D., Wandschneider, P.R., Thierfelder, C., Reganold, J.P. In: Agricultural Systems v. 171, p. 23-35.
  5. Biofortified maize can improve quality protein intakes among young children in southern Ethiopia. 2019. Gunaratna, N.S., Moges, D., De Groote, H. Nutrients v. 11, no. 1, art. 192.

L.M. Suresh

L.M. Suresh leads CIMMYT’s maize pathology efforts in sub-Saharan Africa. He regularly contributes to Global Maize Program projects that have strategic significance in maize pathology, disease diagnosis, epidemiology and disease resistance.

Suresh also works on maize lethal necrosis (MLN) phenotyping with public and private partnership at CIMMYT and the Kenya Agricultural and Livestock Research Organization’s (KALRO) joint research station in Naivasha, Kenya. His team has phenotyped around 200,000 maize germplasm from various partners and 19 MLN resistant/tolerant hybrids have been released in east Africa so far. He has supported the training of more than 5000 researchers, students, extension workers, private seed company executives and farmers in rapid disease diagnosis and his contributions have helped to prevent further MLN spread throughout eastern and southern Africa.

Claudio César Ayala Hernåndez

Claudio Ayala is an experienced Data Management Coordinator with a demonstrated history of working in the research industry. He has a Master’s degree focused on Information Systems and Applied Computing and is skilled in analytics, database management, and the development of tools for effectively capturing, curating, storing and integrating different datasets.